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Variational Multi-Task MRI Reconstruction: Joint
Reconstruction, Registration and Super-Resolution

Veronica Corona, Angelica I. Aviles-Rivero, Noémie Debroux, Carole Le Guyader,
Carola-Bibiane Schönlieb

Abstract—Motion degradation is a central problem in Mag-
netic Resonance Imaging (MRI). This work addresses the prob-
lem of how to obtain higher quality, super-resolved motion-free,
reconstructions from highly undersampled MRI data. In this
work, we present for the first time a variational multi-task frame-
work that allows joining three relevant tasks in MRI: reconstruc-
tion, registration and super-resolution. Our framework takes a set
of multiple undersampled MR acquisitions corrupted by motion
into a novel multi-task optimisation model, which is composed of
an L2 fidelity term that allows sharing representation between
tasks, super-resolution foundations and hyperelastic deformations
to model biological tissue behaviors. We demonstrate that this
combination yields to significant improvements over sequential
models and other bi-task methods. Our results exhibit fine details
and compensate for motion producing sharp and highly textured
images compared to state of the art methods.

Index Terms—MRI Reconstruction, Image Registration, Image
Super-resolution, Motion Correction

I. INTRODUCTION

M agnetic Resonance Imaging (MRI) is a widely used
and non-invasive modality that creates detailed images

of the anatomical structures of the human body, including
undergoing physiological events. It allows radiologists to ex-
amine MRI for diagnosis, treatment monitoring and abnormal-
ity/disease detection [1]. However, a central limitation of MRI
is the prolonged acquisition period needed to reconstruct an
image [2]. This constraint is reputed to be a major contributor
to image quality degradation, and therefore, compromising the
expert interpretation.

Image degradation appears as motion artefacts including
blurring effects and geometric distortions [2], [3]. Therefore,
the problem of how to reduce the acquisition time whilst
producing high quality images, super-resolved and motion-
free, is of a great interest in the community, and it is the
problem that we address in this paper.

In particular, in a dynamic MRI setting, acquisitions with
low signal-to-noise ratios or small anatomical structures might
be severely degraded, affecting the final expert’s outcome [4].
These small structures can appear smeared or blurred, and
discerning whether these are artefacts or lesions is very
challenging for the expert, leading to potential false positive
or negative findings [5]. Moreover, movement distortions are
most prominent at contrast edges [6].
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Fig. 1. The proposed variational multi-task framework. A set of higly
undersampled MRI measurements are taken as input to our three-tasks
framework: reconstruction, registration and super-resolution. We then jointly
address them using a proposed functional that has as input a super-resolved
motion-free MRI and the physiological dynamics.

Although, it is possible to reduce the artefacts by perform-
ing breath-holding techniques, there is still residual motion
to be compensated. This is mainly produced because the
timescale of physiological motion is shorter than the required
time to form an image. Likewise, gating strategies [7]–[12],
which track either the breathing or cardiac cycles, have been
also widely explored. However, they are mainly effective for
perpetual breathing motion disregarding all other involuntary
physiological motion and therefore only partially accurate.
Furthermore, it is challenging to precisely co-register these
signals to the corresponding MRI data [13].

As an alternative to the aforementioned techniques, a body
of research has developed several algorithmic approaches
based on the conceptual definition of Compressed Sensing
(CS) which has demonstrated promising results since the
seminal paper of Lustig et al. [14]. The main idea of using CS
is to reconstruct signals from low-dimensional measurements
through iterative optimisation relying on sparsity of the image
in a transformed domain. Since then, several promising results
have been reported in the body of literature e.g. [15], [16],
[17], [18], [19]. However, there is still a need for improving
the quality of the MRI reconstruction whilst decreasing the
number of measurements.

A commonality of previous techniques is that they perform
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a single task (just reconstruction). However in most recent
years, there has been a great interest for improving medical
image reconstruction [20]–[22] by using what is called multi-
tasking models (also known as joint models). The central idea
of this perspective is that by sharing representation between
tasks and carefully intertwining them, one can create synergies
across challenging problems and reduce error propagation,
which results in boosting the accuracy of the outcomes whilst
achieving better generalisation capabilities.

Following the multi-task perspective, different works have
been presented e.g. [20]–[25]. Unlike existing approaches from
the literature, and to the best of our knowledge, we are
presenting for the first time a model that considers more than
two tasks (see Fig. 1). In this work, we introduce a new
variational multi-tasking framework that integrates, in a single
model, three relevant tasks in MRI: reconstruction, registration
and super-resolution. Whilst this is a relevant part of this work,
our contributions are:
• We propose a computationally tractable and mathemati-

cally well-motivated variational multi-task framework for
motion correction in MRI, in which our novelties largely
rely on:

– An original optimisation model that is composed of
an L2 fidelity term that allows sharing represen-
tations between three tasks (reconstruction, super-
resolution and registration); a weighted total vari-
ation (TV) ensuring robustness of our method to
intensity changes; a TV regulariser of the highly
resolved reconstruction; and a hyperelasticity-based
regulariser. We demonstrate that this combination
yields to significant improvements over sequential
models and existing multi-task methods.

– We show that our optimisation problem can be
solved efficiently by using auxiliary variables and
then splitting it into sub-problems. We show that this
requires lower CPU time than several methods from
the body of literature.

• We extensively evaluate our approach using five datasets
and different acceleration factors. We also compare our
multi-task framework against existing approaches. Our
experiments are further validated by interpretations of
experts.

II. RELATED WORK

There have been different attempts to improve motion
correction in MRI from undersampled data. Besides motion
prevention techniques such as breath-holding, another set of
of algorithmic approaches has been devoted to correct for
motion using image-based motion tracking, where one needs
an explicit estimation of the motion in between scans. The
predominant scheme, in this context, is image registration
which aims at finding a mapping aligning a moving image to a
reference one. Following this perspective, the body of literature
can be roughly classified into rigid (translations, rotations) and
deformable registration.

In the first category, several approaches have been proposed
including [26]–[29]. However, physiological motion such as

cardiac and respiratory, can hardly be characterised by a simple
combination of rotations and translations. To mitigate this
limitation, motion correction methods based on deformable
registration have been proposed such as [30]–[33]. However,
in a closer look on the aforementioned approaches, a com-
monality between them is that the algorithmic approaches are
performed sequentially. That is - the motion estimation task
is executed only after the image reconstruction is computed
(from now we refer to this perspective as sequential model).
A clear drawback of using this perspective is that the motion
estimation highly depends on the quality of the reconstruction
as well as on the selection of the reference image.

More recently, a body of research has solved jointly multi-
ple tasks (the so-called multi-task approach) such as image
reconstruction and registration in a unified framework. In
particular, in the medical domain and following a variational
perspective [34], different works have been reported using
multi-task approaches. These include SPECT imaging [35],
[36], PET [24] and MRI [20]–[22]- to name a few. The works
with a closer aim to ours are discussed next.

Authors in [25] and [24] proposed a joint model com-
posed of a motion-aware likelihood function and a smoothing
term for a simultaneous image reconstruction and motion
estimation for PET data. Schumacher et al. [36] presented
an algorithmic approach that combines reconstruction and
motion correction for SPECT imaging. The authors proposed
a variational approach that includes a regulariser penalising
an offset of motion parameter - to favour a mean location of
the target object. However, the major limitation is that they
only consider rigid motions. In the same spirit, authors of
[37], [38] proposed a generic joint reconstruction/registration
framework. That model is based on a penalised-likelihood
functional, which uses a weighted least square fidelity term
along with a spatial and a motion regulariser.

Odille et al. [23] proposed a joint model for MRI image
reconstruction and motion estimation. This approach allows
for an estimate of both intra and inter-image motion, meaning
that, not only the misalignment problem is addressed but also it
allows correcting for blurring/ghosting artefacts. More recently
in the context of deep-learning (DL), a number of methods
has been investigated for image registration - e.g. [39], [40].
Although, certainly, those approaches deserve attention, their
review goes beyond the scope of this paper.

