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Abstract

In this paper, we propose a deep learning approach for image registration by predicting 

deformation from image appearance. Since obtaining ground-truth deformation fields for training 

can be challenging, we design a fully convolutional network that is subject to dual-guidance: (1) 

Ground-truth guidance using deformation fields obtained by an existing registration method; and 

(2) Image dissimilarity guidance using the difference between the images after registration. The 

latter guidance helps avoid overly relying on the supervision from the training deformation fields, 

which could be inaccurate. For effective training, we further improve the deep convolutional 

network with gap filling, hierarchical loss, and multi-source strategies. Experiments on a variety of 

datasets show promising registration accuracy and efficiency compared with state-of-the-art 

methods.
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1. Introduction

Deformable registration establishes anatomical correspondences between a pair of images. 

Although many registration algorithms have been proposed in the past decades, registration 

is still a challenging problem since it often involves computationally expensive high-

dimensional optimization and task-dependent parameter tuning. Besides, although deep 

learning techniques have already shown high performance in many medical image analysis 

tasks, such as segmentation (Ronneberger et al., 2015; Zhou et al., 2017) or classification 

(He et al., 2015; Zhou et al., 2019a,b), it is still hard to directly solve the registration 
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problem due to the lack of the ideal ground-truth deformations, which are difficult to 

manually annotate in practice.

In this paper, we present a brain image registration network (BIRNet) for learning-based 

deformable registration. We will introduce a novel hierarchical dual-supervised fully 
convolutional neural network (FCN) to deal with the lack of ground truth for training. 

BIRNet predicts the deformation field in one-pass and is insensitive to parameter tuning. 

Our motivations and contributions are summarized below.

1. Compared with the traditional registration methods, an end-to-end framework for 

fast deformation prediction in one-pass is proposed, without the need for 

parameter tuning.

2. Compared with deep learning-based registration methods, we aim to solve the 

issue of the lack of the ideal ground-truth deformations, and then further improve 

the registration accuracy. We propose a dual-supervised deep learning strategy 

that involves dual-guidance: 1) Ground-truth guidance using the deformation 

field estimated by conventional registration methods, and 2) Image dissimilarity 

guidance, which is used to measure the difference between the intensity images 

after registration. On one hand, the ground-truth guidance enables the network to 

quickly learn both the deformation and regularization from conventional 

methods. On the other hand, the latter image dissimilarity guidance helps avoid 

overly relying on the supervision from the estimated ground-truth deformation 

fields, to further refine the registration network.

3. To improve the efficiency and accuracy, based on the basic U-Net (Ronneberger 

et al., 2015) architecture, we further propose to use gap filling for learning more 

high-level features and use multi-channel inputs (i.e., the gradient map and 

difference map) for better informing the registration network.

We validate our method on a variety of datasets and registration tasks. Experimental results 

confirm the accuracy and robustness of the proposed method.

The remaining part of this paper is organized as follow. Section 2 reviews related works. 

Section 3 details the proposed method, including an overview (Section 3.1), the network 

design (Section 3.2), and dataset augmentation (Section 3.3). Section 4 presents 

experimental results, and Section 5 discusses future directions and applications.

2. Related works

2.1. Registration via optimization

The optimization based deformable registration methods can be divided into two categories 

(Oliveira and Tavares, 2014; Sotiras et al., 2013): intensity-based (Johnson and Christensen, 

2002; Klein et al., 2010; Myronenko and Song, 2010; Tang et al., 2018, 2019; Vercauteren et 

al., 2009) and feature-based (Auzias et al., 2011; Avants et al., 2008; Ou et al., 2011; Shen 

and Davatzikos, 2002; Wu et al., 2014, 2010). The deformable registration is often based on 

linear (rigid/affine) registration (Fan et al., 2016a,b 2017), where the linear registration 

intends to globally align the two images and the deformation registration is used to correct 
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the local deformations. But unlike linear registration, deformable registration is an often ill-

posed high-dimensional optimization problem. Therefore, most of them involve time-

consuming iterative optimization and task-sensitive parameter tuning.

Implementation using graphics processing units (GPUs) has becoming more common for 

improving computational efficiency. Voxel- or patch-level computation, such as interpolation 

and local similarity, can be parallelized and accelerated significantly (Fluck et al., 2011), 

often increasing the speed by a factor of more than 10 (Samant et al., 2015; Shamonin et al., 

2013; ur Rehman et al., 2009). However, not all processes can be accelerated, especially 

those involving iterative optimization and huge memory swapping between CPUs and GPUs 

(Yang et al., 2017). Moreover, a significant amount of effort is often needed to redesign and 

port algorithms for GPUs (Fluck et al., 2011).

2.2. Registration via learning

Learning-based statistical models have been widely investigated to improve registration 

performance by establishing the correlation between the deformation field and images 

(under registration) based on a training dataset. Learning-based registration methods predict 

deformation parameters by using machine learning algorithms, such as principal components 

analysis (Loeckx et al., 2003; Rueckert et al., 2001, 2003), support vector regression (Kim et 

al., 2012), sparse representation (Kim et al., 2015; Wang et al., 2015), semi-coupled 

dictionary (Cao et al., 2015), and gradient boosted trees (Gutiérrez-Becker et al., 2016, 

2017). For example, Kim et al. (2015) and Wang et al. (2015) proposed to predict the 

deformations of a number of distinctive key points in the brain. Gutiérrez-Becker et al. 

(2016, 2017) proposed to predict deformation parameters via a regression model based on 

gradient boosted trees, instead of directly minimizing a registration energy.

