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Abstract

Numerous algorithms are available for segmenting medical images. Empirical discrepancy metrics 

are commonly used in measuring the similarity or difference between segmentations by algorithms 

and “true” segmentations. However, one issue with the commonly used metrics is that the same 

metric value often represents different levels of “clinical acceptability” for different objects 

depending on their size, shape, and complexity of form. An ideal segmentation evaluation metric 

should be able to reflect degrees of acceptability directly from metric values and be able to show 

the same acceptability meaning by the same metric value for objects of different shape, size, and 

form. Intuitively, metrics which have a linear relationship with degree of acceptability will satisfy 

these conditions of the ideal metric. This issue has not been addressed in the medical image 

segmentation literature. In this paper, we propose a method called LinSEM for linearizing 

commonly used segmentation evaluation metrics based on corresponding degrees of acceptability 

evaluated by an expert in a reader study.

LinSEM consists of two main parts: a) estimating the relationship between metric values and 

degrees of acceptability separately for each considered metric and object, and b) linearizing any 

given metric value corresponding to a given segmentation of an object based on the estimated 

relationship. Since algorithmic segmentations do not usually cover the full range of variability of 

acceptability, we create a set (SS) of simulated segmentations for each object that guarantee such 

coverage by using image transformations applied to a set (ST) of true segmentations of the object. 

We then conduct a reader study wherein the reader assigns an acceptability score (AS) for each 

sample in SS, expressing the acceptability of the sample on a 1 to 5 scale. Then the metric-AS 
relationship is constructed for the object by using an estimation method. With the idea that the 

ideal metric should be linear with respect to acceptability, we can then linearize the metric value of 

Address for correspondence: Jayaram K Udupa, Medical Image Processing Group, Department of Radiology, 3710 Hamilton Walk, 
6th Floor, Rm 602W, Philadelphia PA 19104, jay@pennmedicine.upenn.edu. 

Conflict of interest
There is no any conflict of interest and this is the solo submission to Medical Image Analysis.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Med Image Anal. Author manuscript; available in PMC 2021 February 01.

Published in final edited form as:
Med Image Anal. 2020 February ; 60: 101601. doi:10.1016/j.media.2019.101601.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



any segmentation sample of the object from a set (SA) of actual segmentations to its linearized 

value by using the constructed metric-acceptability relationship curve.

Experiments are conducted involving three metrics – Dice coefficient (DC), Jaccard index (JI), and 

Hausdorff Distance (HD) – on five objects: skin outer boundary of the head and neck (cervico-

thoracic) body region superior to the shoulders, right parotid gland, mandible, cervical esophagus, 

and heart. Actual segmentations (SA) of these objects are generated via our Automatic Anatomy 

Recognition (AAR) method. Our results indicate that, generally, JI has a more linear relationship 

with acceptability before linearization than other metrics. LinSEM achieves significantly improved 

uniformity of meaning post-linearization across all tested objects and metrics, except in a few 

cases where the departure from linearity was insignificant. This improvement is generally the 

largest for DC and HD reaching 8–25% for many tested cases. Although some objects (such as 

right parotid gland and esophagus for DC and JI) are close in their meaning between themselves 

before linearization, they are distant in this meaning from other objects but are brought close to 

other objects after linearization. This suggests the importance of performing linearization 

considering all objects in a body region and body-wide.

Graphical Abstract
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1. Introduction

1.1. Background

Image segmentation is the process of recognizing and delineating objects in images. 

Literature on general image segmentation dates back to the early 1960s (Doyle, 1962; 
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Narasimhan and Fornango, 1963). Principles for medical image segmentation began to 

appear from the late 1970s (Herman et al., 1979; Liu, 1977) with the routine availability of 

computed tomography (CT) images. Approaches to medical image segmentation can be 

classified broadly into two groups: purely image-based or PI-approaches and prior-

knowledge-based or PK-approaches. PI-approaches make segmentation decisions based 

entirely on information derived from the given image (Baxter et al., 2017; Beucher, 1992; 

Boykov et al., 2001; Falcao et al., 1998; Kasset al., 1987; Malladi et al., 1995; Mumford and 

Shah, 1989; Pope et al., 1984; Udupa and Samarasekera, 1996). They predate PK-

approaches and continue to seek new frontiers. In PK-approaches (Ashburner and Friston, 

2009; Christensen et al., 1994; Chu et al., 2013; Cootes et al., 1995; Drozdzal et al., 2018; 

Gee et al., 1993; Hirohisa et al., 2018; Li et al., 2014; Moeskops et al., 2016; Pizer et al., 

2003; Shen et al., 2011; Shi et al., 2017; Staib and Duncan, 1992; Udupa et al., 2014; Zhang 

et al., 2015), known object shape, image appearance, and relation information over a subject 

population are first codified (learned) and then utilized on a given image to bring constraints 

into the segmentation process. They evolved precisely to overcome failure of PI-approaches 

in situations such as lack of definable object boundaries in the image, variable object 

boundary characteristics, and image artifacts, and also simply to increase level of 

automation. Among PK-approaches, three distinct classes of methods can be identified – 

model-based (Cootes et al., 1995; Pizer et al., 2003; Shen et al., 2011; Staib and Duncan, 

1992; Udupa et al., 2014), atlas-based (Ashburner and Friston, 2009; Christensen et al., 

1994; Chu et al., 2013; Gee et al., 1993; Shi et al., 2017), and deep-learning (DL)-based 
(Drozdzal et al., 2018; Li et al, 2014; Moeskops et al., 2016; Oda et al., 2018; Zhang et al., 

2015). The division between model- and atlas-based groups is somewhat arbitrary and a 

matter of semantics. In fact, DL networks are also often referred to as “models.” 

Segmentation is crucial in radiological practice since accurate delineation of tissues and 

organs provides solid means for disease diagnosis, staging, treatment planning and guidance, 

and treatment response assessment and prediction.

In clinical practice, “degree of acceptability” subjectively evaluated by experts based on 

clinical knowledge and practical concerns, is perhaps the most meaningful metric to evaluate 

goodness and usefulness of segmentations. However, it is impractical to employ reader 

studies for technical bench testing of every algorithm at the developmental phase. As such, it 

is more realistic to use objective computational metrics to evaluate segmentations. Empirical 

discrepancy metrics (Zhang, 1996; Zhang, 2001) are commonly used in measuring the 

similarity or difference between segmentations by algorithms and “true” segmentations 

which are often referred to as ground truth. However, one rather serious issue with these 

metrics, whether for technical bench testing or end clinical evaluation in an application, is 

that the same metric value often represents different levels of clinical acceptability for 

different objects depending on their size, shape, and complexity of form. For example, a 

Dice coefficient value of 0.8 for a large non-sparse blob-like object such as liver may imply 

good, and not outstanding, quality of segmentation, whereas for a thin and narrow spatially 

sparse object such as esophagus, this value represents excellent quality. This is mainly due to 

the fact that small deviations in segmentation cause much larger changes in the Dice 

coefficient value for sparse objects than for large non-sparse objects.
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An ideal segmentation evaluation metric should: a) be able to reflect degrees of acceptability 

directly from metric values; b) be able to show the same acceptability meaning by the same 

metric value for objects of different shape, size, and form; and c) be easily calculated for a 

large set of segmentations. Intuitively, metrics which have a linear relationship with the 

degree of acceptability will satisfy these conditions of the ideal metric. In this paper, we 

propose a method called LinSEM for linearizing commonly used segmentation evaluation 

metrics based on corresponding degrees of acceptability evaluated by an expert. In this way, 

linearized metrics will have close-to-linear relationships with acceptability and therefore the 

same (or similar) acceptability meaning for different objects.

1.2. Related work

There are two main categories of segmentation evaluation metrics: region-based and 

boundary-based. Region-based metrics compare regions occupied by segmentations by 

algorithms and their corresponding ground truth. Fractioned values are calculated among 

area or volume of True Positive (TP), True Negative (TN), False Positive (FP), and False 

Negative (FN) regions. TP and TN stand for correctly segmented object and background 

regions, respectively, and FP and FN represent wrongly segmented object and background 

regions, respectively. Commonly used region-based metrics include Dice coefficient (Dice, 

1945), Jaccard index (JI) (Jaccard, 1901), and separately expressed volume fractions TPVF, 

TNVF, FPVF, and FNVF for both binary and fuzzy segmentations (Udupa et al., 2006). 

