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Abstract

Indirect image registration is a promising technique to improve image recon-
struction quality by providing a shape prior for the reconstruction task. In
this paper, we propose a novel hybrid method that seeks to reconstruct high
quality images from few measurements whilst requiring low computational
cost. With this purpose, our framework intertwines indirect registration and
reconstruction tasks is a single functional. It is based on two major novel-
ties. Firstly, we introduce a model based on deep nets to solve the indirect
registration problem, in which the inversion and registration mappings are
recurrently connected through a fixed-point interaction based sparse optimi-
sation. Secondly, we introduce specific inversion blocks, that use the explicit
physical forward operator, to map the acquired measurements to the im-
age reconstruction. We also introduce registration blocks based deep nets
to predict the registration parameters and warp transformation accurately
and efficiently. We demonstrate, through extensive numerical and visual ex-
periments, that our framework outperforms significantly classic reconstruc-
tion schemes and other bi-task method; this in terms of both image quality
and computational time. Finally, we show generalisation capabilities of our
approach by demonstrating their performance on fast Magnetic Resonance
Imaging (MRI), sparse view computed tomography (CT) and low dose CT
with measurements much below the Nyquist limit.
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1. Introduction

Image reconstruction and registration are two fundamental tasks in med-
ical imaging. They are necessary to gain better insights in different appli-
cations - including diagnostic, surgery planning and radiotherapy (e.g. [I]
2, 3, [4]) just to mention few. For several medical imaging modalities, for
example Magnetic Resonance Imaging (MRI), it is highly desirable to reduce
the number of the acquired measurements to avoid image degradation [5] [6]
(for example - geometric distortions and blurring effects). This with the pur-
pose to deal with the central problem in MRI - the long acquisition time.
However, to perform these tasks from undersampled and highly corrupted
measurements become even a more challenging problem yet of great interest
from the theoretical and practical points of view.

There have been different attempts to perform image reconstruction and
registration in the community, which these two tasks are performed either
separately and most recently jointly. For image reconstruction the majority
of algorithmic approaches follow the notion of Compressed Sensing (CS)-
e.g. [7, 18, @, 10, 1T]. Most recently, there has been a growing interest in
exploring similarity of image structures of to-be-registrated images as shape
prior e.g. [12], and deep learning based reconstruction approaches e.g. [13
14, 15]. For a detailed survey in image reconstruction, we refer the reader
to [16].

Whilst for image registration, that seeks to find a mapping that aligns
two or more images, the body of literature has reported promising results.
These can be roughly divided in rigid and deformable algorithmic approaches.
Whilst rigid registration, e.g. [17, [I8, 19], has shown promising results, it is
not enough robust to describe complex physiological motions. Deformable
registration offers greater opportunities to describe complex motion - for
example [20] 21), 22]. We refer the reader to [23] for an extensive revision on
deformable registration. More recently, deformable image registration has
also benefited of the potentials of deep learning- e.g. [24] 25, [26], 27]. However,
these approaches assume that the given images are already reconstructed.

A commonality of the aforementioned approaches is that they perform
the reconstruction and registration tasks separately. In very recent devel-
opments in the area, e.g. [28, 29], have shown that performing those tasks
jointly can reduce error propagation resulting in improving accuracy whilst



achieving better generalisation capabilities [30]. However, a major bottle-
neck of such joint models is the computational complexity as they often seek
to solve highly non-convex optimisation problems. Motivated by the current
drawbacks in the literature, we address the problem of — how to get higher
quality reconstructed and registered images from noisy and undersampled
MRI measurements whilst demanding low computational cost.

In this work, we address the previous question by proposing a new frame-
work for simultaneous reconstruction and registration from corrupted and
undersampled MRI data. Our approach is framed as a deep joint model,
in which these two task are intertwined in a single optimisation model. It
benefits from the theoretical guarantees of large deformation diffeomorphic
metric mapping (LDDMM) and the powerful performance of deep learning.
Our modelling hypothesis is that by providing a shape prior (i.e. registration
task) to the reconstruction task, one can boost the overall performance of the
final reconstruction. Most precisely, our framework seeks to learn a network
parametrised mapping (u, g) — f, where u is the image to be reconstructed
and g, f are the template and target images to-be-register.