2.3. Registration via deep learning

More recently, deep learning methods such as convolutional neural networks (CNN) have 

been shown to be applicable for registration (Dosovitskiy et al., 2015; Ilg et al., 2017). For 

supervised learning, Sokooti et al. (2017) proposed RegNet to estimate the displacement 

vector field for a pair of chest CT images. Cao et al. (2017) used an equalized active-points 

sampling strategy to build a similarity-steered CNN model to predict the deformations 

associated with the active points. Yang et al. (2017) predicted the momenta of the 

deformation in a large deformation diffeomorphic metric mapping (LDDMM) setting. Rohé 

et al. (2017) built reference deformations for training by registering manually delineated 

regions of interest (ROIs). All the supervised learning based registration methods have to 

spend time on carefully building the reference deformations due to the lack of the ideal 

ground-truth deformations for training.

For unsupervised learning, Balakrishnan et al. (2018, 2019), Krebs et al. (2019) and de Vos 

et al. (2017) proposed an end-to-end network to estimate deformable transformations by 

maximizing the image similarity between an image pair, without the need of ground-truth 

deformations. Predefined similarity metrics, such as the sum of squared difference (SSD) or 

cross-correlation (CC), were employed to train the registration network. However, these 
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metrics are highly dependent on the assumptions about the relationship of image intensities 

and hence might not be optimal.

Besides the registration model on brain MR image, there are also several studies that focus 

on other modality images. Parajuli et al. (2017) have proposed a cardiac motion registration 

model for 4D echocardiography dataset with a Siamese neural network. Krebs et al. (2017) 

presented a deep dual-stream network to learn the artificial agent-based actions in a 

supervised way, then the agent moves towards the final deformation parameters for inter-

subject registration of prostate MR images. Hu et al. (2018) introduced a multimodal image 

registration framework by learning the cross-modality similarity information from 

anatomical labels.

3. Method

3.1. Overview

The goal of image registration is to determine a deformation field ϕ that warps a subject 

image S ∈ ℝ3 to a template image T ∈ ℝ3, so that the warped image S○ϕ is similar to T. 

Typical registration approaches (Xue et al., 2004; Sotiras et al., 2013; Yang et al., 2008; 

Zacharaki et al., 2009) are formulated as an optimization problem that aims to find the most 

optimized ϕ to minimize the energy:

ϕ = argmin
ϕ

M(T , S ∘ ϕ) + R(ϕ) . (1)

The first term M (T, S○ϕ) quantifies the distance between the template image and the 

warped subject image. The second term R(ϕ) regularizes ϕ so that it is well-behaved (Xue et 

al., 2006a,b).

In this paper, we present a novel hierarchical dual-supervised FCN for brain deformable 

registration (see Fig. 1 for overview). Our implementation is based on overlapping 64 × 64 × 

64 image patches. The output is 24 × 24 × 24 patch of displacement vectors, because the 

deformable prediction is highly related to the local information of the image and also we can 

only estimate the deformation field in the center region. Unlike typical convolutional 

networks that estimate a single class/regression label from an image, U-Net (Ronneberger et 

al., 2015) shows powerful ability in pixel-wised and localized learning, due to its dual 

contracting and expansive path. Hence, we utilize a U-Net based regression model for end-

to-end prediction of the whole deformation field. In particular, we propose four strategies to 

improve registration:

1. Hierarchical dual-supervision. In addition to deformation fields, we use the 

difference between images as additional information for supervising the training. 

We also employ hierarchical loss layers in the upsampling path of U-Net, giving 

more constraint in the frontal layers for easier convergence.
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2. Gap filling. To improve prediction accuracy, additional convolutional layers are 

further inserted between the u-type ends to connect low-level and high-level 

features.

3. Multi-channel inputs. In addition to image intensity, difference map and 

gradient maps are also used as inputs to the network.

4. Data augmentation. To overcome over-fitting, training data are augmented by 

warping the subjects with different degrees of the ground-truth deformations to 

generate new image pairs for training.

3.2. Hierarchical dual-supervised FCN

3.2.1. Hierarchical dual-supervision

3.2.1.1. Dual-supervision.: In our dual-guidance strategy, the loss function consists of two 

parts: 1) lossϕ—the difference between the predicted deformation field and the existing 

(training) ground-truth deformation field; 2) lossM —the difference between the template 

and the warped subject image based on the deformation currently estimated via the network.

Here, lossϕ is the Euclidean distance as defined in (Rohé et al., 2017; Sokooti et al., 2017), 

which assumes that the ground-truth deformation fields are already achieved. As shown in 

Fig. 2, for the template image T and subject image S, the ground-truth deformation field ϕg 

is used to guide the training of the deep learning model with loss function:

lossϕ = 1
N ϕ − ϕg 2

2
(2)

where ϕ is the predicted deformation field and N is the number of voxels. Note that the 

performance of trained model is limited by the ground-truth deformation fields, which are 

obtained using traditional registration methods before training (Avants et al., 2008; 

Vercauteren et al., 2009). To improve accuracy, we include the following loss function:

lossM = 1
N ∑

u
S(u + ϕ(u)) − T(u)

2

2
(3)

where u represents the voxel coordinate [x, y, z] in the template space and ϕ(u) = [dx, dy, dz] 

is the displacement of u. Specifically, lossϕ indicates the difference of the predicted 

displacement and the ground-truth displacement, so the range of meaningful gradient is 