Boundary-based metrics express the difference between boundaries of segmentations by 

algorithm and ground truth. Common boundary-based metrics include Hausdorff distance 

(HD) (Huttenlocher et al., 1993), average symmetric surface distance (ASD) (Lamecker et 

al., 2004), and root mean squared distance (RMSD) (Detmer et al., 1990), which are all 

different descriptions of some statistic of the distance between the two boundaries. These 

metrics are sometimes simultaneously reported to show the effectiveness of algorithms 

(Baiker et al., 2010; Chen et al., 2012; Dou et al., 2017; Linguraru et al., 2012; Wolz et al., 

2013). Some evaluations combine scores from different metrics. For example, a composite 

metric created by combining two region-based metrics with three boundary-based metrics 

(ASD, RMSD, and HD) is described in (Heimann et al., 2009). Scores from these five 

metrics are used in (Lopez-Molina et al., 2013; Schmid et al., 2011; Tomoshige et al., 2014), 

and the average scores are calculated as a balanced form of segmentation evaluation in 

(Ruskó et al., 2009).

The above commonly-used basic metrics all have their drawbacks. Whereas boundary-based 

metrics are not precise in expressing the segmentation quality of objects of complex shape, 

region-based metrics always emphasize the importance of some traits/measures (such as 

under segmentation or FNs) and weaken others (such as over segmentation or FPs). Several 

improved metrics have been created to mitigate certain concerns in practice. A metric 

designed to detect and measure a wider range of segmentation errors which may be 

overlooked by common metrics is described in (Yeghiazaryan and Voiculescu, 2018). It 

combines region-based and boundary-based metrics, by estimating region-based measures in 

the neighborhood of the boundaries of ground truth and segmentations by algorithms. The 

works in (Kim et al., 2012; Kim et al., 2015) combine metrics with a medical consideration 

function, which considers regions inside and outside the object boundary as having different 
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medical importance and so calculates bidirectional boundary distance. Ref (Cappabianco et 

al., 2017) noticed the fact that large FN implies small TP, and, since FP has no relationship 

with TP, commonly-used region-based metrics, such as DC and JI, portray the influence of 

FN and FP differently. The authors proposed a metric that is balanced with respect to FP and 

FN variations.

Although improvements are made in these proposals, the new metrics all focus only on 

segmentation compositions and none of them concerned the problem of metrics having 

different acceptability meaning for different objects. In this work, we propose the LinSEM 

method to address this problem by studying the relationship between a metric and 

segmentation acceptability in an object-dependent manner. After linearization, metrics for 

different objects will have more similar acceptability meaning than the original metrics.

1.3. Outline of approach

The proposed LinSEM method1 is depicted in Figure 1 and is described in detail in Section 

2. In this method, we first estimate (model) the actual relationship between each metric and 

its degree of acceptability for each object O via a reader study. The relationship is estimated 

based on a set of simulated segmentations (SS) of O, created from a set of true 

segmentations (ST) so as to cover various degrees of segmentation qualities in SS from 

excellent to unacceptable for O. To this end, we design a sequence of operations to mimic 

deviations between true segmentations and actual segmentations of O by using 

morphological and image algebraic operations. These operations are applied to true 

segmentations ST of O to create SS. A reader study is then conducted wherein the reader 

assigns an acceptability score (abbreviated as AS) a(w) for each segmentation sample w in 

SS, expressing the degree of acceptability of w in the subjective opinion of the expert on a 1 

to 5 scale. Metric values m(w) are also calculated for these segmentations for each metric of 

interest.

We estimate a probabilistic acceptability score aP(r) for each metric value r. Then, the 

relationship between the metric and AS of each considered object is constructed from pairs 

of metric values and their corresponding aP(r) by sequentially linking these pairs in a piece-

wise linear manner. With the idea that the ideal metric should be linear with respect to 

acceptability, we can then linearize any given metric value of the object under consideration 

to its linearized value. Correction factors κm,O(r) are estimated for O which indicate how a 

given metric value r of O resulting from any algorithmic segmentation should be corrected 

for it to be linearized by using the metric-AS relationship curve for O. We then devise a 

method to transform the metric values to linearized values based on this estimated correction 

factors and test on a set SA of segmentations of O created by an actual segmentation 

algorithm.

Section 3 describes experiments conducted using three metrics (DC, JI, and HD) and five 

anatomic objects defined in computed tomography (CT) images of the head and neck 

(H&N) and thoracic body regions of cancer patients undergoing radiation therapy. Over 

1Although very different, LinSEM is reminiscent of intensity standardization methods developed in the 1990’s to handle MR image 
intensity non-standardness (Nyul and Udupa, 1999).
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3000 slices in total from 100 3D segmentation samples are involved in our reader 

experiments. The segmentation samples in SA are obtained via the AAR method (Udupa et 

al., 2014; Wu et al., 2019). In Section 4, we evaluate the effectiveness of LinSEM in three 

ways: (i) by assessing the similarity of acceptability among different objects for the same 

metric value before and after linearization; (ii) by assessing the deviation of the object’s 

acceptability scores from the ideal values before versus after linearization for each object; 

and (iii) for each object and for each theoretical acceptability value, the closeness of the 

metric value achieved by linearization to the value corresponding to the ideal curve, and vice 

versa for each theoretical metric value. Our conclusions, gaps remaining in this work, and 

avenues for potential improvements are discussed in Section 5.

2. Method

Notations:

O: An anatomical object.

SA, SS, ST: Respectively, a set of actual segmentations via algorithms, a set of simulated 

segmentations, and a set of true segmentations used for simulation.

a(w), m(w), ml(w): Respectively, acceptability score, metric value, and linearized metric 

value associated with a segmentation sample w.

aP(r): Probabilistic acceptability score estimated for metric value r.

κm,O(r): Correction factor for metric m at its value r for object O.

G(m, O, W): Plot of {(m(w), a(w))} for metric m and object O, determined from 

segmentation set W.

gm,O,W(r): Estimated function describing AS-metric relationship of metric m for object O 
determined from segmentation set W.

Gl(m, O, W, Q): Plot of {(ml(w), a(w))} for metric m and object O, determined from 

segmentation set Q, where linearization is based on the segmentation set W.

hm,O,W,Q(r): Linearized function describing AS-metric relationship of metric m for object O, 

determined from segmentation set Q, where linearization is based on the segmentation set 

W.

ψ(O1, O2, m, r), ψL(.), ψg(.): Respectively, semantic similarity of metric m at its value r 
between objects O1 and O2 before (ψ) and after (ψL) linearization and gain (ψg) in 

linearization.

ρ(O, m, r), ρL(.), ρg(.): Respectively, closeness of the acceptability of object O for metric m 
at its value r with ideal AS before (ρ) and after (ρL) linearization and gain (ρg) in 

linearization.
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γ(O, m, r), γL(.), γg(.): Respectively, closeness of the metric value of object O for metric m 
with ideal metric value before (γ) and after (γL) linearization and gain (γg) in linearization.

Our intent is that the linearization model needs to be developed only once for any object O 
(such as liver) for a given metric such as DC. Subsequently, for any given segmentation of O 
in any given image by any algorithm, it should be possible to apply the linearization 

correction for that metric to this segmentation to obtain the linearized value of the metric. In 

other words, we assume (see further comments in Section 5) that the linearization process 

would depend only on the metric and the object. For this to be valid, a standard definition of 

O should be adopted, which implies that the body region housing O should also be 

unambiguously defined. To make this point clear, consider O to be cervical esophagus. For 

this object to be anatomically defined consistently in any image of any subject, the H&N 

body region in which it is housed should be first clearly defined, especially regarding its 

superior and inferior axial boundary plane locations. Otherwise, this object may vary in its 

very definition from case to case due to its varying extents in the cranio-caudal direction. 

Similarly, what is included in the anatomic object named O and what is excluded should also 

be clearly specified. For example, when O = liver, including or excluding the hepatic portal 

system (at least its major vessels) in the definition of O would make a significant difference 

in the complexity of the shape of O which may influence the linearization process. 

Therefore, as in our previous work on automatic anatomy recognition (Udupa et al., 2014; 

Wu et al., 2019), we assume that a standardized definition of each body region and each 

object considered in it is available for the LinSEM process.

The main idea of LinSEM is illustrated schematically in Figure 2 where two different 

objects O1, and O2 are shown to have different DC-AS curves, and two DC values – d1 for 

O1, and d2 for O2 – both correspond to the same acceptability score A. Alternatively, the 

same DC value M may also indicate different acceptability meaning for the two objects as 

illustrated in the figure. We take the DC-AS curves as reference, and after linearization, we 

would like the same AS value, for both considered objects, to correspond to the same DC 
value. That is, the two DC-AS curves should be linearized to the ideal curve (diagonal line). 