III. PROPOSED METHOD

In this section, we introduce our joint variational framework
which addresses simultaneously the following three tasks: MRI
reconstruction, registration and super-resolution. We introduce
the mathematical formulation as separated tasks and then we
show how our novel optimisation model judiciously inter-
twines them. Finally, we describe the numerical realisation
of our approach.

Problem statement. We remark to the reader the focus of
this work. Given a set of multiple undersampled MR acqui-
sitions {xt}Tt=1 of low resolution and corrupted by motion,
we seek to recover a single high resolved, static and motion-
corrected image that represents the true underlying anatomy



3

along with the estimation of the breathing dynamics through
deformation maps.

A. Task 1: CS MRI reconstruction

In particular, in standard dynamic MRI, the acquired data
is in a time-spatial-frequency space, i.e. k,t-space, which is
composed of x = (xm,t)

M,T
m=1,t=1 ∈ CM×T measurements.

Therefore, the task of MRI reconstruction from those samples,
reads:

x = Fu+ η, (1)

where F : RN×T → CM×T is the undersampled MRI forward
operator. More precisely, F = SA where S is a subsampling
operator, A the Fourier operator, and F∗ : CM×T → RN×T

its adjoint. Moreover, u ∈ RN×T is the stack of reconstructed
images, η an additive Gaussian noise inherent to the acquisi-
tion, and t the temporal coordinate.

The MRI reconstruction task is thus highly ill-posed due
to the noise and incomplete measurements. However, (1) can
be solved by adding prior information and then casting the
problem as a CS-based optimisation problem:

u∗ ∈ arg min
u
‖Fu− x‖22 + δ‖Φ(u)‖1, (2)

where the first term, i.e. data fidelity term, ensures consistency
with the observed data x whilst ‖.‖1 enforces sparsity in
the transformed domain given by Φ, and δ is a parameter
balancing the influence of each term.

In this work, we focus on the Total Variation (TV) [41]
regulariser, which, imposing edge sparsity, leads to piecewise
constant reconstructions. It has shown great potential since
early developments in MRI reconstruction [14]. However one
can easily replace this regulariser by any other one in a plug-
and-play fashion.

Although, a large body of literature has shown potential
results in the context of undersampled MRI reconstruction
using CS or its extended philosophies including [16], [18],
[42], there is a still room for improvement, and in particular for
the problem of reconstructing a single high quality image that
reflects the true underlying anatomy. This motivates the use
of two more tasks − image registration and super-resolution,
which are described next.

B. Task 2&3: When Image Registration Meets Image Super-
Resolution

In a dynamic MRI setting, there are two tasks that show
a natural strong correlation: motion estimation and super-
resolution. Therefore, our hypothesis is that by unifying these
two tasks, one can create synergies leading to error propaga-
tion reduction, and therefore, an increase of the image quality.

In a multi-frame variational framework, super-resolution is
the problem of restoring a high-resolution image from several
low quality images that are corrupted by motion. From a
variational perspective, it can be expressed as:

min
u

m∑
i=1

‖DBWi u− fi‖22 + λReg(u), (3)

where D and B are the downsampling and blurring operators
correspondingly. Moreover, Wi models the geometric warp
existing between the observed images fi and the restored
image u to correct for motion. Finally, Reg(u) is a generic
regulariser. In this work, the dowsampling operator is modelled
as an averaging window, the blurring kernel is assumed to be
Gaussian, and the warping operator is viewed as the defor-
mations from a registration task. Whilst for the regulariser
we adopt the TV option, our approach is well-suited for the
plug-and-play setting. That is- one can easily replace the TV
regulariser with other options.

In particular, for our registration method we have the follow-
ing. Let Ω be the image domain, i.e. a connected bounded open
subset of R2, and u : Ω→ R be the sought single reconstructed
image depicting the true underlying anatomy. We introduce the
unknown deformations, between the t-th acquisition and the
image u, as φt : Ω̄ → R2. We remark that the deformations
are smooth mappings with topology preserving and injectivity
properties. Moreover, let vt be the associated displacements
such that φt = Id + vt, where Id is the identity function. At
the practical level, these deformations should be with values in
Ω̄, and Ball’s results [43] guarantee this property theoretically
for our model. We also consider ∇φt : Ω→M2(R) to be the
gradient of the deformation, where M2(R) is the set of real
square matrices of order two.

As MRI images biological soft tissues well-modelled by
hyperelastic materials, which allows for large and smooth
deformations while keeping an elastic behavior, we propose to
view the shapes to be matched in the registration process as
isotropic, homogeneous and hyperelastic materials of Ogden
type. This is reflected in our formulation as a regularisation
on the deformations φt based on the stored energy function of
such a material.

In two dimensions, the stored energy function of an Ogden
material, in its general form, is given by the following expres-

sion: WO(F ) =
M∑
i=1

ai‖F‖γiF + Γ(detF ), with ai > 0, γi ≥ 1

for all i = 1, · · · ,M and Γ : ]0;∞[→ R a convex function
satisfying lim

δ→0+
Γ(δ) = lim

δ→+∞
Γ(δ) = +∞, ‖.‖F designating

the Frobenius matrix norm.
Following [44], we consider the particular energy:

WOp(F ) =

{
a1‖F‖4F + a2

(
detF − 1

detF

)4

if detF > 0,

+∞ otherwise,
(4)

with a1 > 0, and a2 > 0. Both changes in length and area
are penalised and topology preservation is ensured with this
formulation.

C. Variational Multi-Task Model: Reconstruction, Registra-
tion and Super-Resolution

In the body of literature, there have been different attempts
of using reconstruction, registration and super-resolution.
However, they tackled the tasks separately or jointly but up
to two tasks. In this part, we describe, for the first time,
how these three tasks can be jointly computed to benefit
the final reconstruction. The main idea is to exploit temporal
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redundancy in the data to compensate for motion artefacts due
to breathing and/or involuntary movements whilst increasing
the resolution to retrieve finer details in the reconstruction. In
particular, we now turn to describe how (2) and (3) can be
solved in a multi-task framework.

Our variational multi-task framework takes three key fac-
tors: firstly the hyperelastic regulariser (4), secondly a discrep-
ancy measure that joins the reconstruction, super-resolution
and the registration tasks, and the TV-based regularisers
for reconstruction and super-resolution. Moreover, our model
accounts for intensity changes, this, by modifying the CS-
classical TV regulariser for the weighted TV to enforce edge
alignment (see Definition in Section V of the Supplementary
Material). From now F is acting on one single frame. We
thus introduce weights gt as the Canny edge detector applied
to Gσ∗F∗xt - for each t = 1, · · · , T - where Gσ is a Gaussian
filter of variance σ.

We thus consider the following fidelity term and regulariser
for our high-resolved image:

E(u, (φt)t=1,··· ,T ) =
1

T

T∑
t=1

δTVgt((Cu) ◦ φ−1
t )

+ αTV(u) +
1

2
‖F((Cu ◦ φ−1

t ))− xt‖22,

(5)

where C = DB comes from the super-resolution formulation.
The first term of F seeks to align the edges of the deformed
reconstruction ((Cu) ◦ φ−1

t )) with the ones of the different
acquisitions, whilst regularising it. The second quantity aims
to get F((Cu) ◦ φ−1

t ) close to the acquisitions xt, and thus
F∗(xt) close to Cu ◦ φ−1

t to correct for motion.
Our variational multi-task framework is then defined as

a combination of (4) and (5), which leads to the following
minimisation problem:

inf
u,(φt)t=1,··· ,T

G(u, (φt)t=1,··· ,T ) = E(u, (φt)t=1,··· ,T )

+
1

T

T∑
t=1

∫
Ω

WOp(∇φt) dx,

⇔ inf
u,(φt)t=1,··· ,T

1

T

T∑
t=1

1

2
‖F((Cu) ◦ φ−1

t )− xt‖22 + αTV(u)

+ δTVgt((Cu) ◦ φ−1
t ) +

∫
Ω

WOp(∇φt) dx,
(6)

We now introduce the next theorem to set the well-posedness
of our model.

