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Abstract

White matter tract segmentation, i.e. identifying tractography fibers (streamline trajectories) 

belonging to anatomically meaningful fiber tracts, is an essential step to enable tract quantification 

and visualization. In this study, we present a deep learning tractography segmentation method 

(DeepWMA) that allows fast and consistent identification of 54 major deep white matter fiber 

tracts from the whole brain. We create a large-scale training tractography dataset of 1 million 

labeled fiber samples, and we propose a novel 2D multi-channel feature descriptor (FiberMap) that 

encodes spatial coordinates of points along each fiber. We learn a convolutional neural network 

(CNN) fiber classification model based on FiberMap and obtain a high fiber classification 

accuracy of 90.99% on the training tractography data with ground truth fiber labels. Then, the 

method is evaluated on a test dataset of 597 diffusion MRI scans from six independently acquired 

populations across genders, the lifespan (1 day - 82 years), and different health conditions (healthy 

control, neuropsychiatric disorders, and brain tumor patients). We perform comparisons with two 

state-of-the-art tract segmentation methods. Experimental results show that our method obtains a 

highly consistent tract segmentation result, where on average over 99% of the fiber tracts are 

successfully identified across all subjects under study, most importantly, including neonates and 

patients with space-occupying brain tumors. We also demonstrate good generalization of the 

method to tractography data from multiple different fiber tracking methods. The proposed method 

leverages deep learning techniques and provides a fast and efficient tool for brain white matter 

segmentation in large diffusion MRI tractography datasets.
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1. Introduction

Diffusion magnetic resonance imaging (dMRI) allows mapping of white matter fiber tracts 

in the brain via a process called tractography (Basser et al., 2000). Tractography estimates 

fiber trajectories by following their probable tract orientations, enabling the measurement of 

microstructural white matter properties of fiber pathways (Basser et al., 2000; Mori and van 

Zijl, 2002; Westin et al., 2002). Tractography has been widely used for understanding 

neurological development, brain function, and brain disease, as described in several reviews 

(Ciccarelli et al., 2008; Yamada et al., 2009; Pannek et al., 2014; Piper et al., 2014; Essayed 

et al., 2017). However, performing whole brain tractography on one individual subject can 

generate hundreds of thousands of fibers, which are not immediately useful to clinicians or 

researchers. Therefore, white matter tract segmentation, i.e. identifying tractography fibers 

(streamline trajectories) belonging to anatomically meaningful fiber tracts, is an essential 

step to enable tract quantification and visualization.

Automated and robust white matter segmentation can enable the analysis of new, large dMRI 

datasets that are being acquired to study complex neural systems across the lifespan and 

across brain disorders (Alexander et al., 2017; Thompson et al., 2017; Casey et al., 2018; 

Harms et al., 2018; Cetin-Karayumak et al., 2019). One category of automated white matter 

tract segmentation methods uses prior information in the form of an atlas, where tract 

segmentation is performed according to fiber terminations in cortical and subcortical 

structures (Sporns et al., 2005; Bullmore and Sporns, 2009; Gong et al., 2009; Zalesky et al., 

2012; Bastiani et al., 2012; Ingalhalikar et al., 2014; Yeh et al., 2016; Bassett and Bullmore, 

2017; Wassermann et al., 2016; Yeh et al., 2019). Another category of tract segmentation 

methods apply fiber clustering to segment white matter fibers based on their fiber trajectory 

(Ding et al., 2003; O’Donnell and Westin, 2007; Wassermann et al., 2010; Visser et al., 

2011; Guevara et al., 2012; Jin et al., 2014; Prasad et al., 2014; Kumar et al., 2017; 

Garyfallidis et al., 2018; Siless et al., 2018).

Recent studies have applied deep learning techniques to perform automated white matter 

tract segmentation (refer to (Poulin et al., 2019) for a review). These deep learning tract 

segmentation techniques can be divided into voxel-based strategies and fiber-based strategies 

based on the input data provided to the network. The voxel-based strategies perform tract 

segmentation based on a predicted “tract presence” volume, where each voxel encodes the 

presence and/or orientation of a fiber tract. This strategy has enabled tract segmentation by 

fiber tracking following the predicted fiber directions (Reisert et al., 2018; Wasserthal et al., 

2018, 2019). In contrast, the fiber-based strategies first perform tractography and then 

segment tractography fibers by classifying them into anatomical tracts using a convolutional 

neural network (CNN) or its extension (e.g., a graph CNN as applied in (Liu et al., 2019)) 

trained on fiber feature descriptors (Lam et al., 2018; Gupta et al., 2017a; Xu et al., 2019; 

Gupta et al., 2017b, 2018; Liu et al., 2019). Previously proposed fiber feature descriptors 

include curvature, torsion and distances to anatomical landmarks (Lam et al., 2018), as well 

as spatial coordinates of fiber points (Gupta et al., 2017a; Xu et al., 2019; Gupta et al., 

2017b, 2018; Liu et al., 2019).
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Deep learning tract segmentation methods have achieved good performance, but challenges 

still remain, particularly in consistent tract segmentation of dMRI data from different 

sources (e.g. across different acquisitions, healthy and disease populations, and different 

ages). Consistent tract segmentation is important in brain white matter analysis, required, 

e.g., for across-lifespan and multi-site studies that are currently underway in many large 

datasets (Alexander et al., 2017; Thompson et al., 2017; Casey et al., 2018; Harms et al., 

2018; Cetin-Karayumak et al., 2019). The tract presence volume predicted by voxel-based 

methods provides a normalized and condensed representation of the raw dMRI data and thus 

can be robust to different acquisitions with different numbers of gradient directions, b-values 

and other parameters (Wasserthal et al., 2018, 2019). However, voxel-based methods could 

be challenged by local anatomical differences from subjects with high anatomical variability. 

For instance, prediction of a tract presence volume can be challenged by space-occupying 

lesions that displace fiber tracts, or by neuroanatomical changes during neurodevelopment. 

Fiber-based strategies using traditional machine learning approaches (e.g. fiber clustering 

techniques) can handle this large across-subject anatomical variability. For example, 

successful and consistent tract segmentation has been demonstrated in subjects across the 

lifespan and across different acquisition protocols (Zhang et al., 2018c), and in patients with 

brain tumors (Zhang et al., 2018c; Tunç et al., 2015; Garyfallidis et al., 2018; O’Donnell et 

al., 2017). However, such traditional methods usually require multiple time-consuming 

processing steps.

In this study, we propose a fiber-based deep learning method for fast and consistent white 

matter tract segmentation, which we refer to as the Deep White Matter Analysis 

(DeepWMA) method. We believe the proposed method is the first fiber-based deep learning 

tract segmentation method that can generalize to dMRI data across healthy and disease 

populations, across the lifespan, and across multiple dMRI acquisitions, as well as across 

multiple tractography methods. This investigation extends our initial conference publication 

(Zhang et al., 2019a) to 1) investigate the effect of different sizes of FiberMap, 2) provide 

detailed tract spatial overlap analysis, and 3) demonstrate successful tract segmentation on 3 

additional populations, to include subjects across the full lifespan.