We remark to the reader that unlike the works of that [24] 25| 26, 27], our
approach follows a different philosophy which is based on three major differ-
ences. Firstly, we address the problem of indirect registration, in which the
target image is unknown but encoded in the indirect corrupted measurements
(i.e. raw data). Secondly, our ultimate goal is to improve the final image
reconstruction through shape prior (i.e. registration task) instead of evaluate
the tasks separately. Thirdly, unlike the work of that [31I] we gain further
computational efficiency and reconstruction quality through our registration
blocks based deep nets.

We highlight that computing image reconstruction and indirect registra-
tion simultaneously is even more challenging than performing the reconstruc-
tion and registration separately. This is because u is not explicitly given and
is encoded in a corrupted measurement, and the general physical forward op-
erators (e.g. Fourier and Radon transforms) are not trivial to be learnt [32].
Therefore, to build an end-to-end parameterised mapping for inverse prob-
lems is not straightforward via standard deep nets. Motivated by the existing
shortcomings in the body of literature, in this work we propose a novel frame-
work, that to the best of our knowledge, it is the first hybrid method (i.e.
a combination of a model-based and deep-learning based approaches) that
intertwines reconstruction and indirect registration. Although we emphasise
the application of fast MRI, we also show generalisation capabilities using



Computerised Tomography (CT) data. Whilst this is an relevant part of our
approach, our contributions are:

e We propose a novel mathematically well-motivated and computation-
ally tractable framework for simultaneous reconstruction and indirect
registration, in which we highlight:

— A framework based on deep nets for solving indirect registration
efficiently, in which the inversion and registration mappings are
recurrently connected through a fixed-point iteration based sparse
optimisation.

— We introduce two types of blocks for efficient numerical solution
of our bi-task framework. The first ones are specific inversion
blocks that use the explicit physical forward operator, to map the
acquired measurements to the image reconstruction. Whilst the
second ones are registration blocks based deep nets to predict the
registration parameters and warping transformation.

e We exhaustively evaluate our framework with a range of numerical
results and for several applications including fast MRI, sparse view
computerised tomography (CT) and low dose CT.

e We show that the carefully selected components in our framework mit-
igate major drawbacks of the traditional reconstruction algorithms re-
sulting in significant increase in image quality whilst decreasing sub-
stantially the computational cost.

2. When Reconstruction Meets LDDMM: A Joint Model

In this section, we first introduce the tasks of image reconstruction and
registration separately, and then, we describe how these two tasks can be cast
in a unified framework.

Mathematically, the task of reconstructing a medical image modality, u,
from a set of measurements y reads:

y=Au+n, (1)

where A is the forward operator associated with the acquired measurement
y; and 7 is the inherent noise. To deal with the ill-posedness of , one can
be casted it as a variational approach as: argmin,D(Au,y) + aJ (u), where



D is the data fidelity term, d 7 is a regularisation term to restrict the space
of solutions, and « is a positve parameter balancing the influence of both
terms. Whilst the task of registering a template image, g, to a target one, f,
can be cast as an optimisation problem, which functional can be expressed
as:

B(@) = R(6) + ~If o0~ — gl )

where ¢ denotes a deformation map and R(¢) regularises the deformation
map. In general, the registration problem is ill-posed, and a regulariser,
R(¢), is necessary to obtain a reliable solution. There are several meth-
ods proposed in the literature to regularise the deformation mapping [23].
One well-established algorithmic approach, due to its desirable mathemat-
ical properties, is Large Deformation Diffeomorphic Metric Mapping (LD-
DMM) [21].

In the LDDMM setting, the deformation map ¢ is assumed to be invertible
(to make the deformation physically meaningful), and both ¢ and ¢! should
be sufficiently smooth, i.e. ¢ € Diff? (R"), which is defined as:

Diff” (R") := {¢ € C” (R",R") : ¢ is bijective with ¢~ € C? (R",R")} (3)

The Diff? (R™) forms a group with the identity mapping Z as the neutral
element. When small perturbations ev of the identity mapping are applied
to ¢;_1, at a particular time point ¢ — 1, the deformation at the next time
point i becomes ¢; = (Z+ ev) o ¢;_1, which can be described by the following
difference equation:

@ =vod1, (4)
and leads to a continuous-time flow equation, which reads:
Oz, t) = v(p(x,t),t). (5)

LDDMM is a PDE constrained optimisation problem, which can be for-
mulated as:

{ miny fy [|ollf + 311/ 0 67 (z,1) = g()]3 (©)
st. ¢z, t) = v(p(x,t),t), ¢(x,0) = I, for t € [0,1]

where |[v||? =< Lv,v >, L is a self-adjoint differential operator, whose nu-
merical solution can be given via Euler-Lagrange equations [20]. Let the
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momentum m be the dual of velocity, i.e. m := Lv, and K the inverse of L
then @ can be expressed as a function of the momentum m as:

min 3m(e,0) K(a, ) + H17 067 (2,1) = g(2)]
(bt(x:t) = U(¢<:L‘,t),t) (7)

s.t. o(z,0) =17
m(z,t) — Lv(x,t) = 0.

From an optimisation point of view, instead of solving @ over all possible
velocities v, one can apply the shooting formulation [33] and account only for
those with least norm for a given ¢. Now when computing Euler-Lagrange
equation to the regularisation term (m(z,t), Km(x,t)), one can get the Euler-
Poincaré equation [34]:

my(z,t) + ad;m(z,t) =0, (8)
where the adjoint action ad,u = dv-u —du-v and the conjoint actions ad}, is

defined via (adm,u) = (m,ad,u). Therefore, (7)) can be efficiently optimised
over m(z,t) via Geodesic shooting. It can now be expressed as:

¢(z,0) = ; (9)

\

As we are interested in performing simultaneously reconstruction and
registration. We now turn to describe how these two task can be intertwined
in an unified framework. Consider the target image u to be encoded in a set
of measurements y, then one can join these two tasks, i.e. and , as a
single optimisation problem, which reads:

1 1 _
B(®) = R@) + [ Au—yli + _[luc o™ — I3 (10)
One can naturally rewrite using LDDMM via geodesic shooting @D
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Figure 1: Workflow of our proposed framework, in which the simultaneous reconstruction
and registration is achieved using deep nets parametrised Douglas-Rachford iteration with
k stages (k =0,1,--- , N — 1) where the t° is initialized by u° which can be reconstructed
by a conventional method such as total variation regularised reconstruction.

This results in the following expression:

i Hom(z,0), Kn(z,0)) + HlAu(@) — gl + B0 72, 1) - g(0)]
¢t<x7t) = U(¢(x7t)7t)
) oy ) o0 =1
o m(x,t) — Lv(x,t) =0
\ my(z,t) + adim(x,t) = 0.

(11)
where K is the inverse of L. However, a potential shortcoming of is that
the solution, via Euler-Lagrange method, is computationally expensive. In
the next section, we describe how can be efficiently solved by using Deep
Learning. In particular, using deep nets parametrised Douglas-Rachford it-
eration [35].

3. Deep Nets Paramatrised Douglas-Rachford Fixed-point Itera-
tion of Sparsity Optimization (SOFPI-DR-Net) for Simultane-
ous Reconstruction and Registration

In this section, we describe in details our novel framework that joins two
tasks in a unified optimisation problem. We then demonstrate that it can
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be solved efficiently by splitting our optimisation model into more tractable
sub-problems. We also define our inversion and registration blocks based on
deep nets. Fig. (1] displays the overview of our proposed frameworks.

We remind to the reader that we seek to solve in a computational
tractable manner. The model is equivalent to:

min 30m(z,0), Km(z,0)) + 1 4u — yl + 4117 067 (2,1) ~ g(0)
gbt(l’,t) = U(¢(xvt)7t)
¢(z,0) =1

s.t. m(z,t) — Lv(x,t) =0
me(z,t) + adim(x,t) =0
\ f=u.

(12)
An efficient manner to solve ([12]) is via Alternating Direction Method of
Multipliers (ADMM)/ Douglas-Rachford splitting, in which one can break
into more computational tractable sub-problems. Therefore, we solve
via alternating minimisation, which yields to the following sub-problems:

(o] u"*! = argmin [|Au —yl|3 + §llu — f* + 0¥||3

[ (o] (/) =arg min Zm(r.0), Kz, 0)

+ 5lF 0 67 (1) = gll3 + Ellut ! — F + 03
(8(2,1)1)

m(z,t) — Lv(z,t) =0
my(z,t) + adim(z,t) =0

s.t.

