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A B S T R A C T

Congenital heart disease (CHD) is the most common birth defect and the leading cause
of neonate death in China. Clinical diagnosis can be based on the selected 2D key-frames
from five views. Limited by the availability of multi-view data, most methods have to
rely on the insufficient single view analysis. This study proposes to automatically analyze
the multi-view echocardiograms with a practical end-to-end framework. We collect the
five-view echocardiograms video records of 1308 subjects (including normal controls,
ventricular septal defect (VSD) patients and atrial septal defect (ASD) patients) with both
disease labels and standard-view key-frame labels. Depthwise separable convolution-
based multi-channel networks are adopted to largely reduce the network parameters. We
also approach the imbalanced class problem by augmenting the positive training samples.
Our 2D key-frame model can diagnose CHD or negative samples with an accuracy of
95.4%, and in negative, VSD or ASD classification with an accuracy of 92.3%. To further
alleviate the work of key-frame selection in real-world implementation, we propose
an adaptive soft attention scheme to directly explore the raw video data. Four kinds
of neural aggregation methods are systematically investigated to fuse the information
of an arbitrary number of frames in a video. Moreover, with a view detection module,
the system can work without the view records. Our video-based model can diagnose
with an accuracy of 93.9% (binary classification), and 92.1% (3-class classification)
in a collected 2D video testing set, which does not need key-frame selection and view
annotation in testing. The detailed ablation study and the interpretability analysis are
provided.

The presented model has high diagnostic rates for VSD and ASD that can be potentially
applied to the clinical practice in the future. The short-term automated machine learning
process can partially replace and promote the long-term professional training of primary
doctors, improving the primary diagnosis rate of CHD in China, and laying the foundation
for early diagnosis and timely treatment of children with CHD.

© 2021 Elsevier B. V. All rights reserved.
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1. Introduction

Congenital heart disease (CHD) is a cardiovascular malforma-
tion caused by abnormal development of the embryonic heart
and vascular tissue (van der Linde et al., 2011). It is the most
common birth defect in China and the leading cause of neonate
and child death (Dai et al., 2011). The incidence of CHD is about
0.5-0.7% in China, among all subtypes, ventricular septal defect
(VSD) and atrial septal defect (ASD) are the most common ones
(Yang et al., 2009; Wu et al., 2014). Early screening and accurate
diagnosis of CHD are essential to reduce the risk of this disease
(Pruetz et al., 2019), and most of the simple CHDs can be cured
by timely surgery (WU et al., 2006). With recent improvement
of medical level in China, CHD has received increasing atten-
tion. Some pregnant women with environmental risk factors
undergo fetal echocardiogram during pregnancy, which enables
early diagnosis of this part of CHD (Zhang et al., 2015; Zhao
et al., 2014).

Diagnosis of CHD during early childhood depends on multi-
view echocardiograms (Sun et al., 2015). Complex CHD often
presents obvious echocardiogram abnormalities, which can be
more easily recognized by doctors at primary hospitals, allowing
a timely transfer of the patients to superior professional chil-
dren’s hospitals. However, owing to the lack of experienced
cardiac sonographers, there remain a large number of children
with delayed diagnosis of CHD, especially simple subtypes like
ASD and VSD. The delayed or missed diagnosis may result
in repeated pneumonia (Luo et al., 2019), the missing of the
best timing of surgery, making a serious impact on children’s
prognosis and future life (Chang et al., 2008).

With sufficient data and the emergence of novel data driven
learning algorithms, machine learning technology can make up
for the missed diagnosis of CHD caused by the lack of profes-
sional doctors in echocardiogram (Litjens et al., 2019). Recent
researches on automated analysis of the abnormality of the heart
structure usually focus on the single-view two-dimensional pho-
tographs or dynamic images of the echocardiogram (Zheng et al.,
2008; Pereira et al., 2017; Maraci et al., 2018). However, the clin-
ical diagnosis of CHD obtained from a single view can be hardly
reliable, therefore a multi-view joint diagnosis is necessary (Lai
et al., 2006).

In this study, we collect a dataset with 1308 children multi-
view echocardiogram video records and the key-frame of each
video is labeled by an experienced doctor. With the help of this
well-organized dataset, we propose to make automated diagnosis
in an end-to-end manner. Although the convolutional neural
networks (CNN) have shown tremendous success in processing
two dimensional (2D) echocardiograms, the processing of multi-
view ultrasound images is under-explored (Liu et al., 2019a).