This paper has three main contributions. First, we create a large-scale training dataset of a 

million labeled tractography fibers from 100 healthy adult subjects, including fibers from 

anatomical fiber tracts and those from false positive tracking. Second, we propose a novel 

2D multi-channel fiber feature descriptor (FiberMap) that is insensitive to the order of points 

along fibers and is robust to local anatomical differences. Third, we demonstrate successful 

tract segmentation on a large test dataset including a total of 597 subjects from 6 

independently acquired populations.

2. Methods

Figure 1 gives an overview of the proposed DeepWMA method, including: (a) creation of 

the training tractography data (Section 2.1), (b) extraction of FiberMap fiber feature 

descriptor (Section 2.2), (c) training of the CNN fiber classification model (Section 2.3), and 

(d) prediction of the subject-specific tract segmentation (Section 2.4).
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2.1. Datasets

In this study, we created a training tractography dataset including a total of 1 million fiber 

samples with anatomical labels (Section 2.1.1), which were used for CNN tract 

segmentation model training. The trained model was tested to segment tractography data of 

a total of 597 subjects from six independently acquired dMRI test datasets (Section 2.1.2) 

for experimental evaluation.

2.1.1. Training tractography data—A good training dataset for tractography 

segmentation should include fiber samples from not only true positive anatomical fiber tracts 

but also fiber samples from false positive tracking that is known to be dominant in 

tractography data (Maier-Hein et al., 2017). In our study, we created a large tractography 

training dataset including 1 million fiber samples. These training fiber samples were labeled 

into 55 tract categories consisting of 54 anatomical deep white matter fiber tracts and a tract 

category of “other fibers” including, most importantly, those from false positive tracking. 

Figure 1(a) gives a visualization of example training fiber samples.

To create the training tractography data, we leveraged the ORG-800FC-100HCP white 

matter tractography atlas (Zhang et al., 2018c), which is provided by the O’Donnell 

Research Group (ORG) at the Laboratory for Mathematics in Imaging and is now available 

online1. This ORG atlas is an anatomically curated white matter atlas using population-

based brain anatomical information and expert neuroanatomical knowledge (Zhang et al., 

2018c). The atlas includes whole-brain tractography data (computed using a two-tensor 

unscented Kalman filter (UKF) (Malcolm et al., 2010) fiber tracking method) from 100 

healthy Human Connectome Project (HCP) (Glasser et al., 2013) subjects. In the present 

study, we used the expert curated fibers in the ORG atlas from a total of 54 deep white 

matter tracts, such as the arcuate fasciculus (AF) and corticospinal tract (CST) (see 

Supplementary Table I for the list of the 54 tracts and the number of fiber samples in each 

anatomical tract category). A total of 273,379 training fiber samples in 54 anatomical tract 

categories were included. The remaining uncurated fibers in the ORG atlas were assigned 

the tract category of “other fibers.” We also computed fibers from false positive tracking and 

assigned these fibers the tract category of “other fibers.” This resulted in a total of 726,621 

fiber samples in this category. We note that the ORG atlas was designed to perform tract 

segmentation in combination with a data-driven fiber clustering pipeline (a comparison 

method used in the present study, as introduced in Section 2.5.2) (Zhang et al., 2018c), 

where false positive fibers were identified and removed from the atlas in order to facilitate 

subject-specific false positive fiber removal when applying the atlas to tractography data 

from new subjects. Thus, false positive fibers were not included in the ORG atlas. We 

computed these fibers from the 100 atlas HCP subjects’ whole-brain UKF tractography by 

applying atlas-based clustering followed by outlier identification (Zhang et al., 2018c). 

Specifically, the tractography data of each HCP subject was clustered based on the ORG 

atlas using the whitematteranalysis (WMA)2 fiber clustering package. Outlier subject-

specific fibers that have improbable fiber trajectory were identified based on their fiber 

1
2https://github.com/SlicerDMRI/whitematteranalysis
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affinity to the atlas cluster (over 2 standard deviations from the cluster’s mean fiber affinity, 

as applied in (Zhang et al., 2018c). This data-driven outlier identification process has been 

successfully applied in multiple works from our group to identify false positive fibers 

(O’Donnell et al., 2017; Zhang et al., 2018b; Wu et al., 2018; Zhang et al., 2018a, 2019b, 

2020b).

In total, in the curated training tractography data, there were a million fiber samples, where 

each fiber belonged to one of the 54 anatomical tract categories or the “other fibers” 

category. We note that the fiber samples in the training tractography data were randomly 

sampled from the whole-brain tractography data from 100 HCP subjects used for the ORG 

atlas generation. The proportion of fiber samples in each category thus represented the fiber 

proportions in the real brain tractography data. Such a sample distribution in the training 

data could be beneficial for robustly training a tract segmentation model. (Our unpublished 

results on curation of training data by including evenly distributed samples across all 55 tract 

categories, e.g., with data augmentation by repetition of fiber samples, showed unfavorable 

fiber classification performance).

2.1.2. Six independently acquired dMRI test datasets—For experimental 

evaluation, we used dMRI data from a total of 597 subjects from six independently acquired 

datasets with different diffusion imaging protocols. These testing subjects were across 

genders, across the lifespan (neonates, children, young adults and older adults, ranging in 

age from 1 day to 82 years), and across different health conditions (healthy control, 

neuropsychiatric disorders, and neurosurgical patients with brain tumors). Table 1 gives an 

overview of the demographics and the dMRI acquisitions of the test datasets under study. 

The dHCP, ABIDE, HCP, CNP, and PPMI datasets were from public imaging repositories 

(as described in Table 1). Imaging data from the BTP dataset was acquired at Brigham and 

Women’s Hospital. The usage of the data was approved by the Partners Healthcare 

Institutional Review Board, and informed consent was obtained from all participants prior to 

scanning. Data preprocessing was performed to exclude potential artifacts, e.g., from eddy 

current and head motion effects. (Details of the preprocessing steps for each test dataset 

under study are included in Supplementary Text I.A.)

2.1.3. Whole-brain tractography—We computed whole-brain tractography data per 

subject in each test dataset using the two-tensor UKF method3, which was the same fiber 

tracking method as used for generating the training data. We chose the two-tensor UKF 

method because it has been demonstrated to be highly robust for successful tract 

segmentation across the lifespan (Zhang et al., 2018c) and highly sensitive, especially in the 

presence of crossing fibers and peritumoral edema (Zhang et al., 2018c; Chen et al., 2015; 

Liao et al., 2017; Gong et al., 2018). For each of the subjects under study, there were about 1 

million fibers in the whole-brain UKF tractography. In addition to the UKF method, we also 

applied two additional fiber tracking methods to evaluate our proposed method’s ability to 

generalize to tractography data computed from different methods. (Two additional fiber 

tracking methods include the diffusion tensor imaging (DTI) model (Basser et al., 2000) and 

3https://github.com/pnlbwh/ukftractography
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the constrained spherical deconvolution (CSD) model (Tournier et al., 2010). See Section 2.5 

for details of this experimental evaluation.) Visual and quantitative quality control of the 

tractography was performed using a quality control tool in the WMA software (Zhang et al., 

2018c; O’Donnell and Westin, 2007). (Details of the tractography computation and 

parameters are included in Supplementary Text I.B.)

