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Highlights

• Impose inequality constraints during training of neural networks for
semantic segmentation

• Constraints are based on anatomical priors (shape, size, ...)

• Enable the use of weak annotations such as dots, scribbles

• Add a penalty directly into the loss function, which is very simple and
efficient

• Demonstrate the effectiveness on three applications (left-ventricle, vertebral-
body, prostate segmentation

• Get close to full supervision performances with 0.1% of labeled pix-
els Code is publicly available

1



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
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Hoel Kervadeca, ,̊ Jose Dolza, Meng Tangb, Eric Grangera, Yuri Boykovb,
Ismail Ben Ayeda

aLivia, ÉTS Montréal, QC, Canada
bDepartment of computer science, University of Waterloo, ON, Canada

Abstract

Weakly-supervised learning based on, e.g., partially labelled images or image-
tags, is currently attracting significant attention in CNN segmentation as it
can mitigate the need for full and laborious pixel/voxel annotations. Enforcing
high-order (global) inequality constraints on the network output (for instance,
to constrain the size of the target region) can leverage unlabeled data, guid-
ing the training process with domain-specific knowledge. Inequality constraints
are very flexible because they do not assume exact prior knowledge. However,
constrained Lagrangian dual optimization has been largely avoided in deep net-
works, mainly for computational tractability reasons. To the best of our knowl-
edge, the method of Pathak et al. [1] is the only prior work that addresses
deep CNNs with linear constraints in weakly supervised segmentation. It uses
the constraints to synthesize fully-labeled training masks (proposals) from weak
labels, mimicking full supervision and facilitating dual optimization.

We propose to introduce a differentiable penalty, which enforces inequality
constraints directly in the loss function, avoiding expensive Lagrangian dual
iterates and proposal generation. From constrained-optimization perspective,
our simple penalty-based approach is not optimal as there is no guarantee that
the constraints are satisfied. However, surprisingly, it yields substantially bet-
ter results than the Lagrangian-based constrained CNNs in [1], while reducing
the computational demand for training. By annotating only a small fraction
of the pixels, the proposed approach can reach a level of segmentation perfor-
mance that is comparable to full supervision on three separate tasks. While
our experiments focused on basic linear constraints such as the target-region
size and image tags, our framework can be easily extended to other non-linear
constraints, e.g., invariant shape moments [2] and other region statistics [3].
Therefore, it has the potential to close the gap between weakly and fully super-
vised learning in semantic medical image segmentation. Our code is publicly
available.

Keywords: Deep learning, semantic segmentation, weakly-supervised learning,
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CNN constraints.

1. Introduction

In the recent years, deep convolutional neural networks (CNNs) have been
dominating semantic segmentation problems, both in computer vision and med-
ical imaging, achieving ground-breaking performances when full-supervision is
available [4, 5, 6]. In semantic segmentation, full supervision requires laborious5

pixel/voxel annotations, which may not be available in a breadth of applica-
tions, more so when dealing with volumetric data. Furthermore, pixel/voxel
level annotations become a serious impediment for scaling deep segmentation
networks to new object categories or target domains.

To reduce the burden of pixel-level annotations, weak supervision in the form10

partial or uncertain labels, for instance, bounding boxes [7], points [8], scribbles
[9, 10], or image tags [11, 12], is attracting significant research attention. Im-
posing prior knowledge on the network’s output in the form of unsupervised loss
terms is a well-established approach in machine learning [13, 14]. Such priors
can be viewed as regularization terms that leverage unlabeled data, embedding15

domain-specific knowledge. For instance, the recent studies in [15, 10] showed
that direct regularization losses, e.g., dense conditional random field (CRF) or
pairwise clustering, can yield outstanding results in weakly supervised segmen-
tation, reaching almost full-supervision performances in natural image segmen-
tation. Surprisingly, such a principled direct-loss approach is not common in20

weakly supervised segmentation. In fact, most of the existing techniques syn-
thesize fully-labeled training masks (proposals) from the available partial labels,
mimicking full supervision [16, 17, 9, 18]. Typically, such proposal-based tech-
niques iterate two steps: CNN learning and proposal generation facilitated by
dense CRFs and fast mean-field inference [19], which are now the de-facto choice25

for pairwise regularization in semantic segmentation algorithms.
Our purpose here is to embed high-order (global) inequality constraints on

the network outputs directly in the loss function, so as to guide learning. For
instance, assume that we have some prior knowledge on the size (or volume)
of the target region, e.g., in the form of lower and upper bounds on size, a
common scenario in medical image segmentation [20, 21]. Let I : Ω Ă R2,3 Ñ R
denotes a given training image, with Ω a discrete image domain and |Ω| the
number of pixels/voxels in the image. ΩL Ď Ω is a weak (partial) ground-truth
segmentation of the image, taking the form of a partial annotation of the target
region, e.g., a few points (see Figure 2). In this case, one can optimize a partial
cross-entropy loss subject to inequality constraints on the network outputs [1]:

min
θ
HpSq s.t a ď

ÿ

pPΩ
Sp ď b (1)

where S = pS1, . . . , S|Ω|q P r0, 1s|Ω| is a vector of softmax probabilities1 generated

1The softmax probabilities take the form: Sppθ, Iq9 exp fppθ, Iq, where fppθ, Iq is a real

4
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by the network at each pixel p and HpSq “ ´ř
pPΩL

logpSpq. Priors a and b
denote the given upper and lower bounds on the size (or cardinality) of the target
region. Inequality constraints of the form in (1) are very flexible because they do30

not assume exact knowledge of the target size, unlike [22, 23, 24]. Also, multiple
instance learning (MIL) constraints [1], which enforce image-tag priors, can be
handled by constrained model (1). Image tags are a form of weak supervision,
which enforce the constraints that a target region is present or absent in a given
training image [1]. They can be viewed as particular cases of the inequality35

constraints in (1). For instance, a suppression constraint, which takes the formř
pPΩ Sp ď 0, enforces that the target region is not in the image.