So, as shown in the figure, d1 for O1 and d2 for O2 will be both linearized to M, which is the 

DC value with an AS of A on the ideal curve. Unfortunately, metric-AS relationships based 

on empirical AS values determined from reader studies do not present as smooth curves or 

even functions, and are generally 2D graphs or plots (see Figure 3). So, first we need to 

estimate a function that fits this 2D graph, which can then be used to linearize the 

relationship. Consequently, LinSEM is composed of two main parts: (i) estimating 

relationships between metric and acceptability for all considered metrics and objects, and (ii) 

linearizing metric values in given segmentation samples. These parts are described in 

Sections 2.1 and 2.2, respectively. Throughout, we assume that, there is an object O and a 

segmentation evaluation metric m (which is one of DC, JI, and HD in this paper) under 

consideration. Even when these entities are not mentioned explicitly, the reference to a 

specific object O and metric m is to be understood.
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2.1 Estimating metric-AS relationship

(1) Generating set SS for object O by simulating segmentations—To obtain 

metric-AS relationship, we need segmentation samples with qualities covering the full 

spectrum from excellent to unacceptable. Segmentations output by algorithms usually do not 

cover the whole range of qualities. For example, some well-defined and non-sparse objects 

such as skin outer boundary in a body region are easy to segment by algorithms, their 

samples will have AS = 4 or 5 and will not include cases of AS = 1 or 2. Conversely, sparse 

objects such as esophagus which are difficult to segment rarely cover cases with AS = 5. For 

creating a segmentation set with diverse degrees of quality and mimicking segmentations by 

different algorithms with different quality behavior and enough samples, we create a set of 

simulated segmentations, denoted SS. The simulation process is composed of three steps:

Step 1: Collect a set of images which appear radiologically near-normal for the body region 

of interest and create the ground truth segmentations of O for these images2 following the 

definitions of O. These segmentations will be denoted by set ST.

Our idea is to design sequences of morphological and image algebraic operations which 

when applied to segmentations in ST would create SS. We decided to perform these 

operations in a 2-dimensional manner within the xy-plane of the axial images for several 

reasons (see Section 5 for further comments). First, from the human reader’s perspective, 

because of the mode of slice visualization used for close and detailed scrutiny in radiological 

tasks, we decided it is best to generate the deviations also in a 2D manner. Second, for the 

same reason, it is easier for the reader to judge the quality of a segmentation more 

consistently on the individual slices than to examine all slices and then to judge the quality 

as a single score for the whole 3D volume. Third, a true 3D reader study would involve 

overall many more slices than a 2D reader study and would quickly become very time-

consuming and impractical. Finally, since most acquired images do not possess isotropic 

resolution, we did not want the 3D simulation process to introduce its own vagaries that may 

treat the z-dimension (orthogonal to the xy-plane) differently from the other two dimensions.

Each sequence of operations we designed is composed of shift (S), dilation (D), and erosion 

(E) operations. Each of these operations may be performed in x or y or both directions. The 

magnitude of the operation is expressed in strides which in turn is expressed in number of 

pixels. A sequence is composed of a set of basic operations. The basic operations are 

expressed as:

±x − S − n, ± y − S − n, ± x ± y − S − n,
x−D − n, y − D − n, xy − D − n,
x−E − n, y − E − n, xy − E − n .

(1)

where n denotes the number of strides, ±x-S-n denotes two operations – shift in the +x or −x 

direction, and other operations involving S are similarly defined. x-D-n denotes symmetric 

dilation in the x-direction, and other operations involving D are similarly defined. x-E-n 
denotes symmetric erosion in the x-direction; other operations involving E are similarly 

2LinSEM is applicable to any set of images and not just near-normal. We believe that it is better to understand the metric-acceptability 
relationship first on near-normal objects before applying to objects with abnormal or distorted shapes.
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defined. For example, −x+y-S-2 with a stride = 3 pixels denotes a shift in the −x direction by 

2 strides (= 6 pixels) followed by a shift in the +y-direction by 2 strides (= 6 pixels). These 

basic operations are combined to create sequences. Example:

xy−D − 2 + x − S − 3. (2)

This sequence consists of an initial dilation by 2 strides in the x- and y-directions, followed 

by a shift by 3 strides in the +x-direction. We express the deviation of a segmentation sample 

w in SS from its ground truth counterpart wT in ST resulting by applying a sequence to wT 

by the maximum number δ of pixels of deviation. In the above example in Equation 2, if a 

stride is 3 pixels, then the resulting sample w will have a deviation of δ = 15 pixels. We have 

designed a set of sequences as shown in Table 1 (Section 3) which we employ to simulate 

segmentations with very small to large and realistic deviations.

Step 2: The stride values utilized are estimated in an object-specific manner according to the 

thickness of the object sample. The reason for not designing deviations in units of pixels or 

millimeters is that, for objects of different sizes and different shape, the same magnitude of 

deviation in pixels may not result in a similar change in quality. For illustration, a small 

object with a thickness of 2b pixels may disappear after symmetric erosion by b pixels, and a 

large object with a thickness of 10b pixels will still be 8b pixels thick after erosion, which 

may not constitute a significant change in quality.

Since erosion is the limiting operation determining the disappearance or degeneration of an 

object, we set a limit defined by a parameter θ to denote the fraction of the thickness of an 

object to which we allow to diminish (by erosion). Let Tmin be the minimum thickness of O 
(in pixels) over all its samples in ST, let tm be a sample of ST with minimum thickness, and 

let nmax be the maximum number of strides allowed for erosion. Our idea is that the number 

of strides n selected for morphological operation in any sequence in Table 1 should be less 

than nmax. The size of a stride (in terms of number of pixels) permitted for sample tm will be

em =
θTmin
2nmax

. (3)

If em < 1, it implies that the stride size is less than 1 pixel for tm, and so this triggers (shape-

based) interpolation (Raya and Udupa, 1990) to be performed on all samples of ST. 

Interpolation is done in such a manner that the pixel size ps of tm (in mm) is changed to po 

after interpolation and the new thickness of tm (in pixels) becomes To.

po = ps × em,

To =
Tmin
em

.
(4)

For other samples of ST, their pixel size and thickness also change per factor em as in 

Equation 4, and the stride size for each sample is calculated as in Equation 3. Note that due 
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to the manner in which the stride size and interpolation factor are determined, the new stride 

size after interpolation for tm becomes 1 and the thickness (in mm) of all samples remains 

the same. If em ≥ 1, then there is no need for interpolation.

Step 3: Apply the sequences as per calculated strides to all samples of ST to create the 

simulated segmentation set SS.

We also generated segmentations of O output by our AAR algorithms (Wu et al., 2019) for a 

set of patient images (which are different from the near-normal data sets used for generating 

SS and ST) to compose set SA. We also created ground truth segmentations of O for these 

data sets following our standardized object definitions so that the different metric values for 

the samples in SA can be calculated. Set SA will be used for testing the linearization process 

of LinSEM.

(2) Reader study to determine acceptability score AS—In our reader study, a 

radiologist (co-author DAT) with 22 years of experience in various radiological tasks 

involving image analysis determined the acceptability AS of segmentations. The reader 

examined each slice of a segmentation, which was displayed as an overlay on to the 

corresponding CT slice image, and assigned an AS value to each slice on a 1 to 5 scale, with 

1 denoting unacceptable or poor segmentation and 5 representing excellent segmentation. 

The reader was blinded to the ground truth segmentations, and thus, acceptability scores 

were assigned based only on clinical knowledge and not influenced by the comparison with 

ground truth. The reader study was conducted on both sets SS and SA.

The standard for AS assignment is hard to express in formulation because AS values show 

comprehensive concerns of the expert, which encapsulate the size, shape, anatomical 

relationship of objects, and clinical importance. As a result, the standard for AS may be 

object (and application) dependent, which further suggests that it may not be possible to 

evaluate qualities of segmentations simply and easily by computational metrics.

We will use the following notations for simplifying our description. Let m(.) denote one of 

the metrics DC, JI, and HD, and for any segmentation sample w, m(w) will denote the value 

of that metric for w. Let a(w) denote the acceptability score assigned to w in the reader 

study. Since we will perform experiments involving both SS and SA, we will use W ∈ {SS, 

SA} to denote the set under consideration. For W ∈ {SS, SA} and m ∈ {DC, JI, HD}, the 

reader study generates a 2D graph or plot which we will denote by G(m, O, W) = {(m(w), 

a(w))}. Figures 3a and 3b show an example of G(DC, O, SS) and G(DC, O, SA), 

respectively, where the object O is Mandible.