2.2. FiberMap tractography fiber feature descriptor

Our goal is to design a fiber representation, or feature descriptor, for effective classification 

of fibers belonging to different anatomical tracts. In tractography data, a fiber streamline is 

represented by a sequence of fiber points. The most straightforward fiber representation is to 

concatenate the spatial coordinates (x, y, z) of all fiber points into a sequential feature vector 

(x1, y1, z1, …, xn, yn, zn). However, such a representation provides limited performance for 

fiber classification due to the following issues. First, the sequential representation is 

sensitive to the order of points along the fibers. In tractography, fiber tracking provides no 

directional information. For example, a fiber in AF could be tracked either from Broca’s 

region in the frontal lobe to Wernicke’s region in the temporal lobe or from Wernicke’s 

region to Broca’s region. Using the sequential representation can be ineffective to classify 

fibers from the same tract but tracked from different directions. Second, the sequential 

representation concatenates the x-, y-, and z-coordinates of all fiber points together such that 

coordinates from different dimensions become neighbors (e.g., z1 and x2 are neighbors). 

This representation does not clearly depict the spatial neighborhood information between 

points along the fiber, which is important to properly capture the similarity of fibers with 

local anatomical differences. Beyond typical inter-subject anatomical variability, extreme 

anatomical variability due to space-occupying lesions that displace fiber tracts or 

neuroanatomical changes during neurodevelopment can result in large local anatomical 

differences within a tract. As a result, using the sequential representation can be ineffective 

to enable a tract segmentation method to generalize to data from different populations.

We propose to convert the sequential representation of fiber points resulting from 

tractography to a feature descriptor that is useful for fiber classification while addressing the 

above limitations. More specifically, the goal is to be able to correctly identify the 

corresponding training labeled fiber samples for a testing fiber regardless of the order of 

fiber points and potential local differences at certain fiber points. Conversion of sequential 

data to useful feature descriptors is an important problem in multiple domains, including 

classification of protein sequences (Kulmanov et al., 2017) and prediction of traffic speed 

(Ma et al., 2017). We propose a feature descriptor, FiberMap, which represents a fiber 

streamline as a 2D feature map with 3 channels. FiberMap is computed by flipping and 

repeating the spatial coordinates of points along the fiber (as described below). Unlike naive 

concatenation, FiberMap representation preserves the local structure of the data in the sense 

that neighboring x-, y-, and z-coordinates remain neighbors, while each x,y,z point is 

preserved in the 3 channels. The FiberMap descriptor is analogous to a 2D RGB (red, green, 

blue) image, which has 3 channels for each pixel. An important benefit of this image-like 

format is that it enables effective processing by CNNs, where additional fiber point spatial 

information can be accessed including not only neighboring points and other points along 

the fiber (see a toy example in Figure 2(a)). Flipping and repetition of existing data have 
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been demonstrated to be effective in increasing the performance of CNNs, e.g., by 

increasing the diversity of data samples available for training CNN models in data 

augmentation (Wang and Perez, 2017). In the design of FiberMap, we leverage this strategy 

to create a fiber feature descriptor that enables a deeper network compared to the original 

sequential data format.

A FiberMap is computed by repeating and flipping the coordinates of the points along a 

fiber as follows, as illustrated in Figure 2(a). For a fiber streamline, it is represented as a 

sequence of a fixed number of np points (i.e. P1 to P5, np=5 in this example; red rectangle). 

A flipped copy (green rectangle) is created by reversing the order of the points. This flipped 

copy is repeated twice, once to the right and once below, and the original sequence is 

repeated once below to the right. These steps result in a two-row sequence of points (blue 

rectangle), which is further repeated to generate a 2D map, i.e. the FiberMap descriptor. The 

repetition is performed nr times (nr=5 in this example), which results in a two-dimensional 

feature map (2nr × 2np).

The FiberMap descriptor is a 2D multi-channel fiber descriptor, with 3 channels to encode 

the spatial Right-Anterior-Superior (RAS) coordinates of the fiber points, as illustrated in 

Figure 2(b). The size of the FiberMap descriptor is 2nr ×2np ×3. In our experiments, we 

extract np=15 points per fiber, a reasonable number for fiber representation (Zhang et al., 

2018c; O’Donnell and Westin, 2007), and for each point, its spatial Right-Anterior-Superior 

(RAS) coordinates are used to create the 3 channels. nr is set to 15, which generated the 

highest fiber classification accuracy across multiple testing values. (See Supplementary 

Experiments 3.1 and 3.2 for details of the decision of hyperparameters nr and np.) This 

produces a 30 × 30 × 3 dimensional FiberMap feature descriptor for each fiber, analogous to 

a 2D RGB image.

Due to this fiber representation, FiberMap provides an effective feature descriptor to handle 

the aforementioned limitations, as illustrated in Figure 3. First, FiberMap is relatively 

insensitive to the order of points along a fiber, as illustrated in (a and b). If the original 

sequence of points along the fiber in (a) is reversed to that in (b), the FiberMap descriptors 

of these two fibers are the same except for a difference of one row (the part that is the same 

between the two FiberMap descriptors is indicted using the red arrows). In addition, 

FiberMap is robust to local anatomical differences where certain fiber points can be different 

between fibers from the same anatomical structure, as illustrated in (b and c). The fiber in (c) 

is similar to that in (b), but with a local anatomical difference at point P2. Because the 

neighboring points of P2 on FiberMap (highlighted in yellow in (b) and (c)) are similar, the 

difference at P2 will have a small influence on the computation of fiber similarity. In 

addition to the above graphic illustration, FiberMaps computed from the AF fibers are 

visually similar in (d and e), even though there are apparent local anatomical differences at 

the region near the temporal lobe (the right part of the AF fibers) and the order of points 

along the two AF fibers is different (the top row of the FiberMap is different). The CST 

FiberMap in (f) is very different from the two AF FiberMaps in (d and e), which is 

apparently informative to differentiate these fibers.
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2.3. CNN tract segmentation model training

After extracting the FiberMap descriptor of each fiber in the training tractography data, we 

trained a CNN fiber classification model for tract segmentation. We used a traditional CNN 

architecture (Krizhevsky et al., 2012), which has been applied in previous fiber-based tract 

segmentation studies (Lam et al., 2018; Gupta et al., 2017b, 2018). We tested multiple kernel 

sizes and layers and here we present the most successful architecture (see Supplementary 

Figure 4 for a detailed network architecture diagram). This network contains eight 

convolutional layers (32, 32, 64, 64, 128, 128, 256 and 256 filters, respectively) with kernel 

size 3, where each convolutional layer is followed by a rectified linear units (ReLU) 

activation layer. A max pooling layer of size 2 and a dropout layer of 2.5 are used to prevent 

overfitting. The last convolutional layer is followed by three fully connected layers of size 

128, 256 and 512, where each fully connected layer is followed by a dropout layer of 0.2. 