ř
pPΩ Sp ě 1

enforces the presence of the region.

Even though constraints of the form (1) are linear (and hence convex) with
respect to the network outputs, constrained problem (1) is very challenging40

due to the non-convexity of CNNs. One possibility would be to minimize the
corresponding Lagrangian dual. However, as pointed out in [1, 25], this is com-
putationally intractable for semantic segmentation networks involving millions
of parameters; one has to optimize a CNN within each dual iteration. In fact,
constrained optimization has been largely avoided in deep networks [26], even45

thought some Lagrangian techniques were applied to neural networks a long
time before the deep learning era [27, 28]. These constrained optimization tech-
niques are not applicable to deep CNNs as they solve large linear systems of
equations. The numerical solvers underlying these constrained techniques would
have to deal with matrices of very large dimensions in the case of deep networks50

[25].

To the best of our knowledge, the method of Pathak et al. [1] is the only
prior work that addresses inequality constraints in deep weakly supervised CNN
segmentation. It uses the constraints to synthesize fully-labeled training masks
(proposals) from the available partial labels, mimicking full supervision, which55

avoids intractable dual optimization of the constraints when minimizing the loss
function. The main idea of [1] is to model the proposals via a latent distribution.
Then, it minimize a KL divergence, encouraging the softmax output of the CNN
to match the latent distribution as closely as possible. Therefore, they impose
constraints on the latent distribution rather than on the network output, which60

facilitates Lagrangian dual optimization. This decouples stochastic gradient
descent learning of the network parameters and constrained optimization: The
authors of [1] alternate between optimizing w.r.t the latent distribution, which
corresponds to proposal generation subject to the constraints2, and standard
stochastic gradient descent for optimizing w.r.t the network parameters.65

We propose to introduce a differentiable term, which enforces inequality
constraints (1) directly in the loss function, avoiding expensive Lagrangian dual

scalar function representing the output of the network for pixel p. For notation simplicity,
we omit the dependence of Sp on θ and I as this does not result in any ambiguity in the
presentation.

2This sub-problem is convex when the constraints are convex.

5
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iterates and proposal generation. From constrained optimization perspective,
our simple approach is not optimal as there is no guarantee that the constraints
are satisfied. However, surprisingly, it yields substantially better results than70

the Lagrangian-based constrained CNNs in [1], while reducing the computa-
tional demand for training. In the context of cardiac image segmentation, we
reached a performance close to full supervision while using a fraction of the full
ground-truth labels (0.1%). Our framework can be easily extended to non-linear
inequality constraints, e.g., invariant shape moments [2] or other region statis-75

tics [3]. Therefore, it has the potential to close the gap between weakly and
fully supervised learning in semantic medical image segmentation. Our code is
publicly available 3.

2. Related work80

2.1. Weak supervision for semantic image segmentation:

Training segmentation models with partial and/or uncertain annotations is a
challenging problem [29, 30]. Due to the relatively easy task of providing global,
image-level information about the presence or absence of objects in an image,
many weakly supervised approaches used image tags to learn a segmentation85

model [31, 32]. For example, in [31], a probabilistic latent semantic analysis
(PLSA) model was learned from image-level keywords. This model was later
employed as a unary potential in a Markov random field (MRF) to capture
the spatial 2D relationships between neighbours. Also, bounding boxes have
become very popular as weak annotations due, in part, to the wide use of clas-90

sical interactive segmentation approaches such as the very popular GrabCut
[33]. This method learns two Gaussian mixture models (GMM) to model the
foreground and background regions defined by the bounding box. To segment
the image, appearance and smoothness are encoded in a binary MRF, for which
exact inference via graph-cuts is possible, as the energies are sub-modular. An-95

other popular form of weak supervision is the use of scribbles, which might
be performed interactively by an annotator so as to correct the segmentation
outcome.

GrabCut is a notable example in a wide body of “shallow” interactive seg-
mentation works that used weak supervision before the deep learning era. More100

recently, within the computer vision community, there has been a substantial
interest in leveraging weak annotations to train deep CNNs for color image seg-
mentation using, for instance, image tags [1, 34, 35, 17, 11, 12], bounding boxes
[7, 16, 36], scribbles [37, 9, 38, 15, 10] or points [8]. Most of these weakly su-
pervised semantic segmentation techniques mimic full supervision by generating105

full training masks (segmentation proposals) from the weak labels. The propos-
als can be viewed as synthesized ground-truth used to train a CNN. In general,

3The code can be found at https://github.com/LIVIAETS/SizeLoss_WSS
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these techniques follow an iterative process that alternates two steps: (1) stan-
dard stochastic gradient descent for training a CNN from the proposals; and (2)
standard regularization-based segmentation, which yields the proposals. This110

second step typically uses a standard optimizer such mean-field inference [17, 16]
or graph cuts [9]. In particular, the dense CRF regularizer of Krähenbühl and
Koltun [19], facilitated by fast parallel mean-field inference, has become very
popular in semantic segmentation, both in the fully [39, 40] and weakly [17, 16]
supervised settings. This followed from the great success of DeepLab [40], which115

popularized the use of dense CRF and mean-field inference as a post-processing
step in the context fully supervised CNN segmentation.

An important drawback of these proposal strategies is that they are vul-
nerable to errors in the proposals, which might reinforce themselves in such
self-taught learning schemes [41], undermining convergence guarantee. The re-120

cent approaches in [15, 10] have integrated standard regularizers such as dense
CRF or pairwise graph clustering directly into the loss functions, avoiding extra
inference steps or proposal generation. Such direct regularization losses achieved
state-of-the-art performances for weakly supervised color segmentation, reach-
ing near full-supervision accuracy. While these approaches encourage pairwise125

consistencies between pixels during training, they do not explicitly impose global
constraint as in (1).