\

\ bk+1 — bk 4 (uk+1 _ fk+1)

(13)
We now turn to give more details on the solution of each sub-problem. The
first sub-problem [®] can be solved by a general inversion method such as
conjugate method as:

aF = (R — 0 y) (14)

However, solving the second sub-problem [@] is similar to LDDMM, and
therefore, solving it is still computationally expensive. The solution is de-
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noted as:

P = (P b g). (15)
The problem can be also rewritten as a fixed-point iteration as:
L pk gkt (16)
and then one can obtain:
fF=a(t" ), (17)

and
bk — bkfl + (uk o fk)
— bkfl + tk _ bkfl _ fk
=tF — d(tk, g).

Based on the update of u**! along with , and , a fixed-point
iteration for ([13)) reads:

(18)

gl gk gk

=0+ U(fF =0k, y) (19)
=tk — d(tF, g,0,) + V(2D(t*, g) — tF,y)).

The fixed-point iteration is also called Douglas-Rachford iteration [35].
We consider parameterise the inversion mapping ¥ and registration map-
ping ® for the Douglas-Rachford iteration . For U, a learnable inversion
U(v,y,p) - with the parameter p in optimisation model considered to
be either learnable or manually tunable - is used in the fixed-point iteration
of . Whilst for the registration mapping, ®, a parameterised ®(t, g, )
is replaced in the the fixed-point iteration . To use LDDMM framework
to regularise the registration parameters, we use ®(u,g,6) consisting of a
momentum prediction neural net m = A(t, g,6;) instead of searching mo-
mentum by . Moreover, a shooting-warping neural net f = I'(m, g, 65),
which mimics the shooting and warping in (1)), is used. Finally, our frame-
work for parameterising the algorithm with IV stages is obtained by
computing:

tk+1 = tk - F(A(tk7 g, 91,/6)7 g, 02,k) + \P(2F(A(tk7 g, Ql,k)v g, 027k> - tk’ Y, pk))a

(20)
for k=0,1,--- , N —1. We now give more details on the Deep Nets used for
U, A and I in each stage.



3.1. The Inversion Operator ¥ and its Backward Gradients

We remark that we continue using the physical forward operator for inver-
sion (instead of a neural net parameterised forward operator), and therefore,
the analytic inversion can be obtained by solving the first sub-problem of
(13]), which reads:

U(v,y,p) = (ATA+ pI)_l (ATy + pv). (21)

One can numerically solve by conjugate gradient. With this purpose, the
derivatives for ¥ can be obtained by differentiating the following expression:

(ATA+pI) U = Ay + po, (22)
we then get:
(ATA+pI) OV + Vdp = ATdy + pdv + vdp (23)
Then the derivatives of W are given by:

OU = p (ATA+pT) " Qv+ (ATA+ pZ) " ATy + (ATA+pT) " (v—W)dp.

(24)

To give the backward gradients for the backpropagation algorithm, let

f :R™ — R - then the derivatives of f(W¥(v,y,p)) with respect to v, y and p
can be correspondingly computed by:

of (Y(vy.p)) [p (ATAerZ)_l]Tﬁ _ ,O(ATA—l—pI)_l of

9v v 3
8f(\11g;,yvp)) _ [(ATA—F,OI)_I AT]T?_\];/ A (ATA—O—pI)_%g—{I
v -1 -1
af(\I/é(ap,y,p)) _ [(ATA + pI) (v — \I,)]T% = (v— ‘II)T (ATA + pZ) %
(25)
For the inversion (ATA + pI) - g—é, one can compute the derivatives of f(¥)

with respect to v, y and p by applying conjugate gradient.

3.2. A Deep Registration Net ® for Image Shape Prior

In this subsection, we establish a neural-network-parameterised registra-
tion mapping, which serves as image shape prior for inversion block. Our mo-
tivation comes from recent developments on vector momentum-parameterised
deep networks proposed, for example, in [24] 25], in which authors showed
promising accuracy and significant speedup in obtaining the initial momen-
tum prediction. With this motivation in mind, in this work, we split the
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Figure 2: Detailed architecture for the momentum prediction net A(t*, g, 01,5) — mFtl

deep registration net ®(t,g,0) into two-Nets: a momentum prediction net
m = A(t, g,6;1) and shooting-warping net I'(m, g, ). These nets are applied
to each stage k. The momentum net is expressed as:

m*tt = At g, 01 1) (26)
whilst the warp Net reads:
flc-i-l — F(mkH, g, 92,k)- (27)
That is- it can be expressed as:

fH = 0(t", 9, 01) = T(A(t*, 9,014). 9, 02t (28)

In this work, for the momentum prediction, we use the vector momentum-
parameterised stationary velocity field (vSVF) model of that [25]. This is
displayed in Fig. 2l For the Shooting-warping Net I', we propose an extension
of the momentum Net to a symmetrical-like Net, whose detailed structure
can be seen in Fig.