Then, a softmax layer is used with 55 outputs for the 54 anatomical tracts and the category 

of “other fibers.” Root Mean Square Propagation (RMSprop) is used for optimization with a 

loss function of categorical cross-entropy. The CNN is implemented using TensorFlow 

(version 1.12.0) (Abadi et al., 2016). In our experiments, we split the training dataset (a 

million labeled tractography fibers from 100 healthy adult subjects, classified into 55 tract 

categories), where 80% of the fibers were used for training and 20% for validation.

2.4. Tract segmentation of unlabeled tractography data

In this step, the trained CNN is applied to identify 54 anatomical tracts from whole-brain 

tractography data. First, subject-specific tractography is transferred to the atlas space so the 

coordinates of the fiber streamlines are in the same space as the training tractography data. 

This is done by performing an affine registration between the baseline (b=0) image of the 

subject (moving image) and the atlas population mean T2 image (reference image) using 3D 

Slicer4 (Fedorov et al., 2012). The obtained transform is then applied to the subject-specific 

tractography data. We note that because our method only needs a roughly aligned 

tractography data in the atlas space, a volume-based affine registration is sufficient, rather 

than a more complex deformable transformation or a tractography-based registration. Next, 

after FiberMap feature extraction is performed, all fibers are classified based on the trained 

CNN model into one of the 54 anatomical tract categories or the “other fibers” category 

(Figure 1(d)). Source code and the trained CNN model will be available online, via 

SlicerDMRI project (http://dmri.slicer.org).

2.5. Experimental evaluation

We performed four experiments. First, we tested the effect of the number of repetitions (nr) 

when generating FiberMap to classify fibers belonging to different anatomical tracts. 

Second, we compared FiberMap to several existing fiber feature descriptors for fiber 

classification. Third, we compared the proposed DeepWMA method to two state-of-the-art 

tract segmentation methods. Fourth, we conducted an experiment to investigate the ability of 

DeepWMA to generalize to tractography data generated by several different fiber tracking 

methods.

4https://www.slicer.org
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2.5.1. Comparison of fiber feature descriptors using training tractography 
dataset—We assessed five feature descriptors that used RAS point coordinates and/or fiber 

curvature and torsion at points along a fiber. The 1D-RAS descriptor concatenates RAS 

coordinates into a 1D vector (size: 3n×1). The 2D-RAS descriptor concatenates RAS 

coordinates into a 2D vector (size: n×3) (Xu et al., 2019). The CurTor descriptor 

concatenates curvature and torsion (as implemented in TRAFIC5) (size: n × 2) (Lam et al., 

2018). The 2D-RAS+CurTor descriptor concatenates the CurTor and 2D-RAS descriptors 

(size: n × 5) (Xu et al., 2019). The proposed FiberMap descriptor is described above (size: 

2n ×2n ×3). Experimental comparison was performed on the training tractography dataset, 

where ground truth fiber labels were available. For consistency, n=15 points per fiber (Zhang 

et al., 2018c; O’Donnell and Westin, 2007) were used across all descriptors. For each 

descriptor, a CNN fiber classification model was trained and the parameters were well tuned. 

Specifically, for the 1D-RAS descriptor, we trained a 1D CNN containing one convolutional 

layer (32 filters) with kernel size 3, followed by a ReLU activation layer, a max pooling 

layer of size 2 and a dropout layer of 2.5. The last convolutional layer was followed by three 

fully connected layers of size 128, 256 and 512, and then a softmax layer with 55 outputs for 

the 54 anatomical tracts and the category of other fibers. For the 2D-RAS, CurTor and 2D-
RAS+CurTor descriptors, we used the same CNN architecture, containing two convolutional 

layers of 32 filters with kernel size 3, followed by a ReLU activation layer, a max pooling 

layer of size 2, and a dropout layer of 2.5. The last convolutional layer was followed by three 

fully connected layers of size 128, 256 and 512, and then a softmax layer with 55 outputs for 

the 54 anatomical tracts and the category of “other fibers.” For FiberMap, the CNN 

architecture was introduced in Section 2.3. For all the compared methods, RMSprop is used 

for optimization with a loss function of categorical cross-entropy. The CNN is implemented 

using TensorFlow (version 1.12.0) (Abadi et al., 2016). The overall fiber classification 

accuracy (the percentage of fibers that were correctly classified into their ground truth tract 

category), as well as the mean recall and the mean precision across all tract categories, were 

compared across feature descriptors. The same training and validation splits of the training 

tractography dataset were used across all descriptors.

2.5.2. Comparison of state-of-the-art tract segmentation methods in 
independently acquired test datasets—We evaluated the proposed DeepWMA 

method with comparison to WMA (a fiber-based tract segmentation method) and TractSeg6 

(a voxel-based tract segmentation method). Briefly, the WMA method leverages the ORG 

fiber clustering atlas to perform segmentation using spectral clustering (O’Donnell et al., 

2017, 2012). (We note that the ORG atlas was also used for training DeepWMA.) The 

TractSeg method uses a trained CNN to predict a tract orientation map (TOM) that encodes 

the presence and orientation of a fiber tract (Wasserthal et al., 2018, 2019). Fiber tracking is 

then performed within the TOM. (Additional description of each method is provided in 

Supplementary Text I.C.) Parameters of each method were set to default values as suggested 

by the software. To control for differences in the list of tracts defined by each method, we 

focused the comparison on the 34 tracts commonly defined across all methods.

5https://github.com/PrinceNgattaiLam/Trafic
6https://github.com/MIC-DKFZ/TractSeg
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The goal of this experiment is to compare the segmented tracts from the three different 

methods on the test datasets without ground truth fiber labels, while considering that there 

are small differences of the anatomical definitions across the different methods. Theresore, 

we proposed the following quantitative and visual assessments.

Tract identification rate:  We computed the mean tract identification rate (percentage of 

successfully identified tracts) across all subjects in each dataset. A tract was considered to be 

successfully identified if there were at least 20 fibers in an individual subject (as in (Zhang 

et al., 2018c)). The tract identification rate has several advantages as an evaluation metric: it 

has been successfully used for tract segmentation evaluation (Zhang et al., 2018c), it 

captures the most basic information about a method’s success to identify a tract, and it is 

straightforward to apply across segmentation methods regardless of any small differences in 

the shape or location of tracts as defined by each method.

Population tract heatmap:  The population tract heatmap of an individual tract (e.g. AF) 

quantifies the percentage of subjects that have fibers present in each voxel. We computed 

these heatmaps for each method and test dataset. The affine transform (as introduced in 

Section 2.4) was used to align each subject’s tract into the same space (the ORG atlas). We 

chose the affine transform because it was applicable to all subjects including neonates and 

brain tumor patients. The heatmaps were used for visualization of method performance and 

for assessing spatial overlap across methods.