[−30, 30] (which can well cover the potential displacement magnitude); lossM measures the 

difference of the image intensity, so the range of meaningful gradient is [−255, 255] (since 

the original image intensity range is 0–255). In order to normalize the two losses, the 

gradient of lossM has been multiplied by 0.1 in the actual implementation. Then, by 

combining the ground-truth loss function lossϕ and the dissimilarity loss function lossM 

together, the final loss function is
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loss = α ⋅ lossϕ + β ⋅ lossM, α + β = 1 (4)

where α and β are the two coefficients satisfying α≥ 0, β≥ 0, and α+β = 1. They are 

dynamically varied during the training process, i.e., taking a larger α (learn more from 

ground truth) in the initial training stage to accelerate convergence and achieve smooth 

deformation fields, then taking a larger β-value (learn more from image dissimilarity) in the 

later fine-tuning stage to further refine the registration. In actual implementation, we set α= 

0.8 and β = 0.2 in the initial training stage (i.e., the first 5 epochs), and α= 0.5 and β = 0.5 in 

the later training stage (i.e., the last 5 epochs). However, a lower α is not recommended, 

because the predicted deformation field will not be able to keep smooth and regular without 

the constraint of lossϕ.

Specifically, the loss function works by giving the gradient value backward to the front 

layers. Let [dx, dy, dz] consist of a vector of displacements. Then, the gradient in x-direction 

can be represented by the following equation:

∂lossM
∂dx = M(dx + Δdx) − M(dx)

Δdx

= S(x + dx + 1, y + dy, z + dz) − T(x, y, z)
− S(x + dx, y + dy, z + dz) − T(x, y, z)

(5)

where we calculate an error in recent vector first, and then plus one in the recent direction x 
and calculate the varying error. Finally, the difference between them will be the gradient. 

The gradient of dy and dz could be calculated in the same way.

In summary, using dual-guidance can effectively combine the advantages of both loss 

functions: (1) the rough guidance provided by lossϕ makes the convergence easily and fast; 

and (2) the image difference guidance provided by lossM further refines the registration 

results, which can address the issue of inaccurate ground truth.

3.2.1.2. Hierarchical supervision.: In the conventional U-Net, the loss is calculated only 

in the final layer, resulting in suboptimal parameters in the frontal convolution layers 

(Schmidhuber, 2015). In this way, the parameters of the first half of the convolution layers 

are not updated as much as the latter half. This not only causes slow convergence, but also 
causes the over-fitting problem. Therefore, we add a loss function in each of the layers to 

directly supervise the training of the first (frontal) half of the network.

As we use filters with size 3 × 3 × 3, each convolutional layer without padding reduces the 

patch size isotropically by one voxel. Also, each pooling layer will further downsample the 

patch. As a result, for an input patch size of 64 × 64 × 64, we extract 24 × 24 × 24 patch 

ϕg
high for high resolution, 14 × 14 × 14 patch ϕg

mid for middle resolution, and 9 × 9 × 9 patch 

ϕg
low for low resolution. The translations from ϕg to ϕg

high, ϕg
mid, ϕg

low are:
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ϕg
high(i, j, k) = ϕg(i + 20, j + 20, k + 20)

i, j, k ∈ [0, 23]
ϕg

mid(i, j, k) = ϕg(i × 2 + 18, j × 2 + 18, k × 2 + 18)/2
i, j, k ∈ [0, 13]
ϕg

low(i, j, k) = ϕg(i × 4 + 14, j × 4 + 14, k × 4 + 14)/4
i, j, k ∈ [0, 8]

(6)

where i, j, k are the coordinates of the points in the patch. Then, we can easily calculate the 

respective loss function for each level as:

lossϕ
high = 1

24 × 24 × 24 ϕhigh − ϕg
high

2

2

lossϕ
mid = 1

14 × 14 × 14 ϕmid − ϕg
mid

2

2

lossϕ
low = 1

9 × 9 × 9 ϕlow − ϕg
low

2

2

(7)

where ϕhigh, ϕmid, ϕlow are predicted by the learning model directly, which are in the same 

size as ϕg
high, ϕg

mid, ϕg
low. Finally, the total loss function lossϕ is:

lossϕ = lossϕ
high + lossϕ

mid + lossϕ
low (8)

3.2.2. Gap filling—The black network in Fig. 3 is the basic network architecture of U-

Net. It consists of a contracting path (left side) and an expansive path (right side). The 

contracting path follows the typical architecture of a convolutional network. It consists of 

repeated applications of two 3 × 3 × 3 convolutions (i.e., convolutions that may be followed 

by ReLU (He et al., 2015), and batch normalization layers (Ioffe and Szegedy, 2015)), and a 

2 × 2 × 2 max pooling operation with stride size of 2 for downsampling. At each 

downsampling step, we double the number of feature channels. Every step in the expansive 

path consists of a 2 × 2 × 2 deconvolution to upsample the feature map and half the number 

of feature channels, and also two 3 × 3 × 3 convolutions. At the final layer, a 1 × 1 × 1 

convolution is used to map each 64-component feature vector to the desired number of 

channels. To recover detail lost due to downsampling, we concatenate the correspondingly 

cropped feature map from the contracting path.

As shown in Fig. 3, two feature maps A and B are significantly dissimilar. Feature map A 

resembles the original image, whereas feature map B resembles the deformation field. 

Obviously, there is a huge gap between the feature maps A and B, which are usually 

concatenated together by the conventional U-Net. This gap makes the network less effective 

in both training and testing stages for this regression task. It is worth noting that, the feature 

map is an intermediate feature map which is up-sampled from the low-level feature map by 
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deconvolution, hence adjacent voxels may refer to different information. Therefore, feature 

map B looks a little discontinuous.