2.2. Medical image segmentation with weak supervision:

Despite the increasing amount of works focusing on weakly supervised deep
CNNs in semantic segmentation of color images, leveraging weak annotations130

in medical imaging settings is not simple. To our knowledge, the literature on
this matter is still scarce, which makes weak-supervision approaches appealing
in medical image segmentation. As in color images, common settings for weak
annotations are bounding boxes. For instance, DeepCut [16] follows a similar
setting as [17]. It generates image proposals, which are refined by a dense CRF135

before being re-used as “fake” labels to train the CNN. Using the bounding
boxes as initializations for the Grab-cut algorithm, the authors showed that, by
this iterative optimization scheme, one can obtain a performance better than the
shallow counterpart, i.e., GrabCut. In another weakly supervised scenario [42],
images were segmented in an unsupervised manner, generating a set of super-140

pixels [43], among which users had to select the regions belonging to the object
of interest. Then, these masks generated from the super-pixels were employed
to train a CNN. Nevertheless, as proposals are generated in an unsupervised
manner, and due to the poor contrast and challenging targets typically present
in medical images, these “fake” labels are likely prone to errors, which can be145

propagated during training, as stated before.

2.3. Constrained CNNs:

To the best of our knowledge, there are only a few recent works [1, 25, 24]
that addressed imposing global constraints on deep CNNs. In fact, standard
Lagrangian-dual optimization has been completely avoided in modern deep net-150

works involving millions of parameters. As pointed out recently in [1, 25], there

7



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

is a consensus within the community that imposing constraints on the outputs
of deep CNNs that are common in modern computer vision and medical image
analysis problems is impractical: the direct use of Lagrangian-dual optimiza-
tion for networks with millions of parameters requires training a whole CNN155

after each iterative dual step [1]. To avoid computationally intractable dual
optimization, Pathak et al. [1] imposed inequality constraints on a latent distri-
bution instead of the network output. This latent distribution describes a “fake”
ground truth (or segmentation proposal). Then, they trained a single CNN so as
to minimize the KL divergence between the network probability outputs and the160

latent distribution. This prior-art work is the most closely related to our study
and, to our knowledge, is the only work that addressed inequality constraints in
weakly supervised CNN segmentation. The work in [25] imposed hard equality
constraints on 3D human pose estimation. To tackle the computational diffi-
culty, they used a Kyrlov sub-space approach and limited the solver to only a165

randomly selected sub-set of the constraints within each iteration. Therefore,
constraints that are satisfied at one iteration may not be satisfied at the next,
which might explain the negative results in [25]. A surprising result in [25]
is that replacing the equality constraints with simple L2 penalties yields bet-
ter results than Lagrangian optimization, although such a simple penalty-based170

formulation does not guarantee constraint satisfaction. A similar L2 penalty
was used in [24] to impose equality constraints on the size of the target regions
in the context of histopathology segmentation. While the equality-constrained
formulations in [25, 24] are very interesting, they assume exact knowledge of the
target function (e.g., region size), unlike the inequality-constraint formulation in175

(1), which allows much more flexibility as to the required prior domain-specific
knowledge.

3. Proposed loss function

We propose the following loss for weakly supervised segmentation:

HpSq ` λ C pVSq, (2)

where VS “ ř
pPΩ Sp, λ is a positive constant that weighs the importance of

constraints, and function C is given by (See the illustration in Fig. 1):

CpVSq “

$
’&
’%

pVS ´ aq2 , if VS ă a

pVS ´ bq2 , if VS ą b

0, otherwise

(3)

Now, our differentiable term C accommodates standard stochastic gradient de-
scent. During back-propagation, the term of gradient-descent update corre-
sponding to C can be written as follows:

´BCpVSqBθ 9

$
’&
’%

pa´ VSq BSp

Bθ , if VS ă a

pb´ VSq BSp

Bθ , if VS ą b

0, otherwise

(4)

8
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where
BSp

Bθ denotes the standard derivative of the softmax outputs of the network.
The gradient in (4) has a clear interpretation. During back-propagation, when180

the current constraints are satisfied, i.e., a ď VS ď b, observe that BCpVSq
Bθ “ 0.

Therefore, in this case, the gradient stemming from our term has no effect on
the current update of the network parameters. Now, suppose without loss of
generality that the current set of parameters θ corresponds to VS ă a, which
means the current target region is smaller than its lower bound a. In this case of185

constraint violation, term pa´VSq is positive and, therefore, the first line of (4)
performs a gradient ascent step on softmax outputs, increasing Sp. This makes
sense because it increases the size of the current region, VS , so as to satisfy the
constraint. The case VS ą b has a similar interpretation.

Figure 1: Illustration of our differentiable loss for imposing soft size constraints on the
target region.

The next section details the dataset, the weak annotations and our im-190

plementation. Then, we report comprehensive evaluations of the effect of our
constrained-CNN losses on segmentation performance. We also report compar-
isons to the Lagrangian-based constrained CNN method in [1] and to the fully
supervised setting.

4. Experiments195

4.1. Medical Image Data:

In this section, the proposed loss function is evaluated on three publicly
available datasets, each corresponding to a different application – cardiac, ver-
tebral body and prostate segmentation. Below are additional details of these
data sets.200

4.1.1. Left-ventricle (LV) on cine MRI

A part of our experiments focused on left ventricular endocardium segmen-
tation. We used the training set from the publicly available data of the 2017
ACDC Challenge4. This set consists of 100 cine magnetic resonance (MR)
exams covering well defined pathologies: dilated cardiomyopathy, hypertrophic205

cardiomyopathy, myocardial infarction with altered left ventricular ejection frac-
tion and abnormal right ventricle. It also included normal subjects. Each exam

4https://www.creatis.insa-lyon.fr/Challenge/acdc/
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contains acquisitions only at the diastolic and systolic phases. The exams were
acquired in breath-hold with a retrospective or prospective gating and a SSFP
sequence in 2-chambers, 4-chambers and in short-axis orientations. A series of210

short-axis slices cover the LV from the base to the apex, with a thickness of 5
to 8 mm and an inter-slice gap of 5 mm. The spatial resolution goes from 0.83
to 1.75 mm2/pixel. For all the experiments, we employed the same 75 exams
for training and the remaining 25 for validation.