Theorem III.1 (Existence of minimisers). Let F = SA :
L2(R2) → L2(R2), C : L1(Ω′) → Lp(Ω), be linear bounded
and continuous for the strong topology operators with p ∈
]1, 8

5 [, and Ω ⊂ Ω′, Ω and Ω′ connected bounded open subsets
of R2 with boundaries of class C1 (verified by the chosen oper-
ators). With δ, α, a1, a2 > 0, problem (6) admits minimisers
(ū, (φ̄t)t=1,··· ,T ) on U = {u ∈ BV (Ω′), φt ∈ W, ∀t =
1, · · · , T | (Cu) ◦ φ−1

t ∈ BVgt,0(Ω), ∀t ∈ {1, · · · , T}}, with
W = {ψ ∈ Id + W 1,4

0 (Ω,R2) | det∇ψ ∈ L4(Ω), 1

det∇ψ ∈
L4(Ω), det∇ψ > 0 a.e. on Ω}.

Proof. The proof can be found in Section V of the supple-
mentary material.

In the next section, we detail how the proposed model (6)
can be solved in a computational tractable form.

D. Optimisation Scheme

The numerical realisation of (6) imposes different chal-
lenges due to the nonlinearity and nonconvexity in ∇φt and
the composition (Cu) ◦ φ−1

t in the fidelity term. In this work,
we overcome these difficulties by introducing three auxiliary
variables zt, ht, ft, this, to mimic ∇φt, (Cu) ◦ φ−1

t and ht.
We then relax our problem using quadratic penalty terms. This
leads to the following discretised decoupled problem:

min
u,φt,zt,ht,ft

1

T

T∑
t=1

∑
x∈Ω

WOp(zt(x)) +
γ1

2
‖zt −∇φt‖22

+
γ3

2
‖Fht − xt‖22 + αTV(u)

+
γ2

2
‖(ht − (Cu) ◦ φ−1

t )
√

det∇(φt)−1‖22

+
1

2θ
‖ft − ht‖22 + TVgt(ft).

(7)

We now can solve our minimisation problem by splitting
(7) into five more computational tractable sub-problems. We
now turn to give more details on each sub-problem.

SUB-PROBLEM 1: OPTIMISATION OVER zt. In practice,
zt = (zt,1, zt,2)T simulates the gradient of the displacements
vt = (vt,1, vt,2)T associated to the deformations φt. For every

zt, we have zt =

(
z11 z12

z21 z22

)
. For the sake of readability, we

drop here the dependency on t. We solve the Euler-Lagrange
equation with an L2 gradient flow and a semi-implicit finite
difference scheme and update zt as:

zk+1
11 =

1

1 + dtγ1

(
zk11 + dt(−4a1‖I + zkt ‖2F (zk11 + 1)

− 4a2(1 + zk22)c0c1 + γ1

∂vkt,1
∂x

)
,

zk+1
12 =

1

1 + dtγ1

(
zk12 + dt(−4a1‖I + zkt ‖2F zk12

+ 4a2z
k
21c0c1 + γ1

∂vkt,1
∂y

)
,

zk+1
21 =

1

1 + dtγ1

(
zk21 + dt(−4a1‖zkt + I‖2F zk21

+ 4a2z
k
12c0c1 + γ

∂vkt,2
∂x

)
,

zk+1
22 =

1

1 + dtγ1

(
zk22 + dt(−4a1‖I + zkt ‖2F (zk22 + 1)

− 4a2(1 + zk11)c0c1 + γ1

∂vkt,2
∂y

)
,



5

with c0 =

(
det(I + zkt ) − 1

det(I+zkt )

)3

and c1 = 1 +

1
(det(I+zkt ))2 .

SUB-PROBLEM 2: OPTIMISATION OVER φt. We solve the
Euler-Lagrange equation in φt, after making the change of
variable y = φ−1

t (x) in the L2 penalty term, for all t, using
an L2 gradient flow scheme with a semi-implicit Euler time
stepping.

0 = −γ1∆φk+1
t + γ1

(
div zk+1

t,1

div zk+1
t,2

)
+ γ2(hkt ◦ φkt − Cuk)∇hkt (φkt ),

SUB-PROBLEM 3: OPTIMISATION OVER ht. The update
in ht, for all t, has a closed form solution using the subsam-
pling operator S and the Fourier operator A along with their
adjoints S∗ and A∗ = A−1:

hk+1
t = A∗

{
(γ2 det∇(φ−1

t )k+1Id + γ3S∗S +
1

θ
Id)−1

(
A
(
γ2 det∇(φ−1

t )k+1(Cuk) ◦ (φ−1
t )k+1 +

fkt
θ

)
+ γ3S∗xt

)}
.

SUB-PROBLEM 4: OPTIMISATION OVER ft. This is solved
via Chambolle projection algorithm [45]. For an inner loop
over n = 1, · · · ,M :

fn+1
t = hk+1

t − θ div pnt ,

pn+1
t =

pnt + δt∇(div pnt − hk+1
t /θ)

1 + δt
gt
‖∇(div pnt − hk+1

t /θ)‖
,

with ‖.‖ the Euclidean norm. After enough iterations, we set
fk+1
t = fn+1

t .
SUB-PROBLEM 5: OPTIMISATION OVER u. Finally, using

the same change of variables as in sub-problem 2, the problem
in u reads:

min
u

γ2

2T

T∑
i

‖ht ◦ φt − (Cu)‖22 + αTV(u),

and we solve it with a primal-dual algorithm: [46]:

yk+1 =
yk + σ∇uk

max(1, ‖yk + σ∇uk‖)
,

uk+1 =
(γ2

T
C∗C + Id

)−1 (
uk + τ∇ · yk+1

+
γ2

T
C∗

T∑
t=1

hk+1
t ◦ φk+1

t

)
.

We remark that, in this work, we solve the registration
problem in zt and φt in a multi-scale framework from coarser
to finer grids and using a regridding technique [47] (see
Supplementary Material Section II).

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results per-
formed to validate our proposed approach.

A. Data Description

We evaluate our framework on five publicly available
datasets.
• Dataset 1,2 & 31. These datasets are 2D T1-weighted

data [48] acquired during free breathing of the entire
thorax. It was acquired with a 3T Philips Achieva system
with matrix size = 215 × 173, slice thickness=8mm,
TR=3.1ms and TE=1.9ms. We remark that each dataset
refers to three different patients.

• Dataset 4 & 52. The datasets are 4DMRI data acquired
during free-breathing of the right liver lobe [49]. It was
acquired on a 1.5T Philips Achieva system, TR=3.1 ms,
coils=4, slices=25, matrix size = 195×166, over roughly
one hour on 22 to 30 sagittal slices and a temporal
resolution of 2.6− 2.8 Hz.

B. Evaluation Protocol

To validate our theory, we expensively evaluate our model
as follows.

Comparison against Sequential Models. For the first
part of our evaluation, we compared our variational multi-
task approach against two well-known models, rigid (RIGID),
and hyperelastic (HYPER), for deformations. To run this
comparison, we solve the CS reconstruction model with TV,
and then register all the frames to a reference frame used as
initialisation in our proposed approach. For this, we use the
well-established FAIR toolbox [50], where we select rigid and
hyperelastic transformations. Finally, we perform the super-
resolution task with TV.