Population tract spatial overlap:  To assess if fiber tracts obtained from different methods 

were spatially comparable, we compared the population tract heatmaps using the weighted 

Dice (wDice) coefficient. wDice is a metric designed specifically for measuring tract spatial 

overlap (Cousineau et al., 2017; Zhang et al., 2019b). It extends the standard Dice 

coefficient to non-binary maps and gives higher weighting to voxels with higher values. We 

note that the creation of the ORG atlas and the TractSeg training data both used White 

Matter Query Language (WMQL) (Wassermann et al., 2016) to perform initial fiber tract 

selection, followed by further tract refinement. Therefore, the segmented tracts using 

TractSeg, WMA and DeepWMA reflect the tract definitions from the same source. In the 

original study proposing TractSeg, WMA and TractSeg are compared in terms of tract 

spatial overlap (Wasserthal et al., 2018).

Subject-specific tract visualization:  To provide example subject-specific results, we 

rendered selected tract segmentation results from each method.

Computational time:  To assess the typical run time of each method, we performed an 

experiment using a Linux workstation equipped with both CPU and GPU. For simplicity, 

dMRI data from one HCP subject was used in this experiment. We measured run time using 

only a CPU (4 cores) and using the 4-core CPU plus one GPU. (For WMA, we only 

measured using the CPU because it does not use the GPU.)

2.5.3. Generalization to tractography data from different fiber tracking 
methods—In addition to the UKF tractography method used in the previous experiments, 

we tested the ability of DeepWMA to segment two additional types of tractography data: a 
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traditional DTI streamline method (Basser et al., 2000) (implemented in SlicerDMRI7 

(Norton et al., 2017; Zhang et al., 2020a)) and an advanced CSD-based tractography method 

(Tournier et al., 2010) (implemented in MRtrix8). (Details of whole-brain tractography are 

included in Supplementary Text I.B.) These three tractography methods are based on 

different fiber tracking models and are known to generate tractography data that varies quite 

significantly. For example, the DTI tractography is less sensitive in tracking through 

crossing fiber regions than the UKF and CSD methods, and the CSD method performs 

probabilistic tractography while the UKF and DTI methods perform deterministic 

tractography. DeepWMA was then applied to segment the whole-brain DTI and CSD 

tractography. Performance was assessed using the tract identification rate and population 

tract heatmaps. For comparison, we also performed tract segmentation on the DTI-based and 

CSD-based tractography using the WMA method and reported the tract identification rate.

3. Experimental results

3.1. Comparison of fiber feature descriptors

As shown in Table 2, the 1D-RAS and CurTor descriptors had low fiber classification 

accuracies (around 50%), while the 2D-RAS and 2D-RAS+CurTor descriptors obtained 

higher accuracies (around 87%). The FiberMap descriptor obtained the highest accuracy 

(about 91%), as well as the highest mean recall and precision values.

3.2. Comparison of state-of-the-art tract segmentation methods

Tract identification rate (Table 3): For the ABIDE, HCP, CNP and PPMI datasets, all 

three methods performed well, where over 98.8% of the tracts could be successfully 

identified. For the dHCP and BTP datasets, the WMA and DeepWMA methods could 

identify over 98% of the tracts, while the TractSeg method identified only 68.18% of the 

tracts in dHCP and 94.42% of the tracts in BTP. (A Supplementary Figure 5 is provided to 

show the tract identification rate of each of the 34 tracts for each tract segmentation 

method.)

Population tract heatmap visualization (Figure 4): In general, the visual assessment 

demonstrated that the identified tracts were visually comparable across the three tract 

segmentation methods. However, we can observe that in most of the tracts, the WMA and 

DeepWMA methods generated more consistent tract segmentations across the population 

than the TractSeg method, in terms of a visually higher value in the heatmaps. For example, 

the heatmaps of corpus callosum 4 (CC4) from the WMA and DeepWMA methods (Figure 

4) have more red voxels with a value over 90%. On the other hand, the TractSeg method had 

more consistent segmentation performance on several tracts. For example, the heatmap from 

the TractSeg method (Fig 4) has more yellow voxels with a value of 20% in the anterior part 

of the AF tract in dHCP.

7http://dmri.slicer.org
8http://www.mrtrix.org

Zhang et al. Page 11

Med Image Anal. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dmri.slicer.org
http://www.mrtrix.org


Subject-specific tract visualization (Figure 5): Visual assessment of subject-specific 

tracts demonstrated good performance of all methods in the example subjects from ABIDE, 

HCP, CNP and PPMI, as well as the brain tumor patient with smaller tumor and edema. 

However, unlike the fiber-based WMA and DeepWMA approaches, the voxel-based 

TractSeg method did not detect the AF, CST and CC4 tracts in the patient with larger tumor 

and edema and did not detect the CST tract in the neonate in the dHCP dataset.

Additional tract visualizations: To show the performance of the proposed method on 

segmenting all tracts defined in the training data, a Supplementary Figure 6 is provided to 

show all 54 tracts obtained for an example HCP subject using DeepWMA. In addition, to 

demonstrate the performance of DeepWMA in dHCP and BTP (where DeepWMA and 

TractSeg had the most different results in terms of tract identification rate), we provide a 

visualization of segmented tracts from all subjects per dataset in Supplementary Figures 7 

and 8 (the left AF tract is selected for illustration). Furthermore, to assess the anatomical 

validity of the segmented fiber tracts, we also provide a visualization of the brain regions 

through which the fiber tracts pass in Supplementary Figure 9 (the CST tract is selected for 

illustration).

Spatial tract overlap (Table 4): The wDice overlap score of DeepWMA and WMA was 

high (over 0.91) across all test datasets under study. The wDice overlap of DeepWMA and 

TractSeg was also relatively high, particularly on the HCP and CNP datasets (wDice=0.83), 

even though these two methods used different training data. These results suggest that our 

method had good spatial coverage relative to the compared methods.

Computational time (Table 5): For segmentation with WMA and DeepWMA, whole-

brain UKF tractography containing about a million fibers was computed in data from one 

example HCP subject, which took about 4 hours using 4 CPU cores. To segment this whole-

brain tractography, the CPU-based WMA method took about 1.5 hours using a CPU with 4 

cores. The DeepWMA method required a shorter time of 41 minutes on the same 4-core 

CPU, or 8 minutes using the 4-core CPU plus 1 GPU (where the most time-consuming part 

includes input/output of the tractography data and the computation of FiberMap using the 

CPU). The TractSeg method required 37 minutes (CPU only) or 32 minutes (4-core CPU 

plus 1 GPU). This included approximately 10 minutes for prediction of TOMs and 25 

minutes for fiber tracking (a total of 2,000 fibers per tract according to default settings for a 

total of 144,000 fibers) within the predicted TOMs.