To address this issue, we propose to include additional convolution layers between the same 

level of the contracting phase and the expansion phase (as shown by the green network in 

Fig. 3) to synchronize the convolution path of the feature maps. The parameters of the added 

convolution layers are equal to the convolution layers in the lower resolution. In this way, the 

feature map C after gap filling will be more similar to the feature map B, improving both 

registration accuracy and training speed.

3.2.3. Multi-channel inputs—Image feature maps, such as difference and gradient 

maps, can also be used to improve registration accuracy. Fig. 4 shows the multi-channel 

inputs, including the original image, difference map, and gradient map. The difference map 

is computed as the intensity difference between the subject and template images. The 

gradient map provides boundary information to help structural alignment. Moreover, 

gradient maps, in addition to the intensity images, are used to calculate the image similarity 

in Eq. (3). This ensures that the boundaries can be aligned more accurately. Note that the 

gradient maps are scaled to the same value range of the intensity images for consistent 

comparison. Usually, deep learning network can learn the required features by itself. 

However, the loss functions are usually calculated only in the final layer, resulting in 

suboptimal parameters in the frontal convolution layers (Schmidhuber, 2015). Therefore, 

inputting the gradient map and difference map, which are shown to be useful in conventional 

registration methods, from the beginning can largely increase the effect of the parameters in 

the frontal convolution layers and the convergence speed.

3.2.4. Implementation—Fig. 5 shows the architecture of the proposed 3D image 

registration network, which is based on the 64 × 64 × 64 input patches of image appearance 

and the 24 × 24 × 24 output patches of deformation. The network is implemented using 3D 

Caffe (Jia et al., 2014) and optimized using Adam (Kingma and Ba, 2014). We set the 

learning rate to 1e-3 for the initial training stage and 1e-8 for the fine-tuning training stage. 

The network takes one 3D patch from the subject image as the input, and outputs one 3D 

deformation field patch, which consists of three independent patches for the x, y and z 
dimensions, respectively (note that only one branch is shown in Fig. 5).

The patches have overlaps during sampling in the training stage. Basically, the input patch 

size is 64 × 64 × 64, the output deformation patch size is 24 × 24 × 24, which is 

corresponding to the center region of the input patch. When training or applying the network 

for the whole images, we extract overlapping patches by the step size of 24, i.e., the output 

patch size. Thus, all the non-overlapping output patches can form the whole deformation 

field.

3.3. Data augmentation

We evaluate our method on 3D brain MR images. We use LONI LPBA40 (Shattuck et al., 

2008) dataset (image size: 220 × 220 × 184) for training, where we choose one image as the 

template, 30 images as the training images, and the remaining 9 images as the validation 

images. Since it is difficult to judge which registration result is closer to the ground truth, we 
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employ two ground-truths generated by both ANTs (Avants et al., 2008) and LCC-Demons 

(Lorenzi et al., 2013) to each subject, i.e., in training data each subject occurs twice with two 

different labels.

We augment the dataset because it is too small for effective training. This is done by warping 

each subject image with 20%, 40%, 60%, 80%, and 100% of the ground-truth deformation, 

mean-while, the respective deformation field is the target of prediction. An example is 

shown in Fig. 6. It works because the deep learning model does not iteratively calculate the 

deformation field, and thus the intermediate results with different degrees of deformation are 

effective samples for deep network training. This significantly expands the size of training 

dataset by 6 folds and will allow coarse and fine deformations to participate in the training.

4. Experiments

To evaluate the performance of our proposed method, the comparison with several state-of-

the-art deformable registration algorithms is shown in this section. We train BIRNet using 

LPBA40 (Shattuck et al., 2008) dataset, where the 1st image in LPBA40 is chosen as 

template image, 1–30th images as training samples, and 31–40th image as validation data. 

Then we directly apply it to four different testing datasets without refinement, including 

IBSR18 (Klein et al., 2009), CUMC12 (Klein et al., 2009), MGH10 (Klein et al., 2009), and 

IXI30 (Serag et al., 2012). In preprocessing, all the subjects are linearly registered to the 

template space by using FLIRT (Jenkinson and Smith, 2001). Dice Similarity Coefficient 

(DSC) is used to evaluate the registration performance based on the ROIs labels.

We select 4 state-of-the-art registration methods (Klein et al., 2009), i.e., Diffeomorphic 

Demons (Vercauteren et al., 2009), LCC-Demons (Lorenzi et al., 2013), FNIRT (Andersson 

et al., 2007), and SyN (Avants et al., 2008), for comparison. All the competing methods 

including different training strategies are briefly introduced as follows.

1. Diffeomorphic Demons (Vercauteren et al., 2009): An efficient non-parametric 

image registration algorithm, which introduces diffeomorphisms into the demons 

framework.

2. LCC-Demons (Lorenzi et al., 2013): A fast and robust registration framework 

based on the log-Demons diffeomorphic registration algorithm. The 

transformation is parameterized by stationary velocity fields, and the similarity 

metric implements a symmetric local correlation coefficient (LCC).

3. FNIRT (Andersson et al., 2007): A widely used registration tool in FSL. The 

registration is based on a weighted sum of scaled sum-of-squared differences and 

membrane energy.

4. SyN (Avants et al., 2008): A symmetric image normalization method (SyN) for 

maximizing the cross-correlation within the space of diffeomorphic maps and 

providing the Euler-Lagrange equations necessary for this optimization.

5. U-Net (Ronneberger et al., 2015): The original U-Net is a typical encoder-

decoder-architecture-based FCN model with skip connections. We use the 

ground-truth deformations obtained by LCC-Demons and SyN to train U-Net on 
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image registration. For a fair comparison, all the training settings are consistent 

with those of the proposed method.