4.1.2. Vertebral body (VB) on MR-T2215

This dataset contains 23 3D T2-weighted turbo spin echo MR images from
23 patients and the associated ground-truth segmentation, and is freely available
from 5. Each patient was scanned with 1.5 Tesla MRI Siemens scanner (Siemens
Healthcare, Erlangen, Germany) to generate T2-weighted sagittal images. All
the images are sampled to have the same sizes of 39ˆ305ˆ305 voxels, with a220

voxel spacing of 2ˆ1.25ˆ1.25 mm3. In each image, 7 vertebral bodies, from T11
to L5, were manually identified and segmented, resulting in 161 labeled regions
in total. For this dataset, we employed 15 scans for training and the remaining
5 for validation.

225

4.1.3. Prostate segmentation on MR-T2

The third dataset was made available at the MICCAI 2012 prostate MR
segmentation challenge6. It contains the transversal T2-weighted MR images of
50 patients acquired at different centers with multiple MRI vendors and different
scanning protocols. It is comprised of various diseases, i.e., benign and prostate230

cancers. The images resolution ranges from 15 ˆ 256 ˆ 256 to 54 ˆ 512 ˆ 512
voxels with a spacing ranging from 2ˆ 0.27ˆ 0.27 to 4ˆ 0.75ˆ 0.75mm3. We
employed 40 patients for training and 10 for validation.

4.2. Weak annotations:

To show that the proposed approach is robust to the strategy for generating235

the weak labels, as well as to their location, we consider two different strategies
generating weak annotations from fully labeled images. Figure 2 depicts some
examples of fully annotated images and the corresponding weak labels.

Erosion. For the left-ventricle dataset, we employed binary erosion on the fully
annotations with a kernel of size 10ˆ10. If the resulted label disappeared, we240

repeated the operation with a smaller kernel (i.e., 7ˆ7) until we get a small
contour. Thus, the total number of annotated pixels represented the 0.1% of
the labeled pixels in the fully supervised scenario. This correspond to the second
row in Figure 2.

5http://dx.doi.org/10.5281/zenodo.22304
6https://promise12.grand-challenge.org
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Random point. The weak labels for the vertebral body and prostate datasets245

were generated by randomly selecting a point within the ground-truth mask and
creating a circle around it with a maximum radius of 4 pixels (fourth and sixth
row in Fig. 2), while ensuring there is no overlap with the background. With
these weak annotations, only 0.02% of the pixels in the dataset have ground-
truth labels.250

4.3. Different levels of supervision:

Training models with diverse levels of supervision requires that appropriate
objectives be defined for each case. In this section, we introduce the different
models, each with different levels of supervision.

4.3.1. Baselines255

We trained a segmentation network from weakly annotated images with no
additional information, which served as a lower baseline. Training this model
relies on minimizing the cross-entropy corresponding to the fraction of labeled
pixels: HpSq “ ´ř

pPΩL
logpSpq. In the following discussion of the experiments,

we refer to this model as partial cross-entropy (CE).260

As an upper baseline, we resort to the fully-supervised setting, where class
labels (foreground and background) are known for every pixel during training
(ΩL “ Ω). This model is referred to as fully-supervised.

4.3.2. Size constraints

We incorporated information about the size of the target region during train-265

ing, and optimized the partial cross-entropy loss subject to inequality constraints
of the general form in Eq. (1). We trained several models using the same weakly
annotated images but different constraint values.

Image tags bounds. Similar to MIL scenarios, we first used image-tag priors
by enforcing the presence or absence of a the target in a given training image,
as introduced earlier. This reduces to enforcing that the size of the predicted
region is less or equal to 0 if the target is absent from the image, or larger than
0 otherwise. To simplify the implementation, we can represent the constraints
as:

a, b “
#

1, |Ω| if target is present pΩL ‰ Hq
0, 0 otherwise

. (5)

While being very coarse, these constraints convey relevant information about
the target regions, which may be used to find common patterns in the case of270

region absence or presence.

11
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Figure 2: Examples of different levels of supervision. In the fully labeled images (top),
all pixels are annotated, with red depicting the background and green the region of
interest. In the weakly supervised cases (bottom), only the labels of the green pixels
are known. The images were cropped for a better visualization of the weak labels.
The original images are of size 256 ˆ 256 pixels.

Common bounds. The next level of supervision consists of using tighter bounds
for the positive cases, instead of p1, |Ω|q. To this end, the complete segmentation
of a single patient is employed to compute the minimum and maximum size of
the target region across all the slices. Then, we multiplied these minimum

12
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and maximum values by 0.9 and 1.1, respectively, to account for inter-patient
variability. In this case, all the images containing the object of interest have
the same lower and upper bounds. As an example, this results in the following
values for the ACDC dataset:

a, b “
#

60, 2000 if target is present pΩL ‰ Hq
0, 0 otherwise

. (6)

Individual bounds. With common bounds, the range of values for a given target
may be very large. To investigate whether a more precise knowledge of the
target is helpful, we also consider the use of individual bounds for each slice,
based on the true size of the region:

τY “
ÿ

pPΩ
Yp,

with Y “ pY1, ..., Y|Ω|q P t0, 1u|Ω| denoting the full annotation of image I. As
before, we introduce some uncertainty on the target size, and multiply τY by
the same lower and upper factors, resulting in the following bounds:

a, b “
#

0.9τY , 1.1τY if target is present pΩL ‰ Hq
0, 0 otherwise

. (7)

4.3.3. Hybrid training

We also investigate whether combining our proposed weak supervision ap-
proach with fully annotated images during the training leads to performance
improvements. For this purpose, considering we have a training set of m weakly275

annotated images, we replace n (n ă m) among these by their fully anno-
tated counterparts. Thus, the training amounts to minimizing the cross-entropy
loss for the n fully annotated images, along with the partial cross-entropy con-
strained with common size bounds for the remaining m ´ n weakly labeled
images. To examine the positive effect of size constraints in this scenario (re-280

ferred to as Hybrid), we compare the results to a network trained with the n
fully annotated images (without constraints).