3.3. Loss function with momentum reqularised via LDDMM

We denote the input template images and acquired measurements as
{gv, yo},_, with corresponding ground truth target images denoted as { f; }}_;.
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Figure 3: Detailed architecture used for the shooting-warping net T'(m*, g, 05 ) — f*+1.

Moreover, let © be the collection of the weights of all registration Nets
{6, },. We then use the following loss function:

L(O)=E(0)+R(O), (29)
where

£(0) = awllu” () - £l3, (30)

and R(©), which seeks to regularise the registration parameters and guar-
antees physical meaning of all blocks, is denoted as:

N N
R(O) =Y aillu’ — fll3 + ) Gillm’ — 3. (31)
i=1 i=1

We remark that, in this work, {m,},_, are obtained from target-template
pairs {(fs, g¢)},_, by @I) Therefore, all momentum and reconstructed (warped)
images can be obtained simultaneously, in which we seek that they approxi-
mate the ground-truth gradually stage by stage. That is,

[’ = £II2 > u? = £15 = > [lu™ = £ (32)

12



and
lm! —ml; > [|m® —m|; > > [m" —m|3. (33)

After we obtain the learned network parameter set ©*, the learned net-
work

tk+1 :tk - F(A(tka g, ei,k)a g, 9;,19) + lII(QF(A(tka g, ei,k% g, es,k) - tk> Y, pk))a

(34)

fork=0,1,---, N—1, is ready to be used for mapping a given measurement-
template data pair (y, g) to a predicted momentum m* by the output of the
last momentum net, that is:

m* = A(tN,g, ;,N)v (35>

For estimating u*, one can have two options. As first option, u* can be
obtained from the output of the last shooting-warping net as:

ut = B(tY, g, 03). (36)

Alternatively, the predicted momentum m;(x,0) = m* can be used to
obtain ¢(x, —1) via the shooting equations:

0 (37)

and finally, as a second option, we can get the estimated ground truth image
by:
u* = goap(z,1). (38)

In the experimental results, we include an ablation study to show the benefits
of computing u* using and .
4. Experimental Results

In this section, we describe in details the experiments conducted to vali-
date our proposed framework.
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4.1. Data Description

We remark that whilst our approach can be applied to different medical

modalities. In this work, we showcase our approach for MRI, sparse-view CT
and low dose CT.

e Dataset A [MRI Dataset|: Cardiac cine MRI data coming from
realistic simulations generated using the MRXCAT phantom frame-
work [36]. The heart beat and respiration parameters were set to 1s
and 5s respectively. Moreover, the Matrix size is 409 x 409, heart
phases= 24 and coils=12.

e Dataset B [Sparse-view CT Dataset]: We use the Thoracic 4D
Computed Tomography (4DCT) dataset [37]E]. The measurements are
generated by: y = Au with 18 views over 360°, where A is X-ray
transform and u is normalised to [0, 1].

e Dataset C [Low Dose CT Dataset]: As in Dataset B we use Tho-
racic 4D Computed Tomography (4DCT) dataset [37]. However, the
measurements are generated by: y = A(u + o) with 181 views over
360° and ¢ obey i.i.d normal distribution, o = 0.10.

We remark that the MRI measurements are generated by partial Fourier
transform as: y = KF(u + o0(& + & *i)). Where o is the noise level,
&1,& obey i.i.d normal distribution, w is the ground truth image, and K is
the undersampled operator, and F is Fourier Transform. In this work, we
retrospectively undersampled the measurements using: radial sampling, 2D
random variable-density with fully sampled center radius and 1D variable-
density with fully sampled center. To show generalisation capabilities of our
proposed approach, we ran our approach using different sampling rates =

{1/5,1/4,1/3}

4.2. Parameter Selection and Setting Details
In this part, we give further details on the choice of the parameters along
with further specifics of how we ran our experimental results.