A multi-channel CNN is constructed for the automated analy-
sis of five views of ultrasound heart images, which summarizes
the information in each view with the pointwise convolution. We
explore the five views jointly to diagnose CHD. To the best of
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our knowledge, this is the first effort to use five 2D echocardio-
grams views to assist with the deep learning-based automated
diagnosis of CHD.

Moreover, it is well known that deep learning is data starved.
The limited training data cannot support the training of network
with a large number of parameters, and usually results in over-
fitting. To alleviate this problem in our task, the Depthwise
Separable Convolution (DSC) (Howard et al., 2017) is adopted
to largely reduce the network parameters. Other than the rela-
tively limited training samples, the number of collected negative
samples is usually larger than the number of positive (VSD and
ASD) samples. We approach the imbalanced class problem by
augmenting the positive training samples.

To alleviate the manual labeling of the key-frame, we further
propose to process the raw videos without the need of key-frame
labels and view class labels. We analyzed a series of aggregation
framework to adaptively process the video data and achieve
the comparable performance as the key-frame based version.
Moreover, the key-frame labels in our dataset can also be utilized
to guide the aggregation. Besides, a view detection module can
be added to automatically classify the collected views and put
them in order for the corresponding view-specific encoder.

This study aims to investigate the 2D echocardiograms analy-
sis with five standard views. We collect the most common VSD
and ASD as examples, and provide a serial of strong baseline
methods. The contributions of this work can be summarized as
follows:

• We collect the first large scale CHD dataset for five-view
two-dimensional echocardiograms analysis. Both the raw
video and the experienced doctor labeled key-frame ver-
sions are provided.

• A series of powerful baselines to explore both the key-
frame-based and video-based multi-view diagnose. The
depthwise separable convolution-based efficient multi-
channel CNN architecture can utilize the limited data to
achieve satisfactory multi-view diagnosis performance.

• In this paper, we propose a novel soft-attention framework
to process video frames with or without the key-frame label
in the training, while we do not need key-frame labeling
and view labels in the testing stage. Four practical video
aggregation schemes are investigated to explore the infor-
mation among the variable number of frames.

• We also demonstrate that the proposed attention mechanism
provides fine-scale attention maps that can be visualized,
with minimal computational overhead, which helps with
the interpretability of predictions.

2. Related work

Deep learning for echocardiograms. With the rapid devel-
opment of machine learning, automated machine analysis and
interpretation technology is increasingly used in medicine (Liu
et al., 2019a). More and more researchers are turning their at-
tention to the data analysis and identification of medical images
(De Fauw et al., 2018; Esteva et al., 2017; Bejnordi et al., 2017).
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Table 1. The statistics of collected patient samples. VSD: ventricular septal
defect; ASD: atrial septal defect. Testing set is consisted with 82 healthy
control subjects, 21 ASD subjects and 28 VSD subjects.

Healthy control ASD VSD
A4C 823 209 276
PSLAX of left ventricle 820 171 218
PSSAX of aorta 764 166 243
SXLAX of two atria 625 102 100
SSLAX of aortic arch 641 84 99

Early attempts extract the handcrafted features from a car-
diovascular image (Maraci et al., 2017) and fed them to the
statistical classifier, e.g., support vector machine (Cortes and
Vapnik, 1995). The feature for CHD prediction is usually de-
scribing the texture and shape characteristics (Criminisi et al.,
2009; Zheng et al., 2008). The kernel dynamic texture models
have been applied to label each individual ultrasound image
(Kwitt et al., 2013).

Recently, convolutional neural networks based deep learning
gained enormous successes in image analysis tasks (Liu, 2020;
Liu et al., 2019e). Instead of designing the feature by humans
and subsequently feeding it to a prediction model, deep learn-
ing proposes to simultaneously learn relevant features and the
prediction model from the raw image in an end-to-end fashion
(LeCun et al., 2015; Che et al., 2019; He et al., 2020; Han et al.,
2020; He et al., 2020).

Related studies have shown that using deep neural networks,
machines can effectively identify abnormalities from ultrasonic
views (Litjens et al., 2019; Liu et al., 2020a, 2019d, 2018b,
2020b). Diller et al. use a four-convolutional-layer CNN to
process a single image to assess patients with a systemic right
ventricle (Diller et al., 2019).