4.4. Constraining a 3D volume:

We can extend our formulation to constrain a 3D volume as follows:
ÿ

SPB
HpSq ` λCpVBq, with VB “

ÿ

SPB
VS

where VB denotes the target-region volume, B “ ppY 1, S1q, ..., pY |B|, S|B|qq de-
notes a training batch containing all the 2D slices of the 3D volume7, and the

7For readability, we simplify a batch as a list of labels Y and associated predictions S.

13
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3D constraints are now given by:

a, b “ 0.9τB, 1.1τB, with τB “
ÿ

Y PB
τY

Notice that, with constraints on the whole 3D volume, we have less supervision
than the 2D scenarios from 4.3.2, where all the 2D slices have independent285

supervision (e.g., the image tags).

4.5. Training and implementation details:

For the experiments on the left-ventricle and vertebral-body datasets, we
used ENet [44], as it has shown a good trade-off between accuracy and infer-
ence time. Due to the higher difficulty of the prostate segmentation task, we290

employed a fully residual version of U-Net [45], similar to [46].
For the three datasets, we trained the networks from scratch using the Adam

optimizer and an initial learning rate of 5ˆ 10´4 that we decreased by a factor
of 2 if the performances on the validation set did not improve over 20 epochs.
All the 3D volumes were sliced into 256 ˆ 256 pixels images, and zero-padded295

when needed. Batch sizes were equal to 1, 4, and 20 for the left-ventricle,
prostate and vertebral body, respectively. Those values were not tuned for
optimal performances, but to speed-up experiments when enough data were
available. The weight of our loss in (2) was empirically set to 1ˆ10´2. Due to
the difficulty of the task, data augmentation was used for the prostate dataset,300

where we generated 4 copies of each training image using random mirroring,
flipping and rotation.

All our tests were implemented in Pytorch [47]. We ran the experiments
on a machine equipped with a NVIDIA GTX 1080 Ti GPU (11GBs of video
memory), AMD Ryzen 1700X CPU and 32GBs of memory. The code is available305

at https://github.com/LIVIAETS/SizeLoss WSS. We used the common Dice
similarity coefficient (DSC) to evaluate the segmentation performance of trained
models.

4.5.1. Modification and tweaks for Lagrangian proposals

For a fair comparison, we re-implemented the Lagrangian-proposal method310

of Pathak et al. [1] in PyTorch, to take advantage of GPU capabilities and avoid
costly transfers between GPU and CPU. Lagrangian proposals reuse the same
network and loss function as the fully-supervised setting. At each iteration, the
method alternates between two steps. First, it synthesizes a ground truth Ỹ
with projected gradient ascent (PGA) over the dual variables, with the network315

parameters fixed. Then, for fixed Ỹ , the cross-entropy between Ỹ and S is
optimized as in standard fully-supervised CNN training. The learning rate used
for this PGA was set experimentally to 5ˆ 10´5, as sub-optimal values lead to
numerical errors. We found that limiting the number of iterations for the PGA
to 500 (instead of the original 3000) saved time without affecting the results.320
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We also introduced an early stopping mechanism into the PGA in the case
of convergence, to improve speed without impacting the results (a comparison
can be found in Table 5). The constraints of the form 0 ď VS ď 0 required
specific care, as the formulation from [1] is not designed to work on equalities,
unlike our penalty approach, which systematically handles equality constraints325

when a “ b. In this case, the bounds for [1] were modified to ´1 ď VS ď 0.

5. Results

To validate the proposed approach, we first performed a series of experi-
ments focusing on LV segmentation. In Sec. 5.1, the impact of including size
constraints is evaluated using our direct penalty. We further compare to the330

Lagrangian-proposal method in [1], showing that our simple method yields sub-
stantial improvements over [1] in the same weakly supervised settings. We also
provide the results for several degrees of supervision, including hybrid and fully
supervised learning in Sec. 5.2. Then, to show the wide applicability of the pro-
posed constrained loss, results are reported for two other applications in Sec.335

5.3: MR-T2 vertebral body segmentation and prostate segmentation task. We
further provide qualitative results for the three applications in Sec. 5.4. In Sec.
5.5, we investigate the sensitivity of the proposed loss to both the lower and up-
per bounds. Finally, the efficiency of different learning strategies are compared
(Sec. 5.6), showing that our direct constrained-CNN loss does not add to the340

training time, unlike the Lagrangian-proposal method in [1].

5.1. Weakly supervised segmentation with size constraints:

2D segmentation. Table 1 reports the results on the left-ventricle validation
set for all the models trained with both the Lagrangian proposals in [1] and our
direct loss. As expected, using the partial cross entropy with a fraction of the345

labeled pixels yielded poor results, with a mean DSC less than 15%. Enforc-
ing the image-tag constraints, as in the MIL scenarios, increased substantially
the DSC to a value of 0.7924. Using common bounds increased the results
marginally in this case, slightly increasing the mean Dice value by 1%. The
Lagrangian proposal [1] reaches similar results, albeit slightly lower and much350

more unstable than our penalty approach (see Figure 3).