6. BIRNet_WOS: In this model, we add the hierarchical supervision, gap filling, 

and multichannel inputs based on the U-Net. This model is still supervised by 

ground-truth guidance, without image dissimilarity guidance.

7. BIRNet: The same setting as BIRNet-WOS but with dual-guidance (our 

proposed method).

4.1. Evaluation based on LPBA40

We test the performance of BIRNet on LPBA40 dataset. For each of the 180 training images, 

we extract 300 patches of size 64 × 64 × 64, giving us a total of 54,0 0 0 training patches. 

Fig. 7 shows the loss curves of lossϕ and lossM for both training and validation. From Fig. 7 

(a) we can see that the performance of U-Net saturates fast during training. BIRNet_WOS 

improves the performance on both convergence speed and the ability to overcome over-

fitting, benefiting from the combined effects of hierarchical supervision, gap filling and 

multichannel inputs. We further compare the effect of each strategy and show the respective 

performance in Table 1, where we quantitatively compare the memory occupied, 

computational time of each iteration, and the DSC calculated on 54 brain ROIs. Compared 

to the U-Net structure, the gap filling strategy increases some memory load and 

computational time due to the additional convolutional layers. Besides this, all these three 

strategies improve the registration performance without adding too much extra computing 

burden.

Additionally, in both Fig. 7 (a) and Table 1, the best performance for the training set is given 

by BIRNet, which further considers image similarity/difference. The BIRNet model has 

reached a lower dissimilar score even than the ground truth for the validation set in Fig. 7 

(b). These results demonstrate that the image similarity/difference loss can provide useful 

guidance to further refine the training model, even the ground-truth deformation fields 

cannot be quite accurate. Fig. 8 shows an example of the registration results, confirming that 

the results obtained by BIRNet are most similar to the template, especially in the yellow 

squared regions.

Fig. 9 shows the Dice similarity coefficient (DSC) of 54 brain ROIs (with the ROI names 

give in Table 2, obtained from (Shattuck et al., 2008)). We observe that BIRNet yields better 

performance for 35 out of 54 ROIs and the comparable performance for the other 19 ROIs 

with LCC-Demons and SyN. BIRNet_WOS shows accuracy that is a little worse than LCC-

Demons and SyN, which shows that the dual-guidance is effective in boosting the 

performance. Since the proposed method does not need very accurate ground-truth 

deformations for training, the unseen testing dataset can be easily used to refine the trained 

model. Therefore, the performance on the training data also indicates the expected 

performance that the proposed model can achieve after fully refinement for unseen testing 

datasets.

Fig. 10 shows the DSC results for 9 validation subject images from LPBA40. BIRNet_WOS 

results in a slight performance drop compared with LCC-Demons and SyN, but only by a 
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small extent (i.e., less than 1.5% in average). BIRNet again achieves the best performance 

with higher DSC values on 29 out of 54 ROIs and very similar values on the other 25 ROIs 

compared with LCC-Demons and SyN. The average DSC of LCC-Demons, SyN, 

BIRNet_WOS and BIRNet are 67.9%, 68.1%, 67.0% and 69.2%, respectively. These results 

verify the generalizability of BIRNet.

4.2. Evaluation based on IBSR18, CUMC12, MGH10, IXI30

To further evaluate the accuracy and generalizability of BIRNet, we further test it on a total 

of 70 brain images from four different datasets, i.e., IBSR18 (Klein et al., 2009), CUMC12 

(Klein et al., 2009), MGH10 (Klein et al., 2009), and IXI30 (Serag et al., 2012), by directly 

applying the model trained using the LPBA40 dataset without any additional parameter 

tuning. The results for one subject of the IBSR18 dataset is shown in Fig. 11 for 

Diffeomorphic Demons, LCC-Demons, SyN, FNIRT (Andersson et al., 2007) and BIRNet. 

Note that, the results shown for SyN and FNIRT are based on their optimal parameters 

determined individually for each image. Table 3 provides the DSCs for of Gray Matter (GM) 

and White Matter (WM) based on GM and WM labels provided in these four datasets. The 

performance of BIRNet is comparable to the fine-tuned SyN and FNIRT (particularly to 

each of these four datasets), but without the need for parameter tuning. This verifies the 

generalizability of BIR-Net.

4.3. Regularization analysis

The smooth and diffeomorphic deformation fields given by LCC-Demons and SyN can 

provide guidance for deformation regularization. By balancing between lossϕ and lossM, the 

predicted deformation fields are encouraged to be both smooth and regular. To verify this, 

we show the Jacobian determinant map of the predicted deformation fields in Fig. 12. From 

the figure, we can see that, the proposed BIRNet, which is supervised only by ground truth 

(α= 1, β = 0), keeps the smoothness of the ground-truth deformation. If BIRNet is trained 

only supervised by the image dissimilarity metric (α= 1, β = 0), the output deformation field 

is quite noisy. When we set α= 0.5, β = 0.5, the predicted deformation field almost 

maintains the smoothness and balances the two loss functions. Therefore, since we have a 

strong guidance from the smooth ground-truth deformation fields, we can ensure the 

smoothness even without an additional regularization constraint.