(3) Constructing metric-AS relationship—The metric-AS curve to be constructed 

(modeled) is intended to show the relationship between metric values and acceptability 

scores as a function for the considered object. However, there is a challenge arising from the 

fact that the empirical AS values are discrete and the computed metric values are continuous, 

resulting in G(m, O, W) being a 2D graph as illustrated in Figure 3. Notably many different 

metric values may be assigned the same AS value. Conversely, segmentation samples with 

the same metric value may be assigned different AS values according to clinical factors 
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which may not be adequately reflected by metric values. Thus, metric-AS curves do not 

directly emerge from G(m, O, W), although we can intuitively understand the rough 

tendency of the metric-AS relationship from such plots. See Figure 3.

We overcome this ambiguity by estimating a probabilistic acceptability score, denoted aP(r), 
via the concept of Mahalanobis distance (Mahalanobis, 1936) determined for each possible 

metric value r over the whole range of the considered metric m(.). Mahalanobis distance is a 

measure of the distance from a point to a probability distribution. The metric values (as 

random variables) corresponding to each AS value have their own distribution. For a metric 

value r, we measure its Mahalanobis distance to the metric-value distribution corresponding 

to each discrete AS value. A small value of this distance implies higher probability and a 

large value suggests lower probability that a segmentation sample with metric value r should 

be assigned this AS value. Mahalanobis distance values are calculated for each AS value and 

are taken as weight factors in the estimation of aP(r). The resulting measure aP(r) can assume 

any real acceptability value in the range [1, 5]. Since 5 discrete levels are the finest 

resolution usually employed in reader studies to specify a grade for the phenomenon under 

observation, AS values assigned by the reader have to be integers in {1, 2, 3, 4, 5}. The 

estimated probabilistic acceptability score aP(r) for each r, however, is in the continuous 

range [1, 5].

Let DM(r, i) denote the Mahalanobis distance of a specific metric value r to the distribution 

pi of metric values corresponding to AS = i and let μ(i) and σ(i) denote the mean and 

standard deviation of this distribution pi. aP(r) is estimated by the weighted average of the 

AS values, where the weight given to an AS value is the reciprocal of the exponential of 

DM(r, i) to reflect the fact that larger distance should indicate lower probability. In this way, 

continuous and probabilistically estimated acceptability scores aP(r) result for every possible 

metric value as expressed in Equation 53, and each distinct metric value r is represented by 

exactly one aP(r) value.

aP(r) =

1 + r
μ(1) (H(μ(1)) − 1), if r < μ(1),

H(μ(5)) + r − μ(5)
1 − μ(5) (5 − H(μ(5))), if r > μ(5),

H(r), otherwise,

where H(r) =
∑i = 1

5 i × exp −DM(r, i)
∑i = 1

5 exp −DM(r, i)
,

and DM(r, i) = r − μ(i)
σ(i) .

(5)

3These equations are fashioned for DC and JI. For HD, changes are made along similar lines.
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For extreme cases where metric value r is 0 or 1, we take them as the most unacceptable or 

the best possible cases and directly assign them aP(0) = 1 or aP(1) = 5, respectively. For 

cases where r is in the range [0, μ(1)] or [μ(5), 1], we consider them as having a linear 

relationship from point (0, 1) to (μ(1), H(μ(1))) or (μ(5), H(μ(5))) to (1, 5) on the plot, 

respectively. For implementation, we discretize the metric value range, and for each 

discretized metric value r, estimate aP(r). In estimating aP(r), we exclude those r values for 

each i for which DM(r, i) > Dmax, the idea being that a large Mahalanobis distance value 

indicates an outlier and potentially highly improbable AS value. The metric-acceptability 

relationship curve as a function, denoted by gm,O,W(.), is then created by piecewise linear 

linking of the discrete (r, aP(r)) pairs. gm,O,W(r) is then defined for any real value of r in [0, 

1]. In Figures 3a and 3b, we demonstrate gm,O,W(r) for W = SS and W = SA, respectively, 

where the object is Mandible and m = DC. Notably the curves seem to aptly express the 

underlying plots.

Three metrics are considered in this work: Dice coefficient (DC), Jaccard index (JI), and a 

normalized version of Hausdorff Distance (HDN). All metrics are computed for 2D 

segmentations on slices since our reader study assigning acceptability scores is carried out 

on slices. DC and JI are commonly-used metrics (Equation 6). When considering Hausdorff 

Distance (HD), there are two issues: (i) Unlike DC and JI which are fractions lying in [0, 1], 

HD is not a ratio (hence not normalized) and is measured in physical units. Hence, its worst 

possible value (maximum distance from true boundary) has no easily definable bound 

although the best possible value is 0. (ii) Minute false positives in segmentations, such as 

isolated pixels or small clusters of pixels that lie far away from the true object which do not 

influence AS, may pose a challenge for normalizing HD. To overcome these issues, we use a 

median version, instead of maximum, for HD and normalize HD to arrive at HDN as 

described below.

To normalize HD for an object O, we use the maximum value HDM2 of HD among all 

samples of O for which AS = 2 as a normalizing factor. If HD of a segmentation on a slice is 

greater than HDM2, we may infer that this segmentation is of really unacceptable quality and 

the HDN value should be set to 1. HDN is calculated as in Equation 7 where HDM2 should 

be determined separately for each considered object O. For a segmentation sample, large DC 
and JI (~ 1), and small HDN (~ 0) mean good quality, and small DC and JI (~ 0), and large 

HDN (~ 1) suggest unacceptable quality. So when conducting linearization on HDN, a slight 

modification should be made to Equation 5 where μ(1) and μ(5) interchange their roles for 

cases where r < μ(5) or r > μ(1). In Equations 6 and 7, w ∈ W denotes the segmentation 

sample to be assessed (W ∈ {SS, SA}), wT denotes the corresponding true segmentation, and 

β(w) and β(wT) denote the boundaries of samples w and wT, respectively.

DC w, wT =
2 × TP w, wT

2 × TP w, wT + FP w, wT + FN w, wT
,

JI w, wT =
TP w, wT

TP w, wT + FP w, wT + FN w, wT
,

(6)
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HD(w, wT) = median({ inf
y ∈ β(wT)

{d(x, y) | x ∈ β(w)}}

⋃{ inf
x ∈ β(w)

{d(x, y) | y ∈ β(wT)}}),

HDN w, wT = min
HD w, wT

HDM2 w, wT
, 1 .

(7)

2.2 Linearizing metric values

Function gm,O,W(r) can be used to linearize the value of m for any given segmentation 

sample q of O as follows. Let the ideal metric-acceptability curve (diagonal line) be denoted 

by Im,O(r). The linearized metric value ml(q) of q is then obtained by simply projecting the 

point (m(q), a(q)) on the curve of gm,O,W(r) on to the ideal curve and reading off the 

corresponding metric value ml(q) as shown in Figure 3a. Thus,

ml(q) = Im, O
−1 gm, O, W(m(q)) . (8)

In particular, we can use gm,O,W(r) to linearize metric values of segmentation samples of O 
coming from another set Q ≠ W. For example, we may create gm,O,W(r) from W = SS and 

then use this to linearize Q = SA. The resulting pairs (ml(q), a(q)) of linearized metric-values 

ml(q) and acceptability scores a(q) (assigned in a reader study) again constitute a 2D graph 

(and not necessarily a function), which will be denoted by Gl(m, O, W, Q). On Gl(m, O, W, 

Q), we may again use the above fitting method to determine a function that will portray the 

“linearized curve” for the samples in Q. We will denote this function by hm,O,W,Q(.). Figure 

3c illustrates the plot Gl(m, O, W, Q) and the linearized curve hm,O,W,Q(.) for W = SS and Q 
= SA. Note that when Q = W, Gl(m, O, W, Q) will represent a plot where the marks in 

Figure 3a are all shifted (non-linearly) to align closely around the diagonal, and the resulting 

fitted curve hm,O,W,Q(.) will be mostly a diagonal line, within computational 

approximations. Comparing fitted curves gm,O,Q(r) (Figure 3b) and hm,O,W,Q(r) (Figure 3c) 

for W = SS and Q = SA and the associated plots, it is clear that the distribution of samples is 

better centered around the ideal curve, and the fitted curve after linearization is closer to the 

ideal curve than before linearization.