The difference in performance is more pronounced when we employ indi-
vidual bounds instead. In this setting, our method achieves a DSC of 0.8708,
only 2% lower than full supervision. However, the Lagrangian-proposal method
achieves a performance similar to using common (loose) bounds, suggesting355

that it is not able to make use of this extra, more precise information. This
can be explained by its proposal-generation method, which tends to reinforce
early mistakes (especially when training from scratch): the network is trained
with conflicting information – i.e., similar-looking patches are both foreground
and background according the the synthetic ground truth – and is not able to360

recover from those initial mis-classifications.
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3D segmentation. Constraining the size of the 3D volume of the target region
also shows the benefit of our penalty approach, yielding a mean DSC of 0.8580.
Recall that, here, we are using less supervision than the 2D case. Since we do
not use tag information in this case, these results suggest that only a fraction365

of all the slices may be used when creating the labels, allowing annotators to
scribble the 3D image directly instead of going through all the 2D slices one by
one.

Table 1: Left-ventricle segmentation results with different levels of supervision. Bold
font highlights the best weakly supervised setting.

Model Method DSC (Val)

Weakly
supervised

Partial CE 0.1497
CE + Tags Lagrangian Proposals [1] 0.7707
Partial CE + Tags Direct loss (Ours) 0.7924
CE + Tags + Size* Lagrangian Proposals [1] 0.7854
Partial CE + Tags + Size* Direct loss (Ours) 0.8004
CE + Tags + Size** Lagrangian Proposals [1] 0.7900
Partial CE + Tags + Size** Direct loss (Ours) 0.8708
CE + 3D Size** Lagrangian Proposals [1] N/A
Partial CE + 3D Size** Direct loss (Ours) 0.8580

Fully
supervised

Cross-entropy 0.8872

*Common bounds / ** Individual bounds

Figure 3: Evolution of the DSC during training for the left-ventricle validation set,
including the weakly supervised learning models and different strategies analyzed, with
also the full-supervision setting. As tags and common bounds achieve similar results,
we plot only common bounds for better readability.

5.2. Hybrid training: mixing fully and weakly annotated images:

Table 2 and Figure 4 summarize the results obtained when combining weak370

and full supervision. First, and as expected, we can observe that adding n fully
annotated images to the training set (Hybrid n) improves the performances in
comparison to the model trained solely with the weakly annotated images, i.e.,
Weak All. Particularly, the DSC increases by 4%,5% and 6% when n is equal

16



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

to 5,10 and 25, respectively, approaching the full-supervision performance with375

only 25% of the fully labeled images.
Nevertheless, it is more interesting to see the impact of adding weakly anno-

tated images (i.e., Hybrid n) to a model trained solely with fully labeled images
(i.e., Full n). From the results, we can observe that adding weakly annotated
images to the training set significantly increases the performance, particularly380

when the amount of fully annotated images (i.e., n) is limited. For instance,
in the case of n equal to 5, adding weakly annotated images enhanced the per-
formance by more than 30% in comparison to full supervision with n equal to
5. Despite the fact that this gap decreases with the number of fully annotated
images, the difference between both settings (i.e., Full and Hybrid) remains385

significant. More interestingly, training the same model with a high amount of
weakly annotated images and no or a very reduced set of fully labeled images (for
example Weak All or Hybrid 5) achieves better performances than employing
datasets with much higher numbers of fully labeled images, e.g, Full 25.

These results suggest that a good strategy when annotating a new dataset390

might be to start with weak labels for all the images, and progressively complete
full annotations, should ressources become available.

Table 2: Ablation study on the amounts of fully and weakly labeled data. We re-
port the mean DSC of all the testing cases, for all the settings and using the same
architecture.

Name Training approach
# Fully/Weakly
annotated images

DSC

Weak All Weak supervision* 0/150 0.8004

Full 5 Full supervision 5/0 0.5434
Hybrid 5 Full + weak supervision* 5/145 0.8386

Full 10 Full supervision 10/0 0.6004
Hybrid 10 Full + weak supervision* 10/140 0.8475

Full 25 Full supervision 25/0 0.7680
Hybrid 25 Full + weak supervision* 25/125 0.8641

Full All Full supervision 150/0 0.8872

*Common bounds

5.3. MR-T2 vertebral body and prostate segmentation:

The results obtained for the vertebral-body dataset (Table 3) highlight well
the differences in the performances of different levels of supervision. Using tag395

bounds produces a network that roughly locates the object of interest (DSC
of 0.5597), but fails to identify its boundaries (as seen in Figure 6, third col-
umn). Employing the common size strategy achieves satisfactory results for the
slices containing objects with a regular shape but still fails when more diffi-
cult/irregular targets are present, resulting in an overall improvement of DSC400

(0.7900). However, when using individual bounds, the network is able to satis-
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Figure 4: Mean DSC values over the number of fully annotated patients employed for
training.

factory segment even the most difficult cases, obtaining a DSC of 0.8604, only
3% lower than full supervision.

Table 3: Mean Dice scores (DSC) for several degrees of supervision, using the vertebral-
body and prostate validation sets. Bold font indicates the best weakly supervised
setting for each data set.

Method Vertebral body DSC Prostate DSC
Partial CE 0.1155 0.0320
Partial CE + Tags 0.5597 0.6911
Partial CE + Tags + Common size 0.7900 0.7214
Partial CE + Tags + Individual size 0.8604 0.8298
Fully supervised 0.8999 0.8911

For the prostate dataset, one can observe that common bounds still improve
the results obtained with tags (`3%), but the difference is much smaller than405

the case of vertebral-body segmentation. Using individual bounds increases the
DSC value by 10%, reaching 0.8298, a behaviour similar to what we observed
earlier for the other datasets. Nevertheless, in this case, the gap between full
and weak supervision with individual bounds constraints is larger than what we
obtained for the other datasets.410

5.4. Qualitative results:

To gain some intuition on different learning strategies and their impact on
the segmentation, we visualize some results sampled from the validation sets in
Fig. 5, 6 and 7 for LV, VB and prostate, respectively.