4.4. Computation costs

BIRNet is implemented based on Caffe (Jia et al., 2014) on a single Nvidia TitanX (Pascal) 

GPU. For a fair comparison, we compare its speed with CPU and GPU implementations of 

other comparison methods. (Note that there is no GPU implementation for LCC-Demons 

(Lorenzi et al., 2013) and FNIRT (Fluck et al., 2011)). Fig. 13 shows the computation costs 

for a typical 3D brain image (220 × 220 × 184) of eight different deformable registration 

algorithms: Diffeomorphic Demons–CPU (Vercauteren et al., 2009), Diffeomorphic Demons

—GPU (Muyan-Ozcelik et al., 2008), LCC-Demons—CPU (Lorenzi et al., 2013), SyN—

CPU (Avants et al., 2008), SyN—GPU (Luo et al., 2015), FNIRT—CPU (Andersson et al., 

2007), BIRNet—CPU, and BIRNet—GPU. It is clear that BIRNet, which does not require 
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any iterative optimization, shows a huge boost when implemented on GPU and requires the 

least amount of time.

5. Discussion

Our model is able to predict the deformation of a template image towards a subject image 

based on the slicing patches, and then concatenate all the patches to form the whole 

deformation field. Therefore, some adjacent voxels at patch boundaries will be computed in 

different patches, which seems to be discontinuous. However, it is well known that the 

predicted value of each voxel in a convolutional neural network is only affected by its 

receptive field. The receptive fields of adjacent voxels are continuous, even if they are in 

different patches, as shown in Fig. 14. Consequently, the deformation continuity at patch 

boundaries can be ensured in this framework.

As mentioned, the predicted displacement vector of a voxel is affected by its receptive field. 

The size of the receptive field is 41 × 41 × 41 in the proposed model, based on the number 

of convolutional and pooling layers. Therefore, the maximum offset of displacement vector 

in each direction is 20, which is sufficient for measuring the local deformations, as indicated 

in Fig. 15. When dealing with larger scale deformed images, the range of receptive field 

needs to be enlarged by adding more convolutional and pooling layers.

The proposed network focuses on registering the subject image to a fixed template image, 

because registering images to a same template image is an important preprocessing 

component of most medical image analysis methods, e.g., atlas alignment. When 

transferring to a new reference image, the well-trained model can be refined with a limited 

number of training samples instead of retraining from scratch. The current network is 

proposed for brain MR image registration, but it has the potential to extend to other organs 

and even multimodal image registration problems. For multimodal image registration, SSD 

loss should be computed on the mutual information images or be directly replaced by cross-

correlation loss.

6. Conclusion

In this paper, we have introduced a dual-guided fully convolutional neural network, called 

BIRNet. To solve the issue of lacking ground-truth problem, BIRNet uses both pre-

registered ground-truth deformation field and image similarity/difference metric to guide the 

training stage, thus making the deep learning model able to further refine the results. BIRNet 

employs strategies such as gap filling, hierarchical supervision, multi-channel inputs, and 

aries. data augmentation for improving registration accuracy. Experimental results indicate 

that BIRNet achieves the state-of-the-art performance without the need for parameter tuning. 

In summary, since the proposed BIRNet method is a fast, accurate, and easy-to-use method 

for brain image registration, it could be directly applied to many practical registration 

problems.
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Fig. 1. 
Overview of our proposed method.
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Fig. 2. 
Training strategy with loss function α · lossϕ + β · lossM.
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Fig. 3. 
The feature image samples of the typical layers in the network. The output deformation field 

is shown by the feature image of the displacement value in x-axial.
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Fig. 4. 
The concatenated original image, difference map, and gradient map.
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Fig. 5. 
The architecture of image registration network. Conv: 3D convolution layer. Pool: 3D 

pooling layer. DeConv: Deconvolution layer. BatchNorm: Batch normalization layer. Scale: 

Scale layer. ReLU: ReLU layer. In: The number of input channels. Out: The number of 

output channels. Kernel: The kernel size of the 3D filter in each dimension. Stride: Stride of 

the 3D filter. Pad: Zero-padding. B: Batch size.
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Fig. 6. 
Expanded training data constructed by warping the subject image with varying degrees.
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Fig. 7. 
The training and validation curves for (a) lossϕ and (b) lossM. The value of lossϕ is shown as 

the mean square error of displacement, whereas the value of lossM is shown as the mean 

square error of intensity.
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Fig. 8. 
An example of the registration outcomes. Improvements are marked by yellow boxes.
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Fig. 9. 
The mean DSCs of 54 ROIs based on 30 training subjects from the LPBA40 dataset, after 

deformable registration by LCC-Demons, SyN, BIRNet_WOS and BIRNet. “*” marks the 

cases where BIRNet achieves the highest DSC value among all the four methods.
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Fig. 10. 
The mean DSC of 54 ROIs based on 9 validation subjects from LPBA40 dataset, after 

deformable registration by LCC-Demons, SyN, BIRNet_WOS and BIRNet. “*” marks the 

cases where BIRNet achieves the highest DSC value among all the four methods.
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Fig. 11. 
Example testing case in IBSR18 dataset.
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Fig. 12. 
The changes of Jacobian determinants with the balancing coefficients between lossϕ and 

lossM. BIRNet with α = 1, β = 0 is supervised only by the ground-truth achieved by SyN 

and LCC-Demons; BIRNet with α = 0, β = 1 is supervised only by the image dissimilarity 

metric; BIRNet with α = 0.8, β = 0.2 is trained in the initial training stage (i.e., the first 5 

epochs), and BIRNet with α = 0.5, β = 0.5 is trained in the fine-tuning stage.
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Fig. 13. 
Average computational times (in minutes) of different registration algorithms for registering 

a 220 × 220 × 184 brain image.
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Fig. 14. 
Schematic diagram of the continuity of the adjacent voxels at patch bound-aries.
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Fig. 15. 
Sample of the range of maximum displacement in the model.