Note that the ideal curve is different for metrics which are based on similarity versus 

dissimilarity. After all metrics are normalized from their original range to [0, 1], for metrics 

DC and JI which evaluate similarity of segmentations and their ground truth, the ideal curve 

is the linear line from point (0, 1) to (1, 5), indicating that low similarity means unacceptable 

quality and high similarity implies excellent quality. For metrics which evaluate the 

deviation between segmentations and their ground truth, such as HDN (and other metrics like 

False Positive and False Negative Volume Fractions not considered in this paper), the ideal 

curve is the linear line from point (0, 5) to (1, 1) indicating that low deviation means 

excellent quality and high deviation suggests unacceptable quality.
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To make the linearization process convenient to use, object-specific correction factors 

κm,O(r) are computed for each metric m which indicate how a given value r of m should be 

corrected multiplicatively for it to be linearized by using the metric-AS relationship curve 

gm,O,W(r) for the object under consideration. The correction factor is given by (see Figure 

3a)

κm, O(r) =
ml(q)
m(q) (9)

For any test segmentation sample t of an object with metric value m(t), its corresponding 

linearized metric ml(t) value is then given simply by the product m(t) × κm,O(m(t)). For the 

illustration in Figure 3, the κm,O(r) curve is displayed in Figure 3d for the samples of object 

Mandible in the set Q = SA and m = DC, where the fitted curve was estimated from the set 

W = SS.

The LinSEM methodology as a whole has three parameters: θ denoting the fraction of the 

minimum thickness of an object we allow to diminish after erosion, nmax representing the 

maximum number of strides allowed for erosion, and a threshold Dmax on Mahalanobis 

distance DM(.) that is used for detecting outliers. The first two parameters are associated 

with the method of simulating segmentations, and the third parameter relates to the method 

of curve fitting.

2.3 Evaluating the effectiveness of LinSEM

Since LinSEM aims to harmonize acceptability-meaning among different objects, to 

evaluate its effectiveness, we check whether metric values have more similar meaning 

among different objects after linearization. We collect another set of segmentations as a test 

set, for which we will check whether differences of metric-AS curves among considered 

objects are narrowed after linearization. The evaluation process for each given metric m 
comprises of four steps:

Step 1: Collect a set of (test) segmentations SA produced by an algorithm based on image 

data sets from a set of different subjects for each of a set of different objects. For each such 

object, create simulated segmentations SS based on the set ST of true segmentations coming 

from image sets of subjects different from those whose data sets yielded set SA. In other 

words, for each object, sets SA and SS constitute completely disjoint sets of subjects and 

hence image and object samples.

Step 2: Conduct reader studies for the samples in sets SA and SS for each object.

Step 3: From G(m, O, SA) and G(m, O, SS) for each considered object O, determine the 

fitted curves gm, O, SA
r  and gm, O, SS

r  showing the variability of (probabilistic) acceptability 

as a function of m for SA and SS, respectively, before linearization. Estimate curve 
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hm, O, SS, SA
r  after linearization of the metric values of the samples in SA by using 

gm, O, SS
r  for each object O.

Step 4: If curves hm, O, SS, SA
r  for different objects are more similarly distributed compared 

to curves gm, O, SA
r  for these objects, and if they are closer to the ideal curve, we may 

conclude that the linearized metric, compared with the original metric, has more similar 

acceptability meaning among objects, and the LinSEM method is effective.

We employ three types of evaluation measures, denoted by ψ, ρ, and γ, to assess the 

distribution of the linearized-metric-AS curves hm, O, SS, SA
r  for different objects. For two 

objects O1 ≠ O2 and any given value r ∈ [0, 1] of metric m or its linearized version ml, we 

define the semantic dissimilarity in m between O1 and O2 prior to linearization (ψ) and post-

linearization (ψL) by

ψ O1, O2, m, r = gm, O1, SA
(r) − gm, O2, SA

(r)

ψL O1, O2, m, r = hm, O1, SS, SA
(r) − hm, O2, SS, SA

(r) ,
(10)

and the gain in sematic similarity by

ψg O1, O2, m, r = ψ O1, O2, m, r − ψL O1, O2, m, r (11)

We expect ψg(.) > 0 or ψ(O1, O2, m, r) > ψL(O1, O2, m, r) for most r ∈ [0, 1], or the mean 

value of ψg(.) over all r to be positive.

The second measure ρg(.) analogously describes the gain in closeness of the acceptability 

score to the ideal value from pre-linearization to post-linearization. We define the closeness 
of acceptability to the ideal value prior to (ρ) and post-linearization (ρL) and the gain in 
closeness due to linearization by

ρ(O, m, r) = gm, O, SA
(r) − Im, O(r) ,

ρL(O, m, r) = hm, O, SS, SA
(r) − Im, O(r) ,

ρg(O, m, r) = ρ(O, m, r) − ρL(O, m, r) .

(12)

Again, we expect ρg(.) > 0 or ρ(O, m, r) > ρL (O, m, r) for most r ∈ [0, 1], or the mean value 

of ρg (.) over all r to be positive.

The third measure γg(.) is similar to ρg(.) but describes the gain in closeness of the metric 

value to the metric value on the ideal curve. We define the closeness of the metric value to 
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the ideal value prior to (γ) and post-linearization (γL) and the gain in closeness due to 

linearization by

γ(O, m, r) = r − Im, O
−1 gm, O, SA

(r) ,

γL(O, m, r) = hm, O, SS, SA
−1 gm, O, SA

(r) − Im, O
−1 gm, O, SA

(r) ,

γg(O, m, r) = γ(O, m, r) − γL(O, m, r) .

(13)

We expect γg(.) > 0 or γ(O, m, r) > γL(O, m, r) for most r ∈ [0, 1], or the mean value of 

γg(.) over all r to be positive. See Figure 2 for a pictorial depiction of the meaning of these 

three measures.

3. Experiments

3.1 Data sets

This retrospective study was conducted following approval from the Institutional Review 

Board at the Hospital of the University of Pennsylvania along with a Health Insurance 

Portability and Accountability Act waiver. Experiments are conducted on CT images of two 

body regions, H&N and Thorax. The following five objects as defined in (Wu et al., 2019) 

are considered: the outer skin boundary of the H&N (cervico-thoracic) body region superior 

to the shoulders (CtSkn-h), right parotid gland (RPG), mandible (Mnd), cervical esophagus 

(CtEs), and heart (Hrt). The full name and the acronym for these objects are listed in Table 2 

for ready reference. The first four objects are from the H&N region and the 5th object is 

from the thoracic region. The objects have been selected to represent a mix of different 

shapes and sizes. CtEs is a thin and narrow spatially sparse object. CtSkn-h, RPG, and Hrt 

are non-sparse blob-like objects. Mnd is a hybrid between these two types. Furthermore, 

CtSkn-h and Hrt are large objects with large thickness, and RPG, Mnd, and CtEs have 

relatively low thickness.

The set ST of true segmentations employed for generating SS was chosen from images of 

subjects wherein the shape of the object O considered was not affected significantly due to 

an abnormality for making sure that we are dealing with roughly the same shape in the 

samples of O contained in ST (see further comments in Section 5). Since CT scans of H&N 

and Thorax regions are commonly separately acquired, it is hard to find images of these two 

body regions from the same subjects, and object samples for the two regions come from 

different subjects, although object samples for the same body region are selected from 

images of the same subjects. The set ST of true segmentations was created by strictly 

following our body region and object definitions. The set SA of actual segmentations is 

derived from the output of AAR methods (Udupa et al., 2014; Wu et al., 2019). The pixel 

size and slice spacing of the CT data sets which produced SA were 1–1.6 mm and 1.5–3 mm, 

respectively. Since these data sets pertained to cancer patients undergoing radiation therapy, 

they contained various degrees of pathology.
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Following the method of Section 2.1, we designed 30 sequences, as listed in Table 1, with 

deviations δ within 30 strides. Simulated segmentations for each object are created by 

applying these sequences to the object samples in ST. The structuring elements for erosion 

and dilation both consist of the pixel plus its 4-adjacent neighbors in the 3 × 3 neighborhood. 

We set nmax = 20 which means a maximum of 20 strides are allowed for the erosion 

operation, and θ is set to 0.7 which means, after symmetric erosion by 20 strides, the 

original thickness t (in mm) will be reduced to 0.7t. The stride size in millimeter will then be 

0.7t/40. When determining stride size in pixels, we should first find out the minimum 

thickness of an object among all its samples, and then check if em calculated by Equation 3 

is greater than 1 to decide if samples of the object need to be interpolated. If em < 1 and 

interpolation is needed, the original thickness T (in pixels) will be enlarged to T/em, and 

stride size in pixels will be e = 0.7T/(40em). If em ≥ 1, the stride size in pixels will be e = 

0.7T/40. In this way, the interpolation factor em is the same for all samples of the object but 

the stride sizes are different. The resulting deviation will be δ × e pixels based on the 

deviation for the designed sequence and the stride size of the object sample. For the 

convenience of calculation and avoiding introducing extra interpolation, the floor integer ⌊e⌋ 
is selected as the stride size in generating the samples of SS.