3.3. Generalization to tractography data from different fiber tracking methods

Tract identification rate (Table 6): Overall, the WMA and DeepWMA methods 

obtained highly similar tract identification rates for each fiber tracking method and each 

dataset. For the traditional DTI fiber tracking method that was relatively insensitive in 

tracking through crossing fiber regions, over 74% of the tracts could be successfully 

detected across all test datasets under study. In particular, when using the DTI fiber tracking 

method in the HCP dataset, over 93% of the tracts were identified. For the CSD method that 

was a more advanced and sensitive fiber tracking method, over 98% of the fiber tracts were 

identified in all test datasets except the dHCP dataset, where about 89% of the tracts were 
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identified. For the UKF method, over 99% of the tracts could be successfully identified in all 

test datasets under study, representing the highest tract identification rate across the three 

fiber tracking methods. This was most likely due to the fact that the UKF method was used 

for generating the training tractography data. (Supplementary Figure 10 shows the tract 

identification rate of each of the 54 tracts for each fiber tracking method.)

Population-wise heatmap (Figure 6) and subject-specific (Figure 7) tract 
visualizations: In general, across the fiber tracking methods, the example segmented fiber 

tracts were visually reasonable and comparable, even though the tractography data varied 

quite significantly across the three fiber tracking models. For example, the DTI method was 

insensitive in tracking through crossing fiber regions and thus it could hardly track the fibers 

connecting to the hand and face motor cortical regions in the CST and CC4 tracts, while the 

CSD and UKF methods managed to track these fibers.

4. Discussion

In this work, we proposed the first fiber-based deep learning method, DeepWMA, that 

allowed consistent tract segmentation across multiple dMRI acquisitions and across different 

populations including neonates and patients with space-occupying brain tumors. A summary 

of the experimental results includes the following points. First, we demonstrated highly 

consistent tract segmentation performance of DeepWMA on a large test dataset of 597 

dMRI scans from six independently acquired populations. On average, over 99% of the fiber 

tracts were successfully identified across all subjects under study. Second, we showed that 

DeepWMA provided a good ability to generalize to tractography data from multiple 

different fiber tracking methods. For the high-quality HCP dataset, over 93% of fiber tracts 

were successfully identified across the three tested fiber tracking methods (UKF, CSD and 

DTI). Third, DeepWMA provided a fast and efficient tool for tract segmentation in large 

dMRI tractography datasets. While achieving similar results to WMA in terms of tract 

identification rate, tract visualization and spatial tract overlap, DeepWMA performed much 

faster by leveraging GPU computation (1.5 hours versus 8 minutes). Below, we discuss 

several detailed observations about the experimental results.

We demonstrated that the proposed FiberMap feature descriptor improved tract 

segmentation performance compared to several other descriptors. The different performance 

of these descriptors may relate to the following observations. In the 1D-RAS descriptor, the 

R, A and S coordinates from all points of a fiber were concatenated into a 1D vector, which 

could not clearly depict the spatial neighborhood information between points along the fiber 

and thus generated a feature descriptor that was not suitable for CNNs. The 2D-RAS 

descriptor preserved the neighborhood spatial relationship of the R, A and S coordinates and 

achieved the second best performance across all compared descriptors under study. The 

proposed FiberMap feature outperformed the 2D-RAS descriptor by including multiple 

flipped and repeated copies of the 2D-RAS descriptor and arranging these copies in an 

informative way. Flipping and repetition of existing data have been demonstrated to be 

effective in increasing the performance of CNNs, e.g., by increasing the diversity of data 

samples available for training CNN models in data augmentation (Wang and Perez, 2017). 

The CurTor descriptor was not successful, possibly because fibers from different tracts (e.g. 
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different corpus callosum tracts) could have highly similar curvature and torsion values, 

causing the CurTor descriptor to be less discriminative, in line with the finding in (Xu et al., 

2019). In addition, the different performance of these descriptors may relate to the different 

CNN architectures applied for each descriptor. The 1D-RAS descriptor could be used in 

combination with 1D CNN but not a 2D CNN as the other compared descriptors. The 

proposed FiberMap enables the application of 2D CNN with a deep network architecture 

with more convolution layers.

We performed an inspection of the fibers misclassified by DeepWMA in the training 

tractography data. By visual checking, we found that most fibers were at the boundary 

between the annotated anatomical fibers and the false positive fibers. Such fibers are 

difficult, even impossible, to be definitively delineated in tractography because of a lack of 

ground truth. Therefore, we believe that the obtained 90.99% fiber classification accuracy on 

the training tractography data represents a good tractography segmentation performance. An 

additional preprocessing step could be applied during fiber tracking to improve tractography, 

e.g., filtering out false positive streamlines as applied in (Xu et al., 2019). However, such 

preprocessing would need additional anatomical information, e.g., from a T1-weighted 

image, as well as inter-modality image registration. In addition, we found that there was no 

obvious difference if short or long fiber streamlines tended to be misclassified (see 

Supplementary Experiments 3.3 for the length distribution of the misclassified fibers). One 

potential explanation is that the same number of points were sampled from each individual 

fiber streamline.

In related work, several methods have been proposed for deep learning tract segmentation. In 

voxel-based methods, tractography and tract segmentation are performed based on 

prediction of tract presence volumes, for example using spherical harmonics (Reisert et al., 

2018) or fiber orientation distribution function (fODF) peaks (Wasserthal et al., 2018, 2019). 

In fiber-based methods, tractography fibers are directly classified for tract segmentation, for 

example based on a spherical brain reparameterizations (Gupta et al., 2017b, 2018), fiber 

spatial coordinates, and/or fiber shape features (Xu et al., 2019; Gupta et al., 2017a; Lam et 

al., 2018). Thus far, one deep learning tract segmentation method (TractSeg) has been 

demonstrated to be able to generalize to datasets acquired with different scanners and with 

multiple pathologies (Wasserthal et al., 2018, 2019). Our results in the ABIDE, HCP, CNP 

and PPMI datasets support this finding regarding the generalization of TractSeg. However, 

improved tract identification performance was obtained on the challenging dHCP and BTP 

datasets using DeepWMA. Performance of tract identification using DeepWMA was 

dependent on the type of input tractography. For example, in the dHCP dataset, where 

TractSeg could identify 68% of fiber tracts, the DeepWMA method was able to identify 

from 74% to 99.6% of tracts (using DTI and UKF tractography, respectively). The two-

tensor UKF fiber tracking method is robust for tract segmentation across the lifespan (Zhang 

et al., 2018c) and is highly sensitive, especially in the presence of crossing fibers and 

peritumoral edema (Chen et al., 2015; Liao et al., 2017; Gong et al., 2018).