Fan et al. Page 31

Med Image Anal. Author manuscript; available in PMC 2019 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fan et al. Page 32

Ta
b

le
 1

E
va

lu
at

io
n 

re
su

lts
 f

or
 th

e 
se

pa
ra

te
 e

ff
ec

ts
 o

f 
th

e 
pr

op
os

ed
 tr

ai
ni

ng
 s

tr
at

eg
ie

s 
hi

er
ar

ch
ic

al
 s

up
er

vi
si

on
 (

H
S)

, g
ap

 f
ill

in
g 

(G
F)

, m
ul

ti-
ch

an
ne

l i
np

ut
s 

(M
I)

, 

an
d 

du
al

-s
up

er
vi

si
on

 (
D

S)
.

M
et

ho
ds

A
vg

.
St

d.

M
em

or
y 

oc
cu

pi
ed

 (
M

b)
U

-N
et

47
86

-

U
-N

et
+

H
S

47
89

-

U
-N

et
+

H
S+

G
F

64
37

-

U
-N

et
+

H
S+

G
F+

M
I 

(B
IR

N
et

_W
O

S)
64

38
-

B
IR

N
et

_W
O

S+
D

S 
(B

IR
N

et
)

64
38

-

A
vg

. t
ra

in
in

g 
tim

e 
of

 e
ac

h 
ite

ra
tio

n 
(s

)
U

-N
et

0.
24

0.
08

U
-N

et
+

H
S

0.
25

0.
07

U
-N

et
+

H
S+

G
F

0.
27

0.
08

U
-N

et
+

H
S+

G
F+

M
I 

(B
IR

N
et

_W
O

S)
0.

27
0.

08

B
IR

N
et

_W
O

S+
D

S 
(B

IR
N

et
)

0.
38

0.
09

A
vg

. D
SC

 o
f 

tr
ai

ni
ng

 s
et

 (
%

)
U

-N
et

65
.3

2.
4

U
-N

et
+

H
S

67
.4

2.
1

U
-N

et
+

H
S+

G
F

68
.2

1.
9

U
-N

et
+

H
S+

G
F+

M
I 

(B
IR

N
et

_W
O

S)
68

.9
1.

9

B
IR

N
et

_W
O

S+
D

S 
(B

IR
N

et
)

69
.8

1.
8

A
vg

. D
SC

 o
f 

va
lid

at
io

n 
se

t (
%

)
U

-N
et

64
.4

2.
8

U
-N

et
+

H
S

65
.8

2.
3

U
-N

et
+

H
S+

G
F

66
.3

2.
4

U
-N

et
+

H
S+

G
F+

M
I 

(B
IR

N
et

_W
O

S)
66

.7
2.

0

B
IR

N
et

_W
O

S+
D

S 
(B

IR
N

et
)

69
.2

2.
1

Med Image Anal. Author manuscript; available in PMC 2019 September 27.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fan et al. Page 33

Ta
b

le
 2

T
he

 n
am

es
 o

f 
th

e 
R

O
Is

 in
 L

O
N

I 
L

PB
A

40
 (

Sh
at

tu
ck

 e
t a

l.,
 2

00
8)

 d
at

as
et

.