For the ¥ and ® Nets, we set the number of stages N = 3 for all our
applications: for fast MRI , sparse-view CT, and low-dose CT. Our approach

thttps:/ /www.dir-lab.com /Downloads.html
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is a GPU-based implementation in Pytorch. The p in ¥ are set to be learn-
able, and we also restrict p € [0, ¢| by adding a layer as: p = co(0.4w), where
1iz is a Sigmoid function, w is learnable, and ¢ = 0.8 to prevent p to
become too big.
We use Adam algorithm for training with the following parameters: learn-
ing rate: le-4, epochs= 500. Moreover, for the learned p : MRI p =
[0.16,0.26, 0.33]; sparse-view CT p = [0.55,0.34,0.41] and low-dose CT p =

[0.64,0.42, 0.38]

Setting for the MRI Case. The temporal cine cardiac data (Dataset
A) is used to generate 376 2D image pairs as target-template image pairs, and
then the momentums dataset associated with target-template image pairs is
obtained via LDDMM @ for regularising the momentum prediction Nets in
our approach . In this work, u is normalised to [0, 1] and set noise level
o = 0.05. We use undersampling rate of {1/5,1/4,1/3}. In each experiment,
360 measurement-template pairs with 360 target images and 360 momentums
are used to train our proposed approach , and 16 measurement-template
pairs are used for testing by . For speedup the training, we pretrain the
model stage by stage for 500 epoch, and finally train the whole network for
500 epochs.

g =

Setting for the Sparse-view and Low-dose CT Case. We generate
528 2D image pairs as target-template, and then the momentum is obtained
via LDDMM @D for regularising the momentum prediction Net. We use for
the Randon Transform A the CUDA version of [3§]. For the training the
network , 480 measurement-template pairs with 480 target images, and
480 momentum are used. Whilst for testing , 48 measurement-template
pairs are used.

4.3. Evaluation Methodology

We evaluate our proposed framework based on the following scheme.

Comparison against other MRI reconstruction schemes. For the
first part of our evaluation, we compared our framework against the well-
established compressed sensing (CS) reconstruction scheme. We solve the CS
scheme with TV, and LDDMM computed sequentially. Furthermore, we ran
experiments using three different sampling patterns: radial, 2D random and
1D random (cartesian). To show generalisation capabilities, we use different
sampling rates = {1/5,1/4, 1/3 }.
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We report the results of these comparisons based on both qualitative
and quantitative results. The former is based on visual assessment of the
reconstruction, and the latter on the computation of two well-established
metrics: the structural similarity (SSIM) index and the Peak Signal-to-Noise
Ratio (PSNR); along with the computational cost given in seconds.

Generalisation capabilities using CT data. For generalisation ca-
pabilities, we evaluate our framework using data coming from sparse view
CT and low-dose CT. We compared our framework against classic TV-
reconstruction scheme + LDDMM computed sequentially and another in-
direct registration approach that of [39]. We report the comparison using
qualitative and quantitative results using visual comparison of the reconstruc-
tions along with the error maps, reconstruction quality in terms of PSNR,
SSIM and computation cost.

4.4. Results and Discussion

In this subsection, we demonstrate the capabilities of our framework fol-
lowing the evaluation scheme of subsection [4.3]

> Is Our Framework better than a classic MRI Reconstruction
Scheme? We begin by evaluating our approach against classic TV+LDDMM
reconstruction scheme. We remark to the reader that classic scheme per-
forms sequentially the reconstruction and registration whilst our approach
computes simultaneously the MRI reconstruction and indirect image regis-
tration.