Since reader studies are time-consuming and expensive, we conducted them on SS samples 

generated from 10 sequences and 10 SA samples generated from 10 subjects of each body 

region via AAR algorithm. The selected sequences covered deviations from small to large, 

and samples of objects from the same body region are subjected to the same set of 

sequences. The reader study is thus conducted on 20 3D segmentation samples per object, or 

100 3D object samples in total. For a given object, the object samples in SS and SA are 

shuffled, and while performing the study, the reader is blinded to the set (SS or SA) from 

which the data set originated and to the actual sequence used and the magnitude of the 

deviations. For reader visualization, the boundary contours of the object derived from the 

corresponding segmentation are displayed as an overlay on the corresponding CT slices of 

the data set. As mentioned earlier, the true segmentations are not available to the reader so as 

to keep decisions on scoring acceptability independent of the ground truth. The number of 

slices for each object and each segmentation set involved in the reader experiment is 

summarized in Table 2. Our experiment involved 3577 slices in total, and for each of them 

the reader assigned an acceptability score on a 1–5 scale.

3.2 Experiments

The LinSEM methodology as a whole has three parameters – θ, nmax, and Dmax. As 

mentioned above, we set θ = 0.7 and nmax = 20. For estimating acceptability-metric 

relationship (Equation 5), we set Dmax = 2, which implies that about 95% of all samples will 

be considered in the linearization process if the metric values for a given acceptability score 

are normally distributed. These parameters are fixed once for all in the whole LinSEM 

process.

Metric-acceptability curves gm,O,W(r) are estimated for each metric m and each object O and 

separately based on sets W = SS and W = SA. For computations involving Equations in 6 and 

7 and for fitting the curve, we discretize the metric value range [0, 1] into 100 equal intervals 
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at increments of 0.01 which results in a total of 101 discrete values (including the end values 

0 and 1). The metric-acceptability curve gm, O, SS
r  derived from SS is used as the metric-AS 

relationship to linearize metric values of samples from SA. Curves gm, O, SA
r  and 

hm, O, SS, SA
r  show the metric-AS relationship for set SA before and after linearization. For 

SA, if the deviation of curves hm, O, SS, SA
r  from the ideal curve and/or the difference among 

the curves for different objects is smaller than those of curves gm, O, SA
r , the effectiveness 

of the LinSEM method is demonstrated.

Similarly, to determine how realistic our simulations are, we performed the above 

experiment reversing the roles of SS and SA.

To quantitatively assess the performance of LinSEM, we analyze the mean and standard 

deviation of ψg, ρg, and γg over all samples of SA where linearization is performed based on 

SS. Since the closeness of the linearized curves to the ideal curves also matter for each 

object, we also examine ρ(.) and ρL(.) (Equation 12) over all samples of SA. We conduct a 

similar analysis over all samples of SS where linearization is performed based on SA.

4. Results and discussion

4.1 Image examples

In Figure 4, we display sample images chosen from SS for different levels of deviation (δ) 

where the matching images from ST and closely matching sample images from SA are also 

shown as well as the expert-assigned AS. The deviations observed in SA from corresponding 

true segmentations can be well simulated by SS with designed sequences, and more potential 

variations which have not been collected in the current SA set can also be simulated by 

designing different sequences for deviation. Figure 5 demonstrates several examples of 

different object samples where metric values achieved significantly improved similarity of 

meaning. In Figure 5(a), SA samples of different objects with widely different DC values are 

assigned the same AS via reader study, and their resulting linearized DC (LDC) values are 

more similar to reflect the same acceptability meaning. Figures (b) and (c) give two 

examples where same DC values for different objects correspond to same AS and the 

resulting LDC values, although different, maintain the same meaning after linearization.

4.2 Metric-acceptability curves

Curves gm, O, SA
r  and hm, O, SS, SA

r  are portrayed in Figures 6–8 for m = DC, JI, and HDN, 

respectively, for set SA. We make the following observations from these plots. (i) Compared 

with the original curves gm, O, SA
r , linearized curves hm, O, SS, SA

r  distribute more 

compactly and closer to the ideal curve for all objects. Understandably, the degree of 

compactness achieved seems less for HDN than for the other two metrics. (ii) As we pointed 
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out previously, we cannot collect segmentations with diverse quality from the SA set. An 

obvious case is CtSkn-h, where almost all collected samples are of good quality and are 

assigned AS = 4 or 5. That is why set SS is needed to estimate metric-AS relationship and 

the reason for linear connection from (μ(4), aP(μ(4))) to (0, 1) (or (1, 1)). (iii) The maximum 

improvement seems to be in the curve for Hrt for DC. CtEs and RPG are both diminutive or 

sparse objects and have similar DC-meaning before linearization, which is maintained after 

linearization while bringing them closer to the ideal line. Interestingly, for small DC (up to 

0.5), Mnd, CtEs, and RPG have similar meaning and behavior before linearization. (iv) 

Understandably, DC and JI behave similarly and quite differently from HDN, although JI 
seems to produce curves that are closer to the ideal line compared to DC, suggesting that JI’s 

behavior is more linear than that of DC even before linearization. After linearization, DC 
and JI curves seem to distribute very similarly.

Analogous to Figures 6–8, we created curves gm, O, SS
r  and hm, O, SA, SS

r  showing before 

and after linearization of metric values of samples from SS based on linearization mapping 

estimated from SA. Since the trends of these curves are very similar to those shown in 

Figures 6–8, we have included only the curves for DC as an example in Figure 9.

Our set SS contains samples with AS of 1–5, except two cases – CtEs (a challenging object 

to segment) with AS = 1 and CtSkn-h (an easy object to segment) with AS = 5. SS and its 

associated AS values demonstrate that large deviations seem to be more acceptable for 

segmentations of small sparse objects and even small deviations are less tolerated for large 

blob-like non-sparse objects. Another phenomenon to notice is the discrete steps in the 

CtSkn-h curves of Figure 9, where the metric value range corresponding to each discrete AS 
value is more clear-cut than in other smaller objects and the ambiguity of samples with the 

same metric value assigned with different AS values is minimal. From Figure 9 and similar 

curves for JI and HDN, we may conclude that the simulation method is effective and needed 

for the linearization process.

4.3 Quantitative evaluation

We list the mean and standard deviation of ψg for DC, JI, and HDN in Tables 3–5, 

respectively, and of ρg, ρL, γg, and γL for all three metrics in Table 6. Recall from Equations 

10–13 that, in these results, the linearization transformation was estimated based on SS and 

applied to the samples in SA. Since ψg and ρg express gain in similarity of acceptability, 

their range will be [−4, 4]. On the other hand, γg describes the similarity of metric values 

achieved for the same acceptability value, and so its range will be [−1, 1]. In both cases, a 

+ve value suggests improvement due to LinSEM and a −ve value implies deterioration.

We make the following observations from Tables 3–6 which are also borne out by the 

acceptability curves. (i) Of the 30 pairwise estimations of gain in similarity of semantic 

meaning ψg (among objects) over all metrics, 21 of them are positive (of which 19 are 

statistically significant, P < 0.05) and 9 of them are negative (of which all are statistically 

significant, P < 0.05). Since some pairs of objects may be similar even before linearization 

(such as RPG and CtEs for DC and JI as noted earlier), we do not expect for them to show 

significant ψg > 0 values post-linearization. In fact, they may show a small −ve value. (ii) 
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More importantly, for such and most objects, we expect their curve to move closer to the 

ideal line after linearization (meaning ρg > 0) since this would guarantee that all objects 

would behave similarly in their metric meaning. From the 15 pairs of ρg mean values for the 

metric and its linearized version over all objects and metrics, we see that this is indeed the 

case except for two cases – RPG for JI and CtSkn-h for HDN. The gain ρg (i.e., how much 

the curve is moved closer to the ideal curve after linearization) is large (~0.7–1 acceptability 

score units, or 18–25% improvement) for Hrt-DC and Mnd-HDN, intermediate (~0.3–0.6, or 

8–15%) for many cases (RPG-DC, Mnd-DC, CtEs-DC, Hrt-JI, Hrt-HDN, and RPG-HDN), 

and small (~1–5%) for the rest of the cases. (iii) Gain γg in metric similarity of meaning 

shows large positive values (0.1–0.26 on a [0, 1] range, or 10–26%) for Hrt-DC, RPG-DC, 

Mnd-DC, CtEs-DC, Hrt-JI, RPG-HDN, and Mnd- HDN, and <10% for the other cases with 

only two negative values (−1% to −2% for RPG-JI and CtSkn-h-HDN). γL values show how 

close the curves of linearized metrics are to the ideal line, where the values are 0.01–0.06 in 

cases of DC and JI and 0.03–0.1 in cases of HDN. Again, from the γL values and the curves, 

it is clear that in a majority of the cases, the actual metric values across objects are moved 

close to the ideal line. And only two cases have statistically significantly negative γg values.