Comparison against other Multi-task Approaches. As
to the best of our knowledge, this is the first variational
model joining three tasks, we compare our model against
two models that only joints two tasks- reconstruction and the
motion estimation. More precisely, we compared our method
against DC-CS [20] and GW-CS [21]. To show robustness
and generalisation capabilities of our approach, we ran the
comparisons using fully sampled data and acceleration factors
= {2, 4, 5, 6, 8}.

Metrics Evaluation. As we seek to recover a single high
resolved and motion corrected image, there is not ground truth
for this task. Therefore, our evaluation is based on a standard
protocol for evaluating MRI reconstruction, that is a user-
study (expert scoring). For this, we design a a three-point
Likert rating scale in which experts were asked to indicate the
level of agreement, ranging from best reconstruction to worst
reconstruction. The study is also supported by a nonparametric
statistical test. Detailed protocol can be found in Section III of
the Supplementary Material. Moreover, to further support our
multi-task model, we also offer CPU time comparison against
all the compared approaches.

The experiments reported in this section were run under the
same conditions in a CPU-based Matlab implementation. We
used an Intel core i7 with 4GHz and a 16GB RAM.

1https://zenodo.org/record/55345#.XBOkvi2cbUZ
2http://www.vision.ee.ethz.ch/∼organmot/chapter download.shtml

https://zenodo.org/record/55345#.XBOkvi2cbUZ
http://www.vision.ee.ethz.ch/~organmot/chapter_download.shtml
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proposed reconstructions ranked the best.

C. Parameter Selection

In our experiments, we set the parameter of our approach
and the compared ones as described next. For our experiments,
we set the parameters as displayed in Table I. Whilst for the
sequential approaches, based on the FAIR implementation, we
set the hyperelastic regularisation parameter for Datasets 1,2
& 3 = 1 and for Datasets 4 & 5 = 0.1.

D. Results and Discussion

We evaluate our proposed approach following the scheme
described in Section IV-B.

. Is our Multi-tasking Approach Better than a Sequen-
tial one? We start evaluating our approach against two se-
quential models. We remark to the reader that sequential
means to execute tasks (reconstruction registration and super-
resolution) one after another. In particular, we compared our
approach against two well-known models for deformations:
rigid (RIGID) and hyperelastic (HYPER). Results of this
comparison are displayed in Figs. 4 and 5, and using different
acceleration factors.

In a closer look at those Figs., one can see that our recon-
structions have better sharp edges and retrieve fine details,
in the heart and below the lung areas, than the sequential
approaches. Particularly, the rigid transformation is not able
to compensate for the whole motion and thus blurring effects
are visible, especially under the lungs, for all acceleration

D1 D2 D3 D4 D5
a1 1 1 1 1 1
a2 50 50 50 100 100
γ1 5 5 5 1 1
γ2 105 105 105 105 105

γ3 15 15 15 1 1
θ 5 5 5 5 5
σ 1.5 1.5 1.5 2 2
k 2 2 2 2 2

N&n 500 500 500 500 500
α 0.01 0.01 0.01 0.001 0.001

TABLE I
PARAMETER VALUES USING FOR OUR MODEL AND FOR ALL DATASETS. IN

THIS TABLE, ”D” STANDS FOR DATASET.

factors. Hyperelastic deformations however, have more de-
grees of freedom and are capable of better compensating for
motion which is manifested as sharp edges in the HYPER
reconstruction. Moreover, the darker structure, at the center
bottom of the heart, disappears or is much less visible in the
HYPER reconstructions than in our approach. This effect is
observed for all acceleration factors.

Besides, as the acceleration factor increases, the HYPER
reconstruction loses the initial contrast, which is particularly
visible for the acceleration factor of 8. In contrast our multi-
task framework is able to preserve it nicely. This shows the
robustness of our method to noise and corrupted data. The
benefits of our multi-task framework is prevalent to all datasets
(see Section IV of the Supplementary Material for Dataset 2,
4 and 5).

Figs. 4 and 5 show that hyperelastic deformations are
better suited to deal with complex physiological motions, as
the RIGID reconstructions exhibits strong blurring artefacts,
this, due to residual movements amplified as the acceleration
factor increases. Also, our method is able to preserve small
structures in the kidney and the white blood vessels in the liver
even for large acceleration factors contrary to the sequential
HYPER approach. For the acceleration factor of 8, the HYPER
reconstruction suffers more from staircaising effects than our
approach and loses the initial contrast.

Overall, we can show that sharing representation between
tasks (i.e. our multi-task approach) leads to better MRI re-
constructions than if one performs the task separately. This is
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Fig. 4. Reconstruction results for Dataset 1 compared to sequential approaches
based on rigid and hyperelastic registration, for different acceleration factors.
Our proposed reconstruction results in sharp edges and retrieves fine details
especially for higher acceleration factors.

strongly supported by two factors, the computational time and
the expert agreement. Following common protocol for MRI
evaluation, we performed a user-study, in which we asked
to twelve experts (radiologist trainees and experienced) to
evaluate reconstructions with all acceleration factors in Figs.
4 and 5 (see Supplementary material for Datasets 2, 4 and 5).

The outcome is displayed in Fig. 3. At left side of this
figure, one can see that overall (i.e. for all reconstruction/all
acceleration factors) our approach was ranked best, with a
44.29% of agreement, in comparison with the output from the
other methods. We also ran the nonparametric Friedman test,
per acceleration and therefore accounting for FDR, and we
found that there is significant statistical difference- that is, our
approach offered the best reconstructions.

To further support our model performance, we also analyse
the difference maps to assess the quality of our registration,
and therefore, its motion correction potential. To do this, we in-
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Fig. 5. Reconstruction results for Dataset 3 compared to sequential approaches
based on rigid and hyperelastic registration, for different acceleration factors.
Our proposed reconstruction preserves fine structures and better correct for
motion, thus resulting in sharper edges compared to the sequential reconstruc-
tions.

spect the uncorrected average of the difference image, between
a reference frame and each individual one, which is displayed
at the left side of Fig. 8. From this column, we can observe that
the motion is significant in both the datasets. However, when
we inspect the mean difference between our reconstruction and
the individual registered acquisitions (ht ◦ φt), at the middle
and right sides of Fig. 8, one can see that the structures are very
well-aligned resulting in a much smaller range in difference
maps. Overall, our approach successfully corrects for motion
even at low undersampling rates, and this effect is preserved
for all datasets.

. Is it Three-Task Better Than Two-Task Framework?
In a multi-task framework a key factor is to assess if the
tasks are not affecting negatively the final MRI reconstruction.
To evaluate this factor, we ran a set of experiments of our
approach against two multi-task frameworks DC-CS [20]
and GW-CS [21]. These approaches perform only two-tasks
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Fig. 6. Reconstruction results for Dataset 1 for different acceleration factors
and different joint approaches in comparison to our proposed method. We
can clearly see that our approach provides the best results in terms of sharp
structures and fine texture, while DC-CS results very blurry and GW-CS very
noisy. This is particularly accentuated for high undersampling factors.

(reconstruction and motion estimation), these approaches are
our baselines as, to the best of our knowledge, there exists no
approaches that join three tasks.

The MRI reconstruction from our model against DC-CS and
GW-CS can be seen in Figs. 6 and 7 (see Supplementary Ma-
terial Section IV for further visualisation with the remaining
datasets). In a closer look at these figures, one can observe very
blurred reconstructions from DC-CS, which can be interpreted
as a failure of the model to capture the complex intrinsic
nature of physiological motions. In contrast, GW-CS and our
reconstructions are sharper even for very low undersampling
factors and compensate well for motion.