415
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LV segmentation task. We compare 4 methods to the ground truth: full super-
vision, Lagrangian proposals [1] with common bounds, direct loss with common
bounds and direct loss with individual bounds. We can see that, for the easy
cases containing regular shapes and visible borders, all methods obtain simi-
lar results. However, the methods employing common bounds can easily over-420

segment the object, especially when their size is considerably smaller; see for
example the last row in Figure 5. Since individual bounds are specific to each
image, a model trained with these bounds will not suffer in such cases, as shown
in the figure.

Figure 5: Qualitative comparison of the different methods using examples from the LV
dataset. Each column depicts segmentations obtained by different methods, whereas
each row represents a 2D slice from different scans (Best viewed in colors).

425

Vertebral-body segmentation task. In this case, we visualize the results of full
supervision, tag bounds, common bounds and individual bounds. In line with
results reported in Table 3, we can visually observe the gap in performances
between each setting, which clearly highlights the impact of the different values
of the bounds during the optimization process. Using only tags, the network430

learn to roughly locate the object. When size bounds are included as common
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size information, the network is able to somehow learn the boundaries, but only
for object shapes that are within the standard variability of a typical vertebral
body shape. As it can be observed, the model fails to segment the unusual
shapes (last three rows in Figure 6). Lastly, a network trained with individual435

sizes is able to better handle those cases, while still being imprecise on some
regions.

Figure 6: Qualitative comparison using examples from the VB dataset. Each column
depicts segmentations obtained by different levels of supervision, whereas each row
represents a 2D slice from different scans (Best viewed in colors).

Prostate segmentation task. As in the previous case, we depict the results of
full supervision, tag bounds, common bounds and individual bounds. Both the440

tags and common bounds locate the object in a similar fashion, but both have
difficulties finding a precise contour, typically over-segmenting the target region.
This is easily explained by the variability of the organ and the very low contrast
on some images. As shown in the last column, using individual bounds greatly
improves the results.445

5.5. Sensitivity to the constraint boundaries:

In this section, an ablation study is performed on the lower and upper bounds
when using common bounds, and investigate their effect on the performance on
the vertebral-body segmentation task. Results for different bounds are reported
in Table 4. It can be observed that progressively increasing the value of the450

upper bound decreases the performance. For example, the DSC drops by nearly
12% and 16% when the upper bound is increased by a factor of 5 and 10,
respectively. Decreasing the lower bound from 80 to 0 has a much smaller impact
than the upper bound, with a constant drop of less than 1%. These findings are
aligned with visual predictions illustrated in Figure 6. While a network trained455

only with tag bounds tends to over-segment, adding an upper bound easily fixes
the over-segmentation, correcting most of the mistakes. Nevertheless, for the
same reason, i.e., over-segmentation, very few slices benefit from a lower bound.
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Figure 7: Qualitative comparison of the different levels of supervision. Each row
represents a 2D slice from different scans. (Best viewed in colors)

5.6. Efficiency:

In this section, we compare the several learning approaches in terms of ef-460

ficiency (Table 5). Both the weakly supervised partial cross-entropy and the
fully supervised model need to compute only one loss per pass. This is re-
flected in the lowest training times reported in the table. Including the size loss
does not add to the computational time, as can be seen in these results. As
expected, the iterative process introduced by [1] at each forward pass adds a465

significant overhead during training. To generate their synthetic ground truth,
they need to optimize the Lagrangian function with respect to its dual variables
(Lagrange multipliers of the constraints), which requires alternating between
training a CNN and Lagrangian-dual optimization. Even in the simplest op-
timization case (with only one constraint), where optimization over the dual470
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Table 4: Ablation study on the lower and upper bounds of the size constraint using
the vertebral body dataset.

Bounds Mean DSC

Model Lower (a) Upper (b)

Weak Sup. w/ direct loss 0.9τY 1.1τY 0.8604

Weak Sup. w/ direct loss 80 1100 0.7900
Weak Sup. w/ direct loss 80 5000 0.6704
Weak Sup. w/ direct loss 80 10000 0.6349

Weak Sup. w/ direct loss 0 1100 0.7820
Weak Sup. w/ direct loss 0 5000 0.6694
Weak Sup. w/ direct loss 0 10000 0.6255

Weak Sup. w/ direct loss 0 65536 0.5597

variable converges rapidly, their method remains two times slower than ours.
Without the early stopping criteria that we introduced, the overhead is much
worse with a six-fold slowdown. In addition, their method also slows down when
more constraints are added. This is particularly significant when there is many
classes to constrain/supervise.475

Generating the proposals at each iteration also makes it much more difficult
to build an efficient implementation for larger batch sizes. One either needs to
generate them one by one (so the overhead grows linearly with the batch size)
or try to perform it in parallel. However, due to the nature of GPU design,
the parallel Lagrangian optimizations will slow each other down, meaning that480

there may be limited improvements over a sequential generation. In some cases
it may be faster to perform it on CPU (where the cores can truly perform inde-
pendent tasks in parallel), at the cost of slow transfers between GPU and CPU.
The optimal strategy would depend on the batch size and the host machine,
especially its available GPU, number of CPU cores and bus frequency.485

Table 5: Training times for the diverse supervised learning strategies with a batch size
of 1, using tags and size constraints.