Since the trend in the results of linearizing metrics of samples from SS based on SA were 

similar to those listed in Tables 3–5, we show results for SS only for ψg in Table 7 for DC. 

Among 10 pairwise estimations of gain in similarity of semantic meaning ψg, 6 of them are 

positive (of which 4 are statistically significant, P < 0.05) and 4 of them are statistically 

significantly negative. Because of less variability in set SA, especially of CtSkn-h, the 

metric-AS relationship is not completely fitted by the samples of SA but partly by estimation 

due to linear connection, so semantic meaning for SS have not improved as well as for SA. 

(This is in the spirit of the justification provided earlier for estimating the linearization 

transformation based on set SS and then applying it to set SA.) However, comparing among 

curves in Figure 9, we can also tell that curves of linearized DC distribute more closely 

along the ideal curve.

4.4 Gaps and challenges

There are several gaps in this investigation and further challenges to be addressed. First, 

limited by the cost of running the reader study, we decided to perform the LinSEM process 

on a 2D slice basis rather than in a true 3D fashion. Although there may be differences using 

the 2D versus 3D approach at the simulation stage and in the linearization process, we 

believe these differences are small and inconsequential. We admit however that this needs to 

be proven. The 3D approach has two serious drawbacks which hindered us in pursuing this 

approach – the reader-study cost due to a substantially increased number of “slices to read”, 

and a disconnection in the reader’s ability between reading 2D slices while having to score 

acceptability three-dimensionally. From our experience, we believe that this may result in 

less reliable acceptability scores than from 2D experiments.

Second, we indirectly assumed that the meaning of AS as determined by one expert is 

sufficient for the LinSEM process. Obviously, there may be differences in how experts score 

which may also vary for different applications. Considering multiple readers is directly 

feasible within our linearization method by generalizing Mahalanobis distance from a single 
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variable to a multi-variate version or by pooling data from all readers. For different 

applications, application experts should perform the reader study to make sure that 

application-specific concerns are expressed in the scores.

Third, the most difficult challenge is how to handle cases of objects distorted by surgery or 

pathology. This takes us back to the issue of object definition. What is actually being 

segmented in these cases becomes crucial. If the goal is still the segmentation of the object 

outer boundary and if its shape is roughly the same as that of typical object samples, then it 

will not matter from LinSEM’s perspective even if the object contains extensive pathology. 

However, if the object shape is severely distorted and the segmentation method cannot 

recover the original shape or if that is not the goal, then LinSEM’s performance will be 

affected.

Finally, a question arises as to why not perform curve fitting in Section 2 using methods 

other than the proposed probabilistic approach based on Mahalanobis distance. Our early 

efforts, such as directly fitting from raw metric values and AS pairs of samples to 

polynomial curves, did not yield meaningful and similarly explainable results for different 

objects. This is the reason that we developed the proposed method. It is also conceivable that 

deep learning networks can be designed to perform this regression in more sophisticated 

ways, which we are currently examining.

We noticed that although the patterns of curves gm, O, SS
r  and gm, O, SA

r  obtained from SS 

and SA were similar, there were differences in distributions pi (see Section 2.1) between the 

two cases. The main culprit is the lack of full coverage of segmentation quality in the case of 

set SA as we already mentioned. For example, since object CtSkn-h is usually easy to 

segment, its samples in SA will have AS = 4 or 5 and will not include cases with AS = 1 or 

2. Conversely, sparse objects such as CtEs rarely cover cases with AS = 5. This causes the 

distributions pertaining to SS and SA to differ and, we believe, the deterioration of linearity 

we encountered in our experiments. We expect the difference among curves due to this 

difference in distribution between SS and SA to be smaller than the actual difference in 

curves among objects. We observed that violation of this expected behavior can lead to 

deterioration of linearity. An example is shown in Figure 10 for RPG for the case of 

linearizing JI. Notice that, for m = JI, the difference between curves gm, O, SS
r  and 

gm, O, SA
r  can be larger than the difference between gm, O, SA

r  and the ideal line for some 

metric and acceptability values.

Computational considerations—LinSEM was implemented on a computer with the 

following specifications: 6-core Intel i7–7800X CPU 3.5GHz with 64 GB RAM and running 

the Linux operating system. Computational time for curve fitting for each object based on 

each dataset (SA or SS) is less than 0.2 second in MATLAB R2018b. Subsequent 

linearization is instantaneous.
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5. Concluding remarks

In this paper, we introduced a new concept (LinSEM) of linearizing segmentation evaluation 

metrics for achieving uniformity of meaning across different anatomic objects based on 

corresponding degrees of expert-scored acceptability. We designed a set of sequences of 

basic image operations to be applied to true segmentations to mimic the full spectrum of 

deviations potentially observable in actual segmentations by varied algorithms. We 

performed a reader study on simulated segmentations (SS) wherein an expert determines an 

acceptability score AS for each study. The rationale for and advantage of employing 

simulations are that they can cover the full spectrum of overall quality distribution much 

better and by design within a smaller population of samples than actual segmentations which 

typically cover a partial range of acceptability and may also require a larger sample size to 

have a proper coverage within the restricted range. Also, for some large, well-defined 

objects, even very large sample sets of actual segmentations may not capture the needed full 

range of variations. Thus, the cost associated with reader studies can be considerably 

reduced via simulated segmentations. Based on AS, we estimate object- and metric-

dependent metric-AS relationships via the concept of probabilistic acceptability scores by 

employing the Mahalanobis distance over a discretized set of metric values covering the full 

domain of the metric. The relationships determined by using SS are taken as calibration 

reference to linearize the metric for each object on actual segmentations (SA). We conducted 

experiments on five anatomic objects (cervical esophagus (CtEs), cervical skin outer 

boundary (CtSkn-h), heart (Hrt), mandible (Mnd), and right parotid gland (RPG)) utilizing 

three most commonly-used metrics (DC, JI, and HD) to assess the improvement brought 

about by LinSEM in the uniformity of metric meaning across objects.

We summarize our conclusions as follows. (i) Generally, JI seems to have a more linear 

relationship with acceptability before actual linearization than other metrics. (ii) LinSEM 

achieves significantly improved uniformity of meaning post-linearization across all tested 

objects and metrics, except in a few cases where the departure from linearity was 

insignificant before linearization. This improvement, expressing how close metric-to 

acceptability relationship has been brought to the ideal curve, is generally the largest for DC 
and HD reaching 8–25% for many tested cases. (iii) Although some objects (such as RPG 

and CtEs for DC and JI) are close in their meaning between themselves before linearization, 

they are distant in this meaning from other objects. This emphasizes the importance of 

bringing all objects individually close to the ideal curve to realize uniformity of meaning 

across all objects. This in turn suggests that, eventually, linearization must be performed 

considering all objects in a body region, and preferably, all objects body-wide. (iv) Our 

results suggest that the proposed method of simulating segmentations may be a practical 

way of addressing the dual challenges of keeping the set of segmentations to be dealt with 

manageable and minimizing the cost of conducting reader studies. (v) Although we used 

image data sets from CT from H&N and thorax body regions, the LinSEM process is 

applicable as is to other image modalities and body regions as long as sets SA and ST are 

available for a set of objects for the body region of interest.

Medical practice relies heavily on graded or categorical scoring systems for assessing 

various phenomena such as health status and disease stage (for example, BI-RADS (D’Orsi 

Li et al. Page 22

Med Image Anal. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



et al., 2013), PI-RADS (Turkbey et al., 2019), etc.). These systems are body-region-, object-, 

disease-, and application-specific, and have been arrived at through standardized guidelines 

for scoring. For wide-spread use of any method such as LinSEM, standardized guidelines 

will become necessary for acceptability scoring in order to reduce intra- and inter-reader 

variability. We are in the process of conducting a multi-center study for acceptability scoring 

in the two body regions considered in this paper for the application of auto-contouring 

organs at risk for radiation therapy planning (Wu et al., 2019). Currently this application is 

perhaps the largest consumer of segmentation tools and tools for clinically meaningful 

evaluation.