ID
F

ul
ln

am
e

ID
F

ul
ln

am
e

ID
F

ul
ln

am
e

1
L

 s
up

er
io

r 
fr

on
ta

l g
yr

us
19

L
 s

up
ra

m
ar

gi
na

l g
yr

us
37

L
 in

fe
ri

or
 te

m
po

ra
l g

yr
us

2
R

 s
up

er
io

r 
fr

on
ta

l g
yr

us
20

R
 s

up
ra

m
ar

gi
na

l g
yr

us
38

R
 in

fe
ri

or
 te

m
po

ra
l g

yr
us

3
L

 m
id

dl
e 

fr
on

ta
l g

yr
us

21
L

 a
ng

ul
ar

 g
yr

us
39

L
 p

ar
ah

ip
po

ca
m

pa
l g

yr
us

4
R

 m
id

dl
e 

fr
on

ta
l g

yr
us

22
R

 a
ng

ul
ar

 g
yr

us
40

R
 p

ar
ah

ip
po

ca
m

pa
l g

yr
us

5
L

 in
fe

ri
or

 f
ro

nt
al

 g
yr

us
23

L
 p

re
cu

ne
us

41
L

 li
ng

ua
l g

yr
us

6
R

 in
fe

ri
or

 f
ro

nt
al

 g
yr

us
24

R
 p

re
cu

ne
us

42
R

 li
ng

ua
l g

yr
us

7
L

 p
re

ce
nt

ra
l g

yr
us

25
L

 s
up

er
io

r 
oc

ci
pi

ta
l g

yr
us

43
L

 f
us

if
or

m
 g

yr
us

8
R

 p
re

ce
nt

ra
l g

yr
us

26
R

 s
up

er
io

r 
oc

ci
pi

ta
l g

yr
us

44
R

 f
us

if
or

m
 g

yr
us

9
L

 m
id

dl
e 

or
bi

to
fr

on
ta

l g
yr

us
27

L
 m

id
dl

e 
oc

ci
pi

ta
l g

yr
us

45
L

 in
su

la
r 

co
rt

ex

10
R

 m
id

dl
e 

or
bi

to
fr

on
ta

l g
yr

us
28

R
 m

id
dl

e 
oc

ci
pi

ta
l g

yr
us

46
R

 in
su

la
r 

co
rt

ex

11
L

 la
te

ra
l o

rb
ito

fr
on

ta
l g

yr
us

29
L

 in
fe

ri
or

 o
cc

ip
ita

l g
yr

us
47

L
 c

in
gu

la
te

 g
yr

us

12
R

 la
te

ra
l o

rb
ito

fr
on

ta
l g

yr
us

30
R

 in
fe

ri
or

 o
cc

ip
ita

l g
yr

us
48

R
 c

in
gu

la
te

 g
yr

us

13
L

 g
yr

us
 r

ec
tu

s
31

L
 c

un
eu

s
49

L
 c

au
da

te

14
R

 g
yr

us
 r

ec
tu

s
32

R
 c

un
eu

s
50

R
 c

au
da

te

15
L

 p
os

tc
en

tr
al

 g
yr

us
33

L
 s

up
er

io
r 

te
m

po
ra

l g
yr

us
51

L
 p

ut
am

en

16
R

 p
os

tc
en

tr
al

 g
yr

us
34

R
 s

up
er

io
r 

te
m

po
ra

l g
yr

us
52

R
 p

ut
am

en

17
L

 s
up

er
io

r 
pa

ri
et

al
 g

yr
us

35
L

 m
id

dl
e 

te
m

po
ra

l g
yr

us
53

L
 h

ip
po

ca
m

pu
s

18
R

 s
up

er
io

r 
pa

ri
et

al
 g

yr
us

36
R

 m
id

dl
e 

te
m

po
ra

l g
yr

us
54

R
 h

ip
po

ca
m

pu
s

Med Image Anal. Author manuscript; available in PMC 2019 September 27.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fan et al. Page 34

Ta
b

le
 3

R
es

ul
ts

 f
or

 I
B

SR
18

, C
U

M
C

12
, M

G
H

10
, I

X
I3

0 
in

 te
rm

 o
f 

D
SC

 (
%

).
 R

es
ul

ts
 f

or
 b

ot
h 

de
fa

ul
t a

nd
 tu

ne
d 

pa
ra

m
et

er
s 

ar
e 

sh
ow

n 
fo

r 
FN

IR
T

 a
nd

 S
yN

.

D
at

as
et

B
ra

in
 T

is
su

e
A

ff
in

e
D

.D
em

on
s

L
C

C
-D

em
on

s
F

N
IR

T
F

N
IR

T
 (

de
fa

ul
t)

Sy
N

Sy
N

 (
de

fa
ul

t)
B

IR
N

et

IB
SR

18
G

M
65

.4
 ±

 3
.4

73
.7

 ±
 2

.4
74

.4
 ±

 1
.7

74
.3

 ±
 1

.8
73

.1
 ±

 2
.3

73
.9

 ±
 2

.2
72

.9
 ±

 2
.8

74
.2

 ±
 2

.2

W
M

61
.7

 ±
 2

.5
75

.8
 ±

 1
.5

76
.8

 ±
 1

.5
76

.5
 ±

 2
.0

75
.1

 ±
 1

.9
77

.6
 ±

 1
.7

75
.2

 ±
 2

.3
77

.0
 ±

 2
.1

C
U

M
C

12
G

M
57

.2
 ±

 4
.2

74
.6

 ±
 2

.2
74

.9
 ±

 2
.1

74
.4

 ±
 2

.4
73

.4
 ±

 3
.1

75
.1

 ±
 1

.8
73

.2
 ±

 3
.4

74
.3

 ±
 2

.5

W
M

58
.1

 ±
 4

.0
75

.5
 ±

 2
.0

76
.8

 ±
 1

.7
76

.3
 ±

 1
.5

74
.9

 ±
 2

.0
76

.7
 ±

 1
.2

74
.3

 ±
 2

.2
76

.7
 ±

 1
.3

M
G

H
10

G
M

61
.7

 ±
 4

.5
73

.1
 ±

 3
.4

73
.3

 ±
 2

.9
74

.1
 ±

 2
.8

73
.1

 ±
 3

.1
73

.6
 ±

 2
.3

72
.8

 ±
 4

.1
73

.8
 ±

 2
.4

W
M

61
.2

 ±
 3

.3
78

.3
 ±

 1
.6

78
.7

 ±
 2

.2
78

.8
 ±

 2
.1

77
.9

 ±
 2

.5
79

.1
 ±

 1
.9

77
.7

 ±
 2

.8
79

.7
 ±

 1
.6

IX
I3

0
G

M
61

.6
 ±

 3
.8

72
.4

 ±
 2

.5
74

.1
 ±

 2
.1

74
.4

 ±
 2

.4
72

.7
 ±

 2
.5

75
.2

 ±
 1

.6
71

.6
 ±

 2
.9

74
.7

 ±
 2

.2

W
M

61
.4

 ±
 3

.4
76

.9
 ±

 1
.9

77
.9

 ±
 1

.7
78

.1
 ±

 2
.0

77
.4

 ±
 2

.7
78

.3
 ±

 1
.7

76
.5

 ±
 3

.0
77

.7
 ±

 1
.8

Med Image Anal. Author manuscript; available in PMC 2019 September 27.


	Abstract
	Introduction
	Related works
	Registration via optimization
	Registration via learning
	Registration via deep learning

	Method
	Overview
	Hierarchical dual-supervised FCN
	Hierarchical dual-supervision
	Dual-supervision.
	Hierarchical supervision.

	Gap filling
	Multi-channel inputs
	Implementation

	Data augmentation

	Experiments
	Evaluation based on LPBA40
	Evaluation based on IBSR18, CUMC12, MGH10, IXI30
	Regularization analysis
	Computation costs

	Discussion
	Conclusion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	Fig. 9.
	Fig. 10.
	Fig. 11.
	Fig. 12.
	Fig. 13.
	Fig. 14.
	Fig. 15.
	Table 1
	Table 2
	Table 3