We demonstrated that DeepWMA provided a good generalization to multiple different fiber 

tracking methods. This is important because there are many available fiber tracking methods, 

and high variability across fiber tracking results (Maier-Hein et al., 2017; Catani and De 
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Schotten, 2008) poses a challenge for tract segmentation. (For example, in both expert 

(Catani and De Schotten, 2008) and automated (Wassermann et al., 2016) region-of-interest 

(ROI) tract segmentation methods, additional ROIs are required for multi-fiber tractography 

due to increased sensitivity (O’Donnell et al., 2017).) Due to its robust performance, 

DeepWMA may be useful in the future for comparison of results across fiber tracking 

methods.

We showed that our DeepWMA method enables consistent white matter segmentation on 

tractography data from multiple populations with large anatomical variations. In particular, 

for the neonates and the patients with space-occupying brain tumors, their white matter 

anatomy varies significantly from the healthy adult population used for the training data 

curation. As a result, tractography fibers computed from the neonates and brain tumor 

patients have large local differences from those in the training tractography data. DeepWMA 

could handle such large individual anatomical differences, potentially due to the robustness 

of the proposed FiberMap to local fiber differences.

Potential future directions and limitations of the current work are as follows. First, a more 

comprehensive training dataset could be created to benefit research on additional tracts of 

interest. This could be done by annotating the non-outlier fibers currently in the category of 

“other fibers” into additional anatomically meaningful tracts (e.g. fornix, anterior 

commissure, and superficial fiber tracts). Second, given the fact that DeepWMA relies only 

on fiber spatial information (encoded in the FiberMap descriptor), it is straightforward to 

apply DeepWMA to train on labeled tractography data from sources other than the currently 

used ORG atlas. These sources could include tractography data from other curated databases 

or even other species. In particular, DeepWMA can enable inclusion of tractography data 

from multiple sources together, where different anatomical tract definitions and tractography 

algorithms can be used in each data source. In this way, a tract segmentation model would be 

learned to aggregate tract variability across the different sources. This could be important to 

handle potential issues such as inter-rater tract segmentation variability (Rheault et al., 2020) 

and inter-algorithm tractography variability (Ciccarelli et al., 2008; Zhan et al., 2015). Third, 

our current results demonstrated a highly consistent segmentation result across the different 

anatomical tracts under study. For example, we found that there was no obvious difference if 

short or long fiber streamlines tended to be misclassified (Supplementary Figure 3), and the 

classification accuracy of fiber tracts with complex shape (AF) and simpler shape (CST) was 

similar (AF with precision = 0.9 and recall = 0.91, versus CST with precision = 0.9 and 

recall = 0.89, computed in our training tractography data). However, an interesting further 

investigation could include a more comprehensive comparison across the different 

anatomical tracts. Fourth, in the present study, we aimed to demonstrate the application of 

DeepWMA for whole-brain tractography segmentation in a large dMRI test dataset. 

Therefore, we did not perform any statistical analyses for within- or between-cohort studies. 

Further work could include such studies to investigate population-specific characteristics of 

the tracts obtained from DeepWMA. Fifth, the creation of FiberMap includes flipping and 

repetition of existing data so that additional fiber point spatial information can be accessed 

and a deeper network architecture can be applied. However, we acknowledge that a more 

compact representation could be favorable, generating a comparable result while reducing 

computational burden, which can direct a potential future investigation. Sixth, in the present 
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study, we explored a standard CNN architecture, which provided highly promising 

performance. Future work could include an investigation of more advanced network 

architectures to improve fiber classification accuracy.

5. Conclusion

We have presented a deep learning tract segmentation method for anatomical fiber tract 

identification from whole-brain tractography. Experimental results show successful 

application of the proposed method for fast and consistent tract segmentation across 

different dMRI acquisitions, across different populations (across genders, the lifespan, and 

different health conditions), and across different fiber tracking methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A novel deep learning tract segmentation method with a new 2D multi-

channel fiber feature descriptor

• Consistent tractography segmentation of subjects across the full lifespan

• Good generalization to tractography data from multiple different fiber 

tracking methods
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Figure 1: 
Method overview. A training tractography dataset (a) is created, where each fiber is 

associated with an anatomical tract label (e.g. AF or CST) or a category of “other fibers,” 

including false positive fibers (shown in red). A 2D multi-channel feature descriptor 

(FiberMap) (b) is extracted for each fiber. A CNN tract classification model (c) (see Section 

2.3 for the detailed CNN architecture) is trained based on the FiberMap descriptors. Subject-

specific tract segmentation (d) is performed by FiberMap feature extraction for each fiber, 

followed by tract label prediction using the trained CNN model.
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Figure 2: 
Illustration of the proposed FiberMap feature descriptor. (a) gives a step-by-step illustration 

of FiberMap computation by repeating and flipping the points along a fiber. (b) shows a 

graphic representation of FiberMap with 3 channels to encode the spatial Right-Anterior-

Superior (RAS) coordinates of the fiber points, analogous to a 2D RGB image. An important 

benefit of FiberMap is that it enables effective processing by CNNs, where additional fiber 

point spatial information can be accessed including not only neighboring points and other 

points along the fiber (as illustrated in the yellow highlighted region).
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Figure 3: 
Illustration of insensitivity of FiberMap to the order of points along a fiber and robustness of 

FiberMap to local anatomical differences. (a) and (b) show an example of the insensitivity of 

FiberMap to the order of points along a fiber. (b) and (c) show an example of the robustness 

of FiberMap to local anatomical differences. (d), (e) and (f) give a visualization of 

FiberMaps computed from AF (d and e) and CST (f) fibers. For each FiberMap, the 3 

channels are displayed separately, where the colorbar shows the R, A, S coordinate values 

(the same range between −50 mm and 50 mm is used for the three example fibers).
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Figure 4: 
Visual comparison of the voxel-based population tract heatmaps of three example tracts (AF, 

CST and CC4, respectively) obtained using TractSeg, WMA and DeepWMA. The value of a 

voxel in the heatmaps represents the percentage of subjects that have fibers passing through 

the voxel (see colorbar). The background image is the ORG atlas population mean T2 

image.
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Figure 5: 
Visual comparison of three example subject-specific tracts (AF, CST and CC4, respectively) 

obtained using TractSeg, WMA and DeepWMA. Subjects in dHCP to PPMI datasets (top 5 

rows) were selected as representative because their mean tract identification rate (across all 

tracts and methods) was closest to the population mean. In the BTP dataset (bottom 2 rows), 

two patients were selected as representative, where one patient had smaller tumor and edema 

and the other had relatively larger tumor and edema.
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Figure 6: 
Voxel-based population tract heatmaps of three example tracts (AF, CST and CC4, 

respectively) obtained by applying DeepWMA on tractography data computed using the 

DTI, CSD and UKF fiber tracking methods. The value of each voxel in the heatmaps 

represents the percentage of subjects that have fibers passing through the voxel (see 

colorbar). The background image is the ORG atlas population mean T2 image.
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Figure 7: 
Subject-specific tract visualization of three example tracts (AF, CST and CC4, respectively) 

obtained by applying DeepWMA on tractography computed using the DTI, CSD and UKF 

methods. The same subjects as shown in Figure 5 are selected for visualization.
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Table 1:

Demographics and dMRI acquisition of the six independent datasets studied.