In this paper, we focused on anatomical objects which have known prior shape. To apply 

LinSEM to objects of irregular shape such as tumors and pathological regions, they need to 

be first categorized into groups (Cao et al., 2016) based on their geometric attributes (such as 

spherical, ovoid, polygonal, smooth, lobulated, spiculated) and morphological attributes 

(such as extensive, small). Then the linearization process can be studied by group. This 

clearly requires much further work.
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Highlights

• Mitigates the problem of evaluation metric having different meanings among 

objects.

• Simulates actual segmentations covering qualities from excellent to 

unacceptable.

• Constructs relationship between metric and acceptability score assigned by 

expert.

• Linearized metrics show closer acceptability-meaning among objects.

• Linearity of the metric is improved by LinSEM in an object-specific manner.
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Figure 1. 
A schematic representation of the LinSEM method.
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Figure 2. 
Hypothetical DC-AS curves for two objects O1 and O2 are illustrated where the same 

acceptability score A corresponds to different DC values d1 and d2. The goal of LinSEM is 

to map these values as closely as possible to the ideal value M. ψg(.), γg(.), ρg(.) are three 

measures employed to evaluate the effectiveness of LinSEM, which will be described in 

Section 2.3.
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Figure 3. 
Illustration of the process of estimating metric-AS relationship for the object O = Mandible 

(Mnd). (a) The blue marks denote the plot G(m, O, W) of raw metric-value-empirical-AS-

value pairs for metric m = DC and the simulated set W = SS. The smooth (red) curve 

represents the estimated function gm,O,W(r). (b) Similar to (a) but for W = SA. (c) The plot 

Gl(m, O, W, Q) of linearized metric-AS pairs (blue marks) for W = SS and Q = SA and the 

fitted linearized function (red) hm,O,W,Q(.). (d) The correction factor κm,O(r) for the samples 

in Q = SA estimated by using the fitted curve gm,O,W(r) where W = SS.
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Figure 4. 
Image samples from sets ST (1st column), SS (2nd column), SA (4th column), and ground 

truth (3nd column) corresponding to SA. For SS, three different levels of deviations are 

shown (in different rows) together with the corresponding image from ST and a closely 

matching sample from SA with its ground truth. The assigned acceptability scores (AS) and 

designed deviation (δ) for samples of SS are also shown. Examples displayed are for objects 

Mnd, CtEs, and Hrt.
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Figure 5. 
Image samples from set SA of objects Mnd, RPG, CtEs, and Hrt. Their associated DC values 

before (1st value) and after (2nd value) linearization are also shown.
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Fig. 6. 

Curves gm, O, SA
r  (left) and hm, O, SS, SA

r  (right) for the five objects for set SA for m = DC.
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Fig. 7. 

Curves gm, O, SA
r  (left) and hm, O, SS, SA

r  (right) for the five objects for set SA for m = JI.
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Fig. 8. 

Curves gm, O, SA
r  (left) and hm, O, SS, SA

r  (right) for the five objects for set SA for m = 

HDN.
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Figure 9. 

Curves gm, O, SS
r  (left) and hm, O, SA, SS

r  (right) for the five objects for set Ss for m = DC.
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Fig. 10. 

An example for illustrating the fact that the difference between curves gm, O, SS
r  and 

gm, O, SA
r  can be larger than the difference between gm, O, SA

r  and the ideal line.
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Table 1.

Sequences employed to simulate segmentations and their associated deviations δ expressed in stride size.

Sequence δ Sequence δ

+xy-S-1 1 xy-D-6 → +x−y-S-10 16

xy-E-1 → −x-S-1 2 xy-E-6 → −x+y-S-11 17

xy-E-1 → +xy-S-2 3 xy-E-8 → +x-S-10 18

xy-D-2 → +y-S-2 4 xy-D-5 → −y-S-14 19

xy-E-2 → +x-S-3 5 xy-D-4 → +xy-S-16 20

xy-D-2 → −y-S-4 6 xy-E-7 → +y-S-14 21

xy-D-3 → −x-S-4 7 xy-D-8 → +x-S-14 22

xy-E-3 → +x−y-S-5 8 xy-D-6 → −xy-S-17 23

xy-D-5 → −x+y-S-4 9 xy-E-5 → +xy-S-19 24

xy-E-4 → −xy-S-6 10 xy-D-6 → −x+y-S-19 25

xy-D-5 → +xy-S-6 11 xy-E-5 → +x−y-S-21 26

xy-D-4 → +y-S-8 12 xy-E-4 → −y-S-23 27

xy-E-6 → +x-S-7 13 xy-D-3 → −x-S-25 28

xy-D-7 → −y-S-7 14 xy-D-5 → −x+y-S-24 29

xy-E-5 → −x-S-10 15 xy-E-4 → +x−y-S-26 30
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Table 2.

Number of slices for the five objects considered in our reader study.

Data sets Hrt (Heart) RPG (Right 
parotid gland) Mnd (Mandible) CtEs (cervical 

esophagus)
CtSkn-h (Cervico-thoracic skin 
outer boundary – superior part) Total

SS 280 255 434 356 539 1864

SA 271 311 353 269 509 1713

Total 551 566 787 625 1048 3577
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Table 3.

Mean (1st value) and sd (2nd value) of ψg(.) over all samples of SA for DC where the linearization mapping 

was estimated based on SS.

RPG Mnd CtEs CtSkn-h

Hrt
0.440 0.285 0.522 0.478

0.446 0.408 0.554 0.317

RPG
−0.114 −0.038 0.142

0.198 0.138 0.306

Mnd
0.003 0.004

0.233 0.327

CtEs
0.092

0.339
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Table 4.

Mean (1st value) and sd (2nd value) of ψg(.) over all samples of SA for JI where the linearization mapping was 

estimated based on SS.

RPG Mnd CtEs CtSkn-h

Hrt 0.606 0.270 0.571 0.203

0.407 0.237 0.464 0.321

RPG −0.077 −0.056 0.164

0.230 0.152 0.209

Mnd 0.069 −0.092

0.236 0.235

CtEs 0.241

0.181
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Table 5.

Mean (1st value) and sd (2nd value) of ψg(.) over all samples of SA for HDN where the linearization mapping 

was estimated based on SS.

RPG Mnd CtEs CtSkn-h

Hrt
−0.562 0.141 0.306 0.083

0.485 0.224 0.231 0.321

RPG
−0.457 0.118 −0.198

0.444 0.455 0.209

Mnd
0.653 0.436

0.363 0.440

CtEs
−0.146

0.144
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Table 6.

Mean (1st value) and sd (2nd value) of ρg, ρL, γg, and γL for all three metrics over all samples of SA where the 

linearization mapping was estimated based on SS.

DC JI HDN

ρg ρL γg γL ρg ρL γg γL ρg ρL γg γL

Hrt
1.011 0.139 0.265 0.022 0.522 0.179 0.125 0.051 0.363 0.317 0.069 0.101

0.554 0.109 0.138 0.030 0.338 0.180 0.059 0.053 0.352 0.273 0.059 0.067

RPG
0.422 0.139 0.106 0.034 −0.094 0.185 −0.020 0.043 0.436 0.405 0.135 0.075

0.232 0.106 0.050 0.026 0.153 0.156 0.034 0.038 0.363 0.208 0.088 0.051

Mnd
0.515 0.188 0.141 0.035 0.042 0.141 0.011 0.035 0.750 0.231 0.191 0.054

0.265 0.135 0.086 0.029 0.168 0.103 0.050 0.024 0.433 0.156 0.086 0.036

CtEs
0.421 0.117 0.107 0.028 0.072 0.074 0.020 0.016 0.054 0.133 0.009 0.038

0.282 0.085 0.061 0.021 0.076 0.092 0.019 0.022 0.143 0.147 0.035 0.037

CtSkn-h
0.192 0.227 0.047 0.057 0.162 0.221 0.040 0.056 −0.036 0.366 −0.013 0.095

0.166 0.142 0.028 0.034 0.139 0.138 0.023 0.034 0.077 0.218 0.010 0.056
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Table 7.

Mean (1st value) and sd (2nd value) of ψg(.) over all samples of SS for DC where the linearization mapping 

was estimated based on SA.

RPG Mnd CtEs CtSkn-h

Hrt 0.396 0.166 0.446 −0.121

0.395 0.233 0.330 0.468

RPG 0.019 −0.080 −0.272

0.265 0.190 0.440

Mnd 0.190 −0.150

0.181 0.418

CtEs 0.038

0.536
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