However, our method is more robust to noise and outliers
(as displayed in the compared reconstructions). Although,
the GW-CS reconstructions preserve fine textures and small
structures, they are noisier than ours. That is, our approach
preserve improves in terms of preserving information whilst
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Fig. 7. Comparison of our multi-task framework vs other bi-task approaches
on Dataset 5. We note that our approach can preserve fine detail and sharp
edges whilst DC-CS fail to compensate for motion, yielding blurring artefacts.
We can also note the GW-CS approach highly amplifies the noise. This is more
visible for high undersampling factors.

removing noise in comparison with GW-CS. This effect is
elevated even more as the acceleration factor increases. For
example, for an acceleration factor of 8, artefacts and noise
are visible in the heart and under the lungs in the GW-CS
reconstruction whereas ours is clearer.

Another example of the good performance of our approach
can be seen in Fig.7, in which we are able to retrieve more
clinically useful texture and fine details than the GW-CS
technique. This is particularly visible in the central part of
the heart where noise is visible in the GW-CS reconstructions
especially as the acceleration factor increases.

To further support our results, we display, at the right side
of Fig. 3, the overall outcome of the user-study. From this
plot, we can see that the majority of the expert agreed that
our reconstructions are better than the compared approaches.
Although, the second best ranked is GW-CS, it fails to correct
for noise which compromises the readability of the underlying
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Fig. 8. Difference maps. From left to right: average difference maps of the
unregistered sequence, average difference map of the corrected sequence for
an acceleration factor of 4 and 8 and the colorbar for Datasets 1 and 2.

texture. Moreover, as soon as the acceleration factor increases,
the noise level jumps, reducing drastically the readability and
interpretability of the GW-CS reconstructions whereas our
method retrieves relevant small structures and denoises the
reconstruction.
. The CPU Cost of Our Multi-Tasking Approach - Does

It Pay Off? From previous sections, we demonstrated that our
approach achieves a better reconstruction in comparison with
other approaches, however, does this improvement come to pay
off in terms of computational time? Therefore, in this section,
we highlight the computational advantages of our model. We
remark to the reader that all comparisons were run under the
same conditions.

The CPU time, for all approaches, is displayed at Fig. 2
for several acceleration factors (the remaining can be found in
Section IV of the Supplementary Material). Firstly, we observe
that, in terms of sequential models, our model outperforms
RIGID and HYPER reporting the lower CPU time. However
and in terms of the other multi-task methods, the computa-
tional time for GW-CS is much longer compared to our method
(and only performing two-tasks). Whilst the DC-CS approach
readily competes with our approach, from the image quality
standpoint our method offers by far better results in terms
of reconstruction. We emphasise that the CPU times for our
model and DC-CS are still on the same range, but the proposed
method is performing three-tasks instead of two like the DC-
CS. These advantages highlight our optimisation scheme that
allows computing a complex problem in a very computational
tractable form.

V. CONCLUSION

In this work, we proposed a novel variational multi-task
framework to achieve higher quality and super-resolved re-
constructions. Our method compensates for motion due to
breathing in undersampled data. To the best of our knowledge,

it is the first variational framework that allows computing three
tasks jointly.

In particular, our multi-task framework is composed of
four major components: an L2 fidelity term intertwining MRI
reconstruction, super-resolution and registration; a weighted
TV ensuring robustness of our method to intensity changes
by promoting edge alignment; a TV regulariser of the super-
resolved reconstruction; and a hyperelasticity-based regulariser
modelling biological tissue behavior and allowing for large and
smooth deformations. We exploit the temporal redundancy to
correct for blurring artefacts and increase image quality. As
a result, we obtain a single highly resolved and clear image
reconstruction representing the true underlying anatomy.

The advantages of our model is that we guarantee preser-
vation of anatomical structures whilst keeping fine details and
less blurry and noise artefacts in the final reconstructions.
We extensively evaluated our method against sequential and
another multi-task methods from the body of literature. We
demonstrated that our method achieves the best results whilst
demanding low CPU time. Our method was further supported
by a user-study (experts).

Future Work. This multi-task framework is indeed very
well-suited for the plug-and-play setting when one (or more)
imaging tasks could be replaced by different algorithms. For
instance, the modelling of the regularisation functional for the
high resolution image reconstruction could be replaced in a
plug-and-play fashion. It opens the door to hybrid methods as
deep-learning can be used for the super-resolution task.
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Variational Multi-Task MRI Reconstruction: Joint
Reconstruction, Registration and Super-Resolution

Veronica Corona, Angelica I. Aviles-Rivero, Noémie Debroux, Carole Le Guyader,
Carola-Bibiane Schönlieb

I. OUTLINE

This supplementary material extends the experimental re-
sults, practicalities and theoretical analysis to further support
our proposed multi-task framework. This document is organ-
ised as follows.
• Section II. In this section, we offer a detailed explanation

about the influence of the parameters of out variational
multi-task model.

• Section III. We further describe the user-study protocol
that we follow to support our outcomes and comparisons.

• Section IV. We display further visual comparisons of our
model against some works from the state-of-the-art. This
section further validate our claim in terms of our model
performance.

• Section V. We provide further mathematical details for
the paper. First, we recall the definition of the weighted
total variation, then we introduce the proof, of Theorem
III.1 regarding the existence of minimisers result.

II. PARAMETERS REASONING OF OUR MULTI-TASK
FRAMEWORK

In this section, we discuss the influence of each parameter.
a1 and a2 control the regularisation of the deformations.
Whilst the former acts on the smoothness of the deformations,
the latter can be seen as a measure of rigidity. That is- the
bigger a2 is, the more rigid the deformations are and the less
accurate the registration becomes. It thus behaves as a trade-off
between the ability to handle large and nonlinear deformations,
and topology preservation.

Moreover, γ1 and γ2 are chosen big, to ensure the closeness
of the auxiliary variables to the original ones, and θ is set small
for the same purpose. γ3 weights the fidelity term joining the
three tasks, and it is often chosen to be close to 1. Finally, α
offers a balance between regularity and fidelity to the data for
the super-resolved reconstructed image u.

Finally, we also explicitly define he regridding algorithm
that we used in Section III.D from the main paper. This is
displayed at Algorithm 1.

III. FURTHER DETAILS ON THE USER-STUDY

To further support our results, we performed a user-study
following standard protocol in clinical settings. That is- to ask
experts and trainees to evaluate the reconstructions based on
a scoring system. For this study, we had twelve experts and
trainees from the area of radiology.

Scoring Procedure. We create an electronic survey in
which, after giving the instructions to the users, they were
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Fig. 9. Plots displays the percentage of responses supporting the worst ranked
approach.

Algorithm 1 Regridding algorithm
1: Initialisation z0 = 0, φ0 = Id, regrid count = 0.
2: for n = 1, · · · , N do
3: Update zn and φn.
4: if det∇φn < tol then
5: regrid count = regrid count+ 1.
6: h = h ◦ φn−1.
7: Save tab phi(regrid count) = φn−1.
8: φn = Id, zn = 0.
9: end if

10: end for
11: if regrid count > 0 then
12: φfinal = tab phi(1) ◦ · · · ◦ tab phi(regrid count).
13: end if

provided with two-part evaluation. For the first part, they
evaluated the reconstructions related to sequential models. To
do this, they were provided with the reconstructions of the
five dataset, for acceleration factor ={fully sampled, 2x, 4x,
6x, 8x}, and for the approaches ={RIGID, HYPER, OURS}
(see main paper for description on these models). With the
purpose of capturing they scores, we design a three-point
Likert rating scale in which experts were asked to indicate
the level of agreement, ranging from best reconstruction to
worst reconstruction. Similarly, this protocol was followed
to evaluate other multi-task methods = {DC-CD, GW-CS,
OURS}. Fig. 9 displays the results in terms of % the worst
ranked for all compared approaches.