We report both qualitative and quantitative results in Table [1| and Figs.
[, ] and [6l In Fig. [l we show nine reconstructed output examples with
three different sampling patters. Visual assessment agrees with the theory
of our model, in which we highlight the reconstruction of higher quality and
preservation of relevant anatomical parts whilst enhancing fine details and
contrast. In a closer inspection at these reconstructions, one can see that our
framework (in both cases either using or (38))) leads to reconstructions
with sharper edges and better preservation of fine details than the classic
MRI reconstruction scheme. This is further supported by the reported re-
construction errors, in which our approach reported the lowest error values
for all reconstructed samples.
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Figure 4: MRI Reconstruction outputs and reconstruction errors using Dataset A with
sampling rate = 1/5. Comparison of our approach vs classic scheme (TV + LDDMM).
Our approach reconstruct higher quality images with sharp edges, preservation of fine
details and contrast.
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Figure 5: MRI Reconstruction outputs and reconstruction errors using Dataset A with
sampling rate = 1/4 and with different sampling patterns. Results from classic scheme
(TV4+LDDMM) vs our approach. One can see that our reconstructions have higher quality,
this is reflected in the reconstruction error plots.
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Figure 6: MRI Reconstruction outputs and reconstruction errors using Dataset A with
sampling rate = 1/3 and with different sampling patterns. Reconstructions show that our
approach reconstructs higher quality images than classic scheme TV+LDDMM. This is
further supported by the reconstruction error plots, in which our reconstructions reported
the lowest error.
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Table 1: Numerical comparison of our approach vs. other reconstruction schemes using
the Dataset A, with different reconstruction patterns and acceleration factors. Results are
denotes the best image quality

reported from the testing set. SSIM is denoted in 1072.
the lowest computational cost.

scores whilst

PATTERN | QUANTITY [ TV+LDDMM | OURS | Ours
DATASET A WITH SAMPLING RATE = 1/5
faoia | (PSNR, SSIM) [ (25.84, 77.36) | (37.90, 93.59) | (35.11, 85.25)
Time Cost (s) 1.54 0.52 0.61
(PSNR, SSIM) | (25.06, 77.61) | (36.08, 93.34) | (34.32, 88.38)
2D RANDOM | =r st (5) 1.66 0.56 0.67
(PSNR, SSIM) | (20.61, 61.31) | (36.10, 93.31) | (34.99, 88.42)
LD RANDOM =3 Gost (5) 151 0.51 0.63
DATASET A WITH SAMPLING RATE = 1/4
maia | (PSNR, SSIM) [ (26.52, 78.89) | (3877, 94.43) | (35.74, 90.15)
Time Cost (s) 1.60 0.57 0.63
(PSNR, SSIM) | (25.94, 78.10) | (38.12, 94.42) | (35.70, 90.44)
2D RANDOM | =r st (5) 1.63 0.53 0.71
(PSNR, SSIM) | (22.02, 65.67) | (37.44, 94.33) | (35.82, 90.18)
LD RANDOM =3 Gost () 1.58 0.56 0.66

DATASET A WITH SAMPLING RATE = 1/3

(PSNR, SSIM)

(26.82, 79.63)

(39.01, 94.63)

(35.77, 90.36)

RADIAL = e Clost (5) 1.57 0.56 0.64
(PSNR, SSIM) | (26.18, 78.77) | (38.79, 94.75) | (35.78, 90.65)

2D RANDOM | oot (5) 147 0.49 0.63
(PSNR, SSIM) | (22.60, 66.83) | (38.45, 94.42) | (35.84, 90.21)

LD RANDOM = Fost (5) 1.64 0.56 0.59

To show further generalisation capabilities, we ran a range of experiments
using different sampling factors = {1/5, 1/4, 1/3}. Reconstruction outputs
can be seen in Figs. [] [ and [6f One can see that the benefits of our
approach described above are prevalent to all sampling factors. That is, our
approach preserves small structures for example the papillary muscles of the
heart. Moreover, in a visual comparison between these figures, we notice
that our method generalises very well even when the acceleration factor is
increasing; contrary to the classic scheme that exhibits loss of contrast and
blurry effects. Overall, we can show that providing a shape prior, through
a registration task, yields to higher quality images whilst decreasing the
number of measurements to form an MRI.
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Table 2: Numerical comparison for sparse-view and low-dose CT datasets (B&C).
The displayed results are the averaged accuracy and efficiency on the testing
dataset. denotes the best image quality scores whilst =~ the lowest compu-

tational cost.
QuaNTITY | TV+LDDMM | CHEN ET AL. [39] | Ours (36) | Ours (38)

DATASET B
(PSNR,SSIM) | (26.71, 0.72) (30.11, 0.96) | (36.34, 0.97) | (34.48, 0.95)
Time Cost (s) 1.82 81.37 0.76 0.87
DatAseT C
(PSNR, SSIM) | (30.66, 0.86) (31.41, 0.95) | (39.18, 0.97) | (35.78, 0.96)
Time Cost (s) 1.73 112.35 0.84 1.08

> Is a Two-task Model better than a Sequeantial Model - Does
It Pay Off? To further support the aforementioned benefits of our model
and for a more detailed quantitative analyses, we report the overall results of
the Dataset A in Table[I] The results are the average of the image metrics,
(PSNR, SSIM), across the whole Dataset A with different sampling pat-
terns and sampling rates. We observe that our approach reported significant
improvement in both metrics with respect to the classic MRI + LDDMM
reconstructions and for all accelerations. These results further validate our
hypothesis that providing shape prior improve substantially the reconstruc-
tion image quality.