Dataset N Age Gender H/D dMRI data

dHCP 40 1 to 27 d
(6.30±7.47)

15 F
25 M 40 H b=400/1000/2600 s/mm2; 300 directions;

TE/TR=90/3800 ms; resolution=1.5 mm3

ABIDE 70 5 to 17 y
(12.0±3.1)

6 F
64 M

49 AUT
21 H

b=1000s/mm2; 64 directions;
TE/TR=78/5200 ms; resolution=3 mm3

HCP 100 22 to 35 y
(29.0±3.5)

54 F
46 M 100 H b=3000s/mm2; 108 directions;

TE/TR=89/5520 ms; resolution=1.25 mm3

CNP 204 21 to 50 y
(33.3±9.3) 112 F

41 DHD
49 BD
50 SZ
125 H

b=1000s/mm2; 64 directions;
TE/TR=93/9000 ms; resolution=2 mm3

PPMI 144 51 to 82 y
(63.7±7.3)

51 F
93 M

102 PD
42 H

b=1000 s/mm2; 64 directions;
TE/TR=88/7600 ms; resolution=2 mm3

BTP 39 23 to 82 y
(48.9±15.3)

16 F
23 M 39 BTP b=2000 s/mm2; 31 directions;

TE/TR=98/12700ms; resolution=2.3 mm3

Total number of subjects: N =597

Abbreviations: Dataset: dHCP - Developing Human Connectome Project (Makropoulos et al., 2018); ABIDE - Autism Brain Imaging Data 
Exchange (Di Martino et al., 2017); HCP - Human Connectome Project (Essen et al., 2013) (different subjects from the ones used in the training 
data); CNP - Consortium for Neuropsychiatric Phenomics (Poldrack et al., 2016); PPMI - Parkinson’s Progression Markers Initiative (Marek et al., 
2011); BTP - Brain Tumor Patient. Age: d - day; y - year; Gender: F - female; M - male. Healthy/Disease (H/D): AUT - autism; ADHD - attention-
deficit/hyperactivity disorder; BP - bipolar disorder; H - healthy; SZ - schizophrenia; PD - Parkinson’s disease; BTP - brain tumor patient.
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Table 2:

Comparison across different fiber feature descriptors on the training tractography data where ground truth 

fiber labels are available. For each feature descriptor, the overall fiber classification accuracy, i.e., the 

percentage of fibers that were correctly classified into their ground truth tract category in the validation split of 

the tractography data, is reported. In addition, the mean and the standard deviation of recall and those of 

precision across all tract categories are reported.

Feature descriptor Accuracy Recall Precision

1D-RAS 47.26% 22.54 ± 15.46% 1.70 ± 0.92%

2D-RAS 88.03% 75.57 ± 10.80% 87.53 ± 4.99%

CurTor 48.98% 34.16 ± 17.67% 1.70 ± 0.63%

2D-RAS+CurTor 87.08% 75.22 ± 10.65% 86.38 ± 7.38%

FiberMap 90.99% 85.67 ± 5.72% 88.47 ± 5.19%
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Table 3:

Mean tract identification rate across the 34 tracts that were commonly defined across the three compared tract 

segmentation methods

Dataset TractSeg WMA DeepWMA

dHCP 68.16% ± 18.68% 99.12% ± 2.03% 99.41% ± 1.85%

ABIDE 99.75% ± 1.02% 99.92% ± 0.34% 99.96% ± 0.24%

HCP 100.0% ± 0.00% 100.0% ± 0.00% 100.0% ± 0.00%

CNP 98.87% ± 3.16% 99.35% ± 1.77% 99.66% ± 0.61%

PPMI 99.29% ± 0.85% 99.76% ± 0.59% 99.74% ± 0.70%

BTP 94.42% ± 6.00% 98.27% ± 2.34% 99.17% ± 1.86%
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Table 4:

Spatial overlap agreements (wDice) between each pair of the compared methods (TractSeg, WMA and 

DeepWMA). For each pair of the methods, we computed and reported the mean wDice across the 34 tracts 

that were commonly defined across all three methods.

Dataset DeepWMA vs TractSeg DeepWMA vs WMA TractSeg vs WMA

dHCP 0.67 ± 0.11 0.91 ± 0.08 0.70 ± 0.11

ABIDE 0.80 ± 0.08 0.94 ± 0.02 0.79 ± 0.08

HCP 0.83 ± 0.07 0.96 ± 0.02 0.83 ± 0.07

CNP 0.83 ± 0.09 0.97 ± 0.02 0.82 ± 0.09

PPMI 0.82 ± 0.09 0.97 ± 0.01 0.82 ± 0.09

BTP 0.76 ± 0.10 0.93 ± 0.03 0.78 ± 0.09
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Table 5:

Computational time of the TractSeg, WMA and DeepWMA methods on dMRI data from one HCP subject. 

We measured run time using only a CPU (4 cores) and using the 4-core CPU plus one GPU. (For WMA, we 

only measured using the CPU because it does not use the GPU.)

Whole brain tractography TOM prediction (TractSeg) or fiber classification 
(WMA/DeepWMA)

Fiber tracking for specific tracts

TractSeg Not applicable 10 min (CPU), or
10 min (CPU+GPU)

27 min (CPU), or
22 min (CPU+GPU)

WMA 4 hours (CPU) 1.5 hours (CPU) Not applicable

DeepWMA 4 hours (CPU) 41 min (CPU), or
8 min (CPU+GPU)

Not applicable
Not applicable
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Table 6:

Mean tract identification rate (across the 54 tracts identified using the baseline WMA method and the 

proposed DeepWMA) for the three fiber tracking methods.

Dataset
DTI CSD UKF

WMA DeepWMA WMA DeepWMA WMA DeepWMA

dHCP 77.98% ± 30.63% 74.11% ± 33.39% 88.63% ± 28.37% 88.97% ± 3.86% 99.41% ± 1.68% 99.60% ± 1.49%

ABIDE 78.16% ± 30.78% 77.12% ± 35.50% 99.53% ± 0.35% 99.92% ± 0.42% 99.87% ± 0.71% 99.97% ± 0.19%

HCP 95.55% ± 17.40% 93.54% ± 17.79% 99.74% ± 0.18% 99.32% ± 0.23% 99.93% ± 0.38% 100.0% ± 0.00%

CNP 82.59% ± 26.96% 81.98% ± 27.70% 99.30% ± 2.19% 98.42% ± 5.93% 99.61% ± 1.24% 99.66% ± 0.67%

PPMI 84.80% ± 24.07% 84.66% ± 24.43% 99.98% ± 0.10% 99.75% ± 0.94% 99.83% ± 0.48% 99.85% ± 0.56%

BTP 75.36% ± 25.07% 76.37% ± 28.10% 99.34% ± 1.62% 97.62% ± 4.96% 98.28% ± 2.69% 99.17% ± 2.72%
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