Statistical Analysis. The circle plots displayed in the main
paper and in Fig. 9 of this supplementary material, reflects
the averaged results of all scoring (i.e. for all acceleration
and all reconstructions). However, to test if there was statis-
tical significant difference between the approaches we took
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approaches are definitely much slower than our proposed method. We can see that our approach is comparable and competitive with joint approaches although
slightly slower than the DC-CS, which, however, only computes two tasks..
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Fig. 11. Estimated motion and determinant maps of the deformation Jacobian.
This is shown for the transformation φi and its inverse φ−1

i for two datasets
(1 and 4).

into account the the scoring per each reconstruction, and
ran the nonparametric Friedman test to compare the three
approaches (for both sequential and multi-task frameworks).
We also applied corrections for multiple comparisons during
the statistical analysis. Overall, we found statistical significant
difference between our approach and the compared ones. This
supports our previous discussions on our model offering the
best reconstruction in comparison to the compared approached
for both sequential and joint models.

IV. FURTHER VISUAL EXPERIMENTS

In this section, we extend the reconstruction comparisons
from the main paper. In particular, for the sequential model
we now included Dataset 2, 4 and 5. The results are displayed
in Figs. 12, 13 and 14 in which we observe that our joint
approach successfully corrects for motion and aligns the
different acquisitions resulting in a sharp reconstruction that
contains very fine details, such as preserving the texture in the
heart and vessels in the liver and kidney. It further support the
finding from the main paper.

Moreover, we also provide further evaluation of our frame-
work against other multi-task approaches (DC-CS [20] and
GW-CS [21]). The reconstruction results are displayed at

Figs. 15, 16 and 17. In a closer look at those reconstruc-
tions, one can observe that our approach produces very sharp
reconstructions while preserving the texture in the relevant
anatomical areas. This is validated for different acceleration
factors. In contrast, DC-CS fails to carefully align the ac-
quisition as we can see from the blurring artefacts around
the edges. Additionally all the small details get blurred and
smeared out. The GW-CS seems to perform reasonably well
for fully-sampled data, however failing to remove the noise.
This is accentuated at higher reduction factors, where the
reconstructions contain significant noise which compromises
the clinical interpretation of the images.

Moreover, we present for two datasets the estimated motion
φt and its inverse φ−1

t for a given time frame in Fig. 11.
We can see that our proposed approach produces a reasonable
estimation of the motion, where the motion fields are visu-
alised by a deformation grid. Additionally, we show the corre-
sponding Jacobian determinant maps for the deformations. In
these plots, we can see that the determinants remain positive
meaning that our model ensures topology preservation both
from a mathematical and practical point of view. The values
are interpreted as follows: small deformations when values are
closer to 1, big expansions when values are greater than 1, and
big contractions when values are smaller than 1. Moreover, one
can observe that the determinants remain positive in all cases,
that is to say, our estimated deformations are physically mean-
ingful and preserve the topology as required in a registration
framework.

Finally, we also report in Fig. 10, the CPU times for the
remaining accelaretion factors. Again, we can see that our
approach allows computing a complex problem in a very
computationally tractable way. It is indeed much faster than
sequential approaches and than the GW-CS. It is comparable
to the DC-CS approach, which, however, only computes two
tasks.

V. FURTHER MATHEMATICAL DETAILS

We recall the definition of the weighted BV-space and the
associated weighted TV.

Definition 1 ([51, Definition 2]). Let w be a weight
function satisfying some properties (defined in [51]
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Fig. 12. Reconstruction results for Dataset 2 compared to sequential ap-
proaches based on rigid and hyperelastic registration, for different acceleration
factors.

and fulfilled by gt). We denote by BVw(Ω) the set
of functions f ∈ L1(Ω, w), which are integrable
with respect to the measure w(x)dx, such that:
sup

{∫
Ω
fdiv(ϕ) dx : |ϕ| ≤ w everywhere, ϕ ∈ Lip0(Ω,R2)

}
< +∞, where Lip0(Ω,R2) is the space of Lipschitz
continuous functions with compact support. We denote by
TVw the previous quantity.

A. Detailed Proof of Theorem III.1

We report the detailed proof of the Theorem III.1, from
the main paper , regarding the existence of minimisers. From
Section III.C from the main paper.

Proof. The proof is based on arguments coming from the
calculus of variations and is divided into three steps. We recall
the assumptions on gt: gt : R+ → R+, gt(0) = 1, gt is strictly
decreasing, lim

r→+∞
g(r) = 0, and there exists c > 0 such that

c ≤ gt ≤ 1 everywhere. We also have φt : Ω̄ → Ω̄ thanks to
Ball’s results [43] as seen later.
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Fig. 13. Reconstruction results for Dataset 4 compared to sequential ap-
proaches based on rigid and hyperelastic registration, for different acceleration
factors.

Coercivity inequality: We first have that

G(0, (Id)t=1,··· ,T ) = 4a1meas(Ω) + 1
2T

T∑
t=1
‖xt‖2L2(R2) < +∞.

Let u ∈ BV (Ω′), φt ∈ W, ∀t ∈ {1, · · · , T} such that
(Cu) ◦ φt ∈ BVgt,0(Ω),∀t ∈ {1, · · · , T}, we then derive a
coercivity inequality:

G(u, (φt)t=1,··· ,T ) ≥ 1

T

T∑
t=1

(a1‖∇φt‖4L4(Ω,M2(R))

+
a2

2
‖det∇φt‖4L4(Ω) +

a2

2
‖ 1

det∇φt
‖4L4(Ω)

+
1

4
‖(Cu) ◦ φ−1

t ‖2L2(Ω) + δTVgt((Cu) ◦ φ−1
t ) + αTV(u)

− 1

2
‖xt‖2L2(R2) − 3a2meas(Ω)).

Indeed, ((Cu) ◦ φ−1
t ) ∈ BVgt,0(Ω) ⊂ BV (Ω) ⊂ L2(Ω) (

[51]) with continuous embedding, and ((Cu) ◦ φ−1
t )e is the

extension by 0 outside the domain Ω of (Cu) ◦ φ−1
t , then

‖((Cu) ◦ φ−1
t )e‖L2(R2) = ‖(Cu) ◦ φ−1

t ‖L2(Ω) < +∞, and fi-
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Fig. 14. Reconstruction results for Dataset 5 compared to sequential ap-
proaches based on rigid and hyperelastic registration, for different acceleration
factors. Our reconstructions show sharper edges and finer details especially for
higher acceleration factors. Additionally, we can also notice a better contrast
preservation in our results.

nally Plancherel’s theorem gives us ‖F((Cu)◦φ−1
t )e‖2L2(R2) ≤

‖A((Cu) ◦ φ−1
t )e‖2L2(R2) = ‖((Cu) ◦ φ−1

t )e‖2L2(R2) = ‖(Cu) ◦
φ−1
t ‖2L2(Ω).

The infimum is thus finite. Let (un, (φt,n)t=1,··· ,T )n ∈
{u ∈ BV (Ω′), φt ∈ W, ∀t = 1, · · · , T | (Cu) ◦
φ−1
t ∈ BVgt,0(Ω), ∀t ∈ {1, · · · , T}} be a minimiz-

ing sequence such that lim
n→+∞

G(un, (φt,n)t=1,··· ,N ) =

inf
(u,(φt)t=1,··· ,T )∈U

G(u, (φt)t=1,··· ,T ).

Extraction of converging subsequences: From the previ-
ous coercivity inequality and the finiteness of the infimum we
deduce that:
• (φt,n)n is uniformly bounded according to n in
W 1,4(Ω,R2) for each t = 1, · · · , T by using the gen-
eralized Poincaré’s inequality and the fact that φt,n is
equal to the identity on the boundary ∂Ω.