Method Training time (ms/batch)
Partial CE 112
Direct loss (1 bound) 113
Direct loss (2 bounds) 113
Lagrangian proposals (1 bound) 610
Lagrangian proposals (2 bounds) 675
Lagrangian proposals (1 bound), w/ early stop 221
Lagrangian proposals (2 bounds), w/ early stop 220
Fully supervised 112
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6. Discussion

We have presented a method to train deep CNNs with linear constraints
in weakly supervised segmentation. To this end, we introduce a differentiable
term, which enforces inequality constraints directly in the loss function, avoiding
expensive Lagrangian dual iterates and proposal generation.490

Results have demonstrated that leveraging the power of weakly annotated
data with the proposed direct size loss is highly beneficial, particularly when
limited full annotated data is available. This could be explained by the fact that
the network is already trained properly when a large fully annotated training set
is available, which is in line with the values reported in Table 2. Similar findings495

were reported in [48, 49], where authors exhibited an increased of performance
when including non-annotated images in a semi-supervised setting. This sug-
gests that including more unlabelled or weakly labelled data can potentially
lead to significantly improvements in performance.

Findings from experiments across different segmentation tasks indicate that500

highly competitive performance can be obtained with a rough estimation of the
target size. This is especially the case on well structured problems where the size
and/or shape of the object remains consistent across subjects. If more precise
size bounds are provided, the proposed approach is able to reach performances
close to full supervision, even when the size and shape variability across sub-505

jects is large. For difficult tasks, where the gap between our approach and full
supervision is larger, such as prostate segmentation, including an unsupervised
regularization loss [10, 15] to encourage pairwise consistencies between pixels
may boost the performance of the proposed strategy. A noteworthy point is
the robustness of our method to the weak-label generation. While the weak510

labels were generated from a ground-truth erosion for the first dataset, with
seeds always in the center of the target region, they were randomly generated
and placed for the other two datasets. Thus, the results showed consistency in
the behaviour of the different methods, regardless of the strategy used.

Even though the proposed method has been shown to provide good general-515

ization capabilities across three different applications, the segmentation of im-
ages with severe abnormalities, whose sizes largely differ from those seen in the
training set, has not been assessed. Nevertheless, the ablation study performed
on the values of the size bounds, and the results obtained with common bound
sizes suggest that the proposed approach may perform satisfactorily in the pres-520

ence of these severe abnormalities, by simply increasing the upper bound value.
In addition, if a greater ‘precise’ estimation of the abnormality size is given, our
proposed loss may improve segmentation performance, as demonstrated by the
results achieved by the individual bounds strategy. It is important to note that,
even in the case of full supervision, if a new testing image contains a severe525

abnormality much larger than the objects seen during the training phase, the
network will likely to poorly segment the region of interest.

Our framework can be easily extended to other non-linear (fractional) con-
straints, e.g., invariant shape moments [2] or other statistics such as the mean
of intensities within the target regions [3]. For instance, a normalized (scale
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invariant) shape moment of a target region can be directly expressed in term of
network outputs using the following general fractional form:

FS “
ř

pPΩ fpSpř
pPΩ Sp

(8)

where fp is a unary potential expressed in term of exponents of pixel/voxel
coordinates. For example, the coordinates of the center of mass of the target
region are particular cases of (8) and correspond to first-order scale-invariant530

shape moments. In this case, potentials fp correspond to pixel coordinates.
Now, assume a weak-supervision scenario in which we have a rough localization
of the centroid of the target region. In this case, instead of a constraint on
size representation VS as in Eq. (3), one can use a cue on centroid as follows:
a ď FS ď b. This can be embedded as a direct loss using differentiable penalty535

CpFSq. Of course, here, FS is a non-linear fractional term unlike region size.
Therefore, in future work, it would be interesting to examine the behaviour
of such fractional terms for constraining deep CNNs with a penalty approach.
Finally, it is worth noting that the general form in Eq. (8) is not confined to
shape moments. For instance, the image (intensity) statistics within the target540

region, such as the mean8, follow the same general form in (8). Therefore, a
similar approach could be used in cases where we have prior knowledge on such
image statistics.

Our direct penalty-based approach for inequality constraints yields a consid-
erable increase in performance with respect to to Lagrangian-dual optimization545

[1], while being faster and more stable. We hypothesize that this is due, in
part, to the interplay between stochastic optimization (e.g., stochastic gradient
descent) for the primal and the iterates/projections for the Lagrangian dual9.
Such dual iterates/projections are basic (non-stochastic) gradient methods for
handling the constraints. Basic gradient methods have well-known issues with550

deep networks, e.g., they are sensitive to the learning rate and prone to weak
local minima. Therefore, the dual part in Lagrangian optimization might ob-
struct the practical and theoretical benefits of stochastic optimization (e.g.,
speed and strong generalization performance), which are widely established for
unconstrained deep network losses [50]. Our penalty-based approach transforms555

a constrained problem into an unconstrained loss, thereby handling the con-
straints fully within stochastic optimization and avoiding completely the dual
steps. While penalty-based approaches do not guarantee constraint satisfaction,
our work showed that they can be extremely useful in the context of constrained
CNN segmentation.560

8Notice that the mean of intensity within the target region can be represented with network
output using general form (8), with fp corresponding to the intensity of pixel p

9In fact, a similar hypothesis was made in [25] to explain the negative results of Lagrangian
optimization in the case of equality constraints.
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7. Conclusion

In this paper, a novel loss function is present for weakly supervised image
segmentation, which, despite its simplicity, performs significantly better than
Lagrangian optimization for this task. We achieve results close to full supervi-
sion by annotating only a small fraction of the pixels, across three different tasks,565

and with negligible computation overhead. While our experiments focused on
basic linear constraints such as the target-region size and image tags, our direct
constrained-CNN loss can be easily extended to other non-linear constraints,
e.g., invariant shape moments [2] or other region statistics [3]. Therefore, it has
the potential to close the gap between weakly and fully supervised learning in570

semantic medical image segmentation.
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