After demonstrating the benefits of our approach quality-wise, we now
pose a question- how is our approach performing from a computational point
of view? The computational time is displayed in Table [l One can observe
that another major advantage of our model is the computational time, we
achieve to decrease an average of 65% the computation cost with respect to
the classic reconstruction scheme whilst achieving a substantial improvement
in terms of image quality in both metrics. Overall, the potentials of our
approach are preserved for all datasets and for all sampling rates.

> Can Our Approach be Applied to other Modalities? Gen-
eralisation Capabilities To demonstrate generalisation capabilities of our
model, we run experiments on both sparse-view and low-dose CT datasets
(e.g. Datasets B and C). We remark to the reader, that to the best of our
knowledge, this is the first hybrid approach reported that performs two tasks
as a hybrid model. That is- an approach that combines a model-based and a
deep learning-based models to improve image reconstruction. However, there
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Figure 7: CT reconstruction outputs and reconstruction errors using Datasets B and C.
A comparison is displayed between classic reconstruction scheme and our approach. In a
closer inspection, one can see that our reconstructions have higher image quality than the
compared schemes. This is further supported by the reconstruction error plots, in which
our reconstructions display the lowest errors.

is a model-based approach that follows similar philosophy than ours, which is
that of Chen et al. [39] that is applied to the CT case. Therefore, we ran our
approach and compared against both the classic CT reconstruction scheme
with TV 4+ LDDMM, and that of [39].

We begin by evaluating visually our approach against the compared schemes
and the results are displayed in Fig. [7] In that figure, we display two sam-
ples outputs using datasets B and C respectively. In a closer look at the
reconstructions, one can see that classic TV + LDDMM reconstructions fail
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Figure 8: Visualisation of the predicted momentum. (From left to right) ground truth
(M, mMy) and predicted ones using cartesian and radial sampling patters, and DAtasets
A, B and C.

to preserve fine details and introduce strong blurring artefacts (see first col-
umn). Similarly, the algorithmic approach of that [39] shows reconstructions
with loss in contrast and texture, blurry artefacts and fine details. These
negative effects are reflected at the reconstruction error plots in which our
reconstructions (last two columns) reported the lowest errors. From these
plots, one can see that our approach is able to reconstruct sharp edges whilst
keeping fine details and texture.

To further support our approach, we perform further quantitative ex-
periments, which are reported in Table 2 Similarity-wise we reported the
highest values for both PSNR and SSIM metrics. In particular, we would
like to highlight two major potentials of our approach. Firstly, our approach
offers substantial improvement, in terms of both image quality metrics. In
particular, for the PSNR metric the improvement is highly substantial com-
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pared to the approach. Also, in terms of SSIM, it outperforms the classic TV
scheme and readily competes against [39]. Secondly, the computational cost
is significantly lower than the approach of [39] and the classic reconstruction
scheme. Finally, for further visualisation support, we display the predicted
momentum in Fig. [§

5. Conclusion

In this paper, we propose for the first time a hybrid approach for si-
multaneous reconstruction and indirect registration. We demonstrated that
indirect image registration, in combination with deep learning, is a promis-
ing technique for providing a shape prior to substantially improve image
reconstruction. We show that our framework can significantly decrease the
computational cost via deep nets.

In particular, we highlight the potentials of leveraging physics-driven reg-
ularisation methods with the powerful performance of deep learning in an
unified framework. We show that our approach improves over existing regu-
larisation methods. These improvements are in terms of getting higher qual-
ity images that preserve relevant anatomical parts whilst avoiding geometric
distortions, and loss of fine details and contrast. Moreover, we also showed
that our framework can substantially decrease the computational time by
more than 66% whilst reporting the highest image quality metrics. These
benefits are consistent over different settings such as acceleration factors,
sampling patterns and medical image modalities.
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