• (det∇φt,n)n is uniformly bounded according to n in
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Fig. 15. Reconstruction results for Dataset 2 for different acceleration factors
and different joint approaches in comparison to our proposed method. We
can clearly see that our approach provides the best results in terms of sharp
structures and fine texture, while DC-CS results very blurry and GW-CS very
noisy. This is particularly accentuated for high undersampling factors.

L4(Ω) for each t = 1, · · · , T .
• ((Cun) ◦ φt,n)n is uniformly bounded according to n

in BVgt(Ω) and thus in BV (Ω) since c ≤ gt ≤ 1
everywhere for each t = 1, · · · , T .

Therefore, we can extract subsequences (but for the sake of
conciseness we keep the same notations) such that:
• φt,n ⇀

n→+∞
φ̄t in W 1,4(Ω,R2) for each t = 1, · · · , T

and by continuity of the trace operator, we deduce that
φ̄t ∈ Id +W 1,4

0 (Ω,R2).
• det∇φt,n ⇀

n→+∞
δt in L4(Ω) for all t = 1, · · · , T .

• ((Cun) ◦ φ−1
t,n) −→

n→+∞
αt in Lq(Ω) for q ∈ [1, 2[ and

thus in L1(Ω, gt) with αt ∈ BV (Ω) ⊂ BVgt(Ω). By
continuity of the trace operator, we deduce that αt ∈
BVgt,0(Ω).

• ((Cun)◦φ−1
t,n) ⇀

n→+∞
αt in L2(Ω) for each t = 1, · · · , T

by uniqueness of the weak limit in L1(Ω) and the
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Fig. 16. Reconstruction results for Dataset 4 for different acceleration factors
and different joint approaches in comparison to our proposed method. We
can clearly see that our approach provides the best results in terms of sharp
structures and fine texture, while DC-CS results very blurry and GW-CS very
noisy. This is particularly accentuated for high undersampling factors.

continuous embedding of L2(Ω) ⊂ L1(Ω). Also, since
αt ∈ BVgt,0(Ω), we can extend it by 0 outside the
domain Ω and we have ((Cun) ◦ φ−1

t,n)e ⇀
n→+∞

(αt)e in

L2(R2), for each t = 1, · · · , T .
Also, from [52, Theorem 8.20], we have that det∇φt,n ⇀

n→+∞
det∇φ̄t in L2(Ω) for each t = 1, · · · , T , and by uniqueness
of the weak limit in L2(Ω) and the continuous embedding
L4(Ω) ⊂ L2(Ω), we deduce that δt = det∇φ̄t for each t =
1, · · · , T . Also, since we have for q̃ = 2 + 1

2 > 2 :∫
Ω

‖(∇φt,n)−1(x)‖q̃F det∇φt,n(x) dx

=

∫
Ω

‖∇φt,n(x)‖q̃F (det∇φt,n)1−q̃ dx,

≤ ‖∇φt,n‖q̃L4(Ω,M2(R))

∥∥∥∥ 1

det∇φt,n

∥∥∥∥q̃−1

L4(Ω)

,
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Fig. 17. Reconstruction results for Dataset 4 for different acceleration factors
and different joint approaches in comparison to our proposed method. We
can clearly see that our approach provides the best results in terms of sharp
structures and fine texture, while DC-CS results very blurry and GW-CS very
noisy. This is particularly accentuated for high undersampling factors.

using Hölder’s inequality with p̃ = 4
q̃ , r = 4

q̃−1 and noticing
that 4(q̃−1)

4−q̃ = 4. This quantity is uniformly bounded according
to n from what precedes and we deduce from [53, Theorem
1 and 2] that (φt,n) are bi-Hölder’s homeomorphisms and
therefore φ−1

t,n exists.

Weak lower semi-continuity: WOp is convex and
continuous. If ψn −→

n→+∞
ψ̄ in W 1,4(Ω,R2), then

∇ψn −→
n→+∞

∇ψ̄ in L4(Ω,M2(R)) and we can extract

a subsequence still denoted (∇ψn) such that ∇ψn −→
n→+∞

∇ψ̄
almost everywhere in Ω. If δn −→

n→+∞
δ̄ in L4(Ω), then we can

extract a subsequence still denoted (δn) such that δn −→
n→+∞

δ̄

almost everywhere in Ω. Then by continuity of WOp, we get
that WOp(∇ψn(x), δn(x)) −→

n→+∞
WOp(∇ψ̄(x), δ̄(x)) almost

everywhere in Ω. Then by applying Fatou’s lemma,
we have that lim inf

n→+∞

∫
Ω
WOp(∇ψn(x), δn(x)) dx ≥
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∫
Ω
WOp(∇ψ̄(x), δ̄(x)) dx. Since WOp is convex, so

is
∫

Ω
WOp(ξ(x), δ(x)) dx, and we can apply [54,

Corollaire III.8] to get that
∫

Ω
WOp(ξ(x), δ(x)) dx is

lower semicontinuous in L4(Ω,M2(R)) × L4(Ω). We
deduce that lim inf

n→+∞

∫
Ω
WOp(∇φt,n(x), det∇φt,n(x)) dx ≥∫

Ω
WOp(∇φ̄t(x), det∇φ̄t(x)) dx.

Also since (Cun) ◦ φ−1
t,n −→

n→+∞
αt in L1(Ω)

and so in L1(Ω, gt), then by the semi-continuity
theorem from [51, Theorem 3.2], we conclude that
TVgt(αt) ≤ lim inf

n→+∞
TVgt((Cun) ◦φ−1

t,n) for all t = 1, · · · , T .
F is a linear operator and continuous for the strong topology
from L2(R2) to L2(R2). Therefore, by applying [54, Theorem
III.9], F is continuous from the weak topology of L2(R2) to
the weak topology of L2(R2). As ((Cun)◦φt,n)e ⇀

n→+∞
(αt)e

in L2(R2), we deduce that F((Cun) ◦ φt,n)e ⇀
n→+∞

F(αt)e

and thus F((Cun)◦φt,n)e−xt ⇀
n→+∞

F(αt)e−xt in L2(R2).
By the lower semi-continuity of the norm, we deduce that
lim inf
n→+∞

‖F((Cun)◦φt,n)e−xt‖2L2(R2) ≥ ‖F(αt)e−xt‖2L2(R2).

We now need to prove that (Cun) ◦ φ−1
t,n ◦ φt,n = Cun −→

n→+∞
αt ◦ φ̄t = Ū in Lp(Ω) for all t = 1, · · · , T . We first have :

‖(Cun) ◦ φ−1
t,n ◦ φt,n − αt ◦ φ̄t‖Lp(Ω)

≤ ‖(Cun) ◦ φ−1
t,n ◦ φt,n − αt ◦ φt,n‖Lp(Ω)

+ ‖αt ◦ φt,n − αt ◦ φ̄t‖Lp(Ω).

We now focus on the first term and make the change
of variable y = φt,n(x) ⇔ x = φ−1

t,n(y) and dy =
det∇φt,n(x) dx, dx = 1

det∇φt,n(φ−1
t,n(y))

dy :∫
Ω

|(Cun) ◦ φ−1
t,n ◦ φt,n − αt ◦ φt,n|p dx

=

∫
Ω

|(Cun) ◦ φ−1
t,n − αt|p

1

|det∇φt,n(φ−1
t,n(y))|

dy,

≤ ‖(Cun) ◦ φ−1
t,n − αt‖

p

L
5p
4 (Ω)

(

∫
Ω

1

|det∇φt,n(φ−1
t,n(y))|5

dy)
1
5 ,

≤ ‖(Cun) ◦ φ−1
t,n − αt‖

p

L
5p
4 (Ω)

(

∫
Ω

1

|det∇φt,n(x))|4
dx)

1
5 ,

using Hölder’s inequality and making another change of
variable. Since (Cun) ◦ φ−1

t,n −→
n→+∞

αt in L
5p
4 (Ω), as 5p

4 < 2,

and ‖ 1

det∇φt,n
‖L4(Ω) is uniformly bounded, we deduce that∫

Ω
|(Cun) ◦ φ−1

t,n ◦ φt,n − αt ◦ φt,n| dx −→
n→+∞

0.
According to [55, Theorem 6.70], there exists a sequence
(ξkt )k of functions in C∞c (Ω) such that ‖αt− ξkt ‖L1(Ω) −→

k→+∞
0 and

∫
Ω
|∇ξkt | −→

k→+∞

∫
Ω
|∇αt| +

∫
∂Ω
|αt| dx with∫

∂Ω
|αt| dx = 0 since αt = 0 on ∂Ω, for all t = 1, · · · , T .

Thus (ξkt ) is uniformly bounded according to k in BV (Ω) ⊂
c

Lq(Ω), for q ∈ [1, 2[, and therefore ξkt −→
k→+∞

αt in Lq(Ω)

for q ∈ [1, 2[. Let ε > 0. Thus we fix N ∈ N∗ such that
‖ξNt − αt‖L 5p

4 (Ω)
≤ ε

3 . We now have :

‖αt ◦ φt,n − αt ◦ φ̄t‖Lp(Ω) ≤ ‖αt ◦ φt,n − ξNt ◦ φt,n‖Lp(Ω)

+ ‖ξNt ◦ φt,n − ξNt ◦ φ̄t‖Lp(Ω) + ‖ξNt ◦ φ̄t − αt ◦ φ̄t‖Lp(Ω),

≤ (

∫
Ω

|αt − ξNt |p
1

|det∇φt,n(φ−1
t,n(y))|

dy)
1
p

+ Lε‖φt,n − φ̄t‖Lp(Ω,R2)

+ (

∫
Ω

|ξNt − αt|p
1

|det∇φ̄t(φ̄−1
t (y))|

dy)
1
p ,

with Lε the Lipschitz constant of ξNt since it belongs to
C∞c (Ω) and so is Lipschitz continuous, and using a change of
variable. As φt,n ⇀

n→+∞
φ̄t in W 1,4(Ω) ⊂

c
Lp(Ω,R2), there

exists K ∈ N∗ such that for any n ≥ K, ‖φt,n−φ̄t‖Lp(Ω,R2) ≤
ε

3Lε
. From now on, we assume n satisfies n ≥ K, and we use

Hölder’s inequality :

‖αt ◦ φt,n − αt ◦ φ̄t‖Lp(Ω) ≤ ‖αt − ξNt ‖L 5p
4 (Ω)

(

∫
Ω

1

|det∇φt,n(φ−1
t,n(y))|5

dy)
1
5p +

ε

3

+ ‖ξNt − αt‖L 5p
4 (Ω)

(

∫
Ω

1

|det∇φ̄t(φ̄−1
t (y))|5

dy)
1
5p ,

≤ ε

3
‖ 1

det∇φt,n
‖

4
5p

L4(Ω) +
ε

3
+
ε

3
‖ 1

det∇φ̄t
‖

4
5p

L4(Ω),

with ‖ 1

det∇φt,n
‖L4(Ω) uniformly bounded according to n and

‖ 1

det∇φ̄t
‖L4(Ω) bounded from what precedes. So by letting ε

tend to 0, we obtain that
∫

Ω
|αt ◦ φt,n −αt ◦ φ̄t|p dx −→

n→+∞
0

and consequently (Cun) ◦ φ−1
t,n ◦ φt,n = Cun −→

n→+∞
αt ◦ φ̄t

for all t = 1, · · · , N . By uniqueness of the limit, we have that
Ū = αt ◦ φ̄t ⇔ αt = Ū ◦ φ̄−1

t for all t = 1, · · · , T in Lp(Ω),
with Ū ∈ Lp(Ω) and Ū ◦ φ̄−1

t ∈ BVgt,0(Ω).
We now set ũn = 1

|Ω′|
∫

Ω′
un dx, and u0,n = un − ũn. We

clearly have
∫

Ω′
u0,n dx = 0 for all n, and TV(u0,n) =

TV(un) is uniformly bounded thanks to the coercivity inequal-
ity. We denote this uniform bound by ν. Thus using Poincaré-
Wirtinger’s inequality we obtain

‖u0,n‖L1(Ω′) ≤ c1 TV(u0,n) ≤ c1ν,

with c1 > 0. We now need a bound for ‖Cũn‖Lp(Ω):

‖Cũn‖2Lp(Ω) − 2‖Cũn‖Lp(Ω)‖C‖L(L1(Ω′),Lp(Ω))‖u0,n‖L1(Ω′)

≤ ‖Cũn‖2Lp(Ω) − 2‖Cũn‖Lp(Ω)‖Cu0,n‖Lp(Ω),

≤ (‖Cũn‖Lp(Ω) − ‖Cu0,n‖Lp(Ω))
2,

≤ ‖C(ũn + u0,n)‖2Lp(Ω),

≤ ‖Cun‖2Lp(Ω) ≤ c
2
2 < +∞,

as Cun strongly converges in Lp(Ω). Besides, we have
‖C‖L(L1(Ω′),Lp(Ω))‖u0,n‖L1(Ω′) ≤ ‖C‖L(L1(Ω′),Lp(Ω))c1ν =

c3 < +∞ and thus ‖Cũn‖Lp(Ω) ≤ 2
√
c23 + c22. But we

also know that ‖Cũn‖Lp(Ω) = 1
|Ω′| |

∫
Ω′
un dx|‖C1‖Lp(Ω) ≤

2
√
c22 + c23. Since C1 6= 0, we have 1

|Ω′| |
∫

Ω′
un dx| ≤

2
√
c22+c23

‖C1‖Lp(Ω)
= c4 < +∞. We therefore have

‖un‖L1(Ω′) ≤ ‖u0,n +
1

|Ω′|
|
∫

Ω′
un dx|‖L1(Ω′),

≤ ‖u0,n‖L1(Ω′) + |
∫

Ω′
un dx|,

≤ c1ν + c4|Ω′| < +∞.
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Thus un is uniformly bounded according to n in BV (Ω′)
and there exists a subsequence still denoted (un) such that
un −→

n→+∞
ū in L1(Ω′) with ū ∈ BV (Ω′). By continuity of

the operator C and the uniqueness of the limit, we deduce
that Cun −→

n→+∞
Cū = Ū in Lp(Ω). By the semi-continuity

theorem, we get TV(ū) ≤ lim inf
n→+∞

TV(un).
By combining all the results, we obtain that
+∞ > inf

(u,(φt)t=1,··· ,T )∈U
G(u, (φt)t=1,··· ,T ) =

lim inf
n→+∞

G(un, (φt,n)t=1,··· ,T ) ≥ 1
T

T∑
t=1

δTVgt((Cū) ◦ φ̄−1
t ) +

1
2‖F((Cū)◦φ̄−1

t )e−xt‖2L2(R2) +
∫

Ω
WOp(∇φ̄t) dx+αTV(ū).

It thus means that det∇φ̄t ∈ L4(Ω), 1

det∇φ̄t
∈ L4(Ω), and

det∇φ̄t > 0 almost everywhere in Ω for all t = 1, · · · , T .
Indeed, since WOp(∇φ̄t(x), det∇φ̄t(x)) = +∞ when
det∇φ̄t(x) ≤ 0, it means that the set on which it
happens must be of null measure otherwise we would
have

∫
Ω
WOp(∇φ̄t, det∇φ̄t) dx = +∞. Also, by applying

the same reasoning for each φt,n, we prove that φ̄t is a
bi-Hölder homeomorphism and have that φ̄t ∈ W for each
t = 1, · · · , T .
We thus have proved the existence of minimisers for our
problem (4).
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