At present, researchers focus on two-dimensional photographs
or dynamic images of the echocardiogram and explore the in-
telligent recognition method and diagnostic performance for
abnormality of the heart structure (Zheng et al., 2008; Pereira
et al., 2017; Maraci et al., 2018). The most closely related work
is that of Zhang et al. (Zhang et al., 2018), which use two
neural network branches to diagnose PSLAX, PSSAX, apical
2-chamber, apical 3-chamber, and A4C images for hypertrophic
cardiomyopathy and cardiac amyloid.
Image set based recognition. A video can be considered as
an image set with ordered images and has been actively stud-
ied. (Yang et al., 2017; Liu et al., 2017) compute a score for
each image with neural image assessment modules. Then, a
set of features are aggregated to a fixed size feature vector via
weighted average pooling. Without inner-set interactions, this
may result in redundancy and sacrifice the diversity in a set.
(Liu et al., 2018a) proposes to exploit the inner-set relationship
using reinforcement learning. However, its decision is based on
the incomplete observation of the averaged features. Besides,
the reinforcement learning itself is usually unstable (Henderson
et al., 2017), the feature dimension is necessary to be compacted
from 1024 in its GoogleNet backbone (Szegedy et al., 2016) to
128 which undoubtedly weakened its representation ability.
Self-attention and non-local. As attention models grew in

Fig. 1. The key frame selection flowchart. We take an A4C view of an ASD
patient as an example.

popularity, (Vaswani et al., 2017) developed a self-attention
mechanism for machine translation. It calculated the response
at one position as a weighted sum of all positions in the sen-
tences. A similar idea is also inherited in the non-local algorithm
(Buades et al., 2005), which is a classical image denoising tech-
nique. The interaction networks also developed for modeling
the pair-wise interactions (Battaglia et al., 2016; Hoshen, 2017;
Watters et al., 2017; Yang et al., 2018). Moreover, (Wang et al.,
2018) proposes to bridge self-attention to the more general class
of non-local filtering operations. (Zhou et al., 2018) proposes
to learn temporal dependencies between video frames at mul-
tiple time scales. Inspired by above works, we further adapted
this idea to the multi-view echocardiograms video analysis with
variable lengths.

Temporal modeling is widely used in video classification, video-
based identification and temporal action detection etc. (Zhou
et al., 2017) proposes to model the temporal information between
frames using a recursive neural network (RNN). The 3D CNN is
later developed to extract spatial-temporal features from video
clips directly (Tran et al., 2015). However, it is not compatible
with our attention-based module. Two types of temporal atten-
tion methods have been recently developed. The first method
uses spatial convolution first followed by the fully connected
(FC) layers (Liu et al., 2017). The FC layers limit the model
to fixed length video clip. The second approach chooses the
temporal convolution instead of FC (Gao and Nevatia, 2018).
(Gao and Nevatia, 2018) uses temporal convolution for person re-
identification with fixed length clip, we show that it is promising
for echocardiograms video analysis with variable lengths.
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Fig. 2. The key frame selection results of different views. From left to right:
A4C, PSLAX and SXLAX view. From top to bottom: normal controls, VSD
patients and ASD patients.

3. Methodology

3.1. Standard collection of cardiac ultrasound image data

Totally 1308 children (823 healthy controls, 209 VSD and
276 ASD) are collected from Beijing Children’s hospital. Each
patient has the echocardiogram video records from 1 to 5 views
that can be sufficient for diagnosis (shown in Table 4). Besides, a
single high-quality 2D frame in a video of each view is selected
by the doctor to construct a 2D echocardiogram dataset.

The patient was placed in the supine position and the chest
was exposed for the echocardiogram. We used PHILIPS iE 33,
iE Elite, and EPIQ 7C (Philips Electronics Nederland B.V.) as
instruments. The transducers frequency was ranging from 3-8
MHz. According to the heart segmental approach, the heart po-
sition, atrial position, and ventricular position were determined,
and the connection relationship between the atria, ventricle, and
aorta was analyzed. The atrial septum and ventricular septum
were observed for whether had defects, and cavity or pulmonary
venous return was noted. Five standard 2D views, the paraster-
nal long axis view (PSLAX) of left ventricle, the parasternal
short-axis view (PSSAX) of aorta, the apical four chambers view
(A4C), the subxiphoid long axis view (SXLAX) of two atria and
the suprasternal long-axis view (SSLAX) of aortic arch were
collected.

All patients’ diagnosis was confirmed by either at least two
senior ultrasound doctors or intraoperative final diagnosis. The
study protocol was approved by the Ethics Committee of Beijing
Children’s Hospital (No. 2019-k-342).

The originally collected videos of each view are three cardiac
cycles. To facilitate the processing, we also sampled a subset
by randomly crop a clip of 0.8 seconds for each view. Since the
cardiac cycle of the child is typically from 0.5-0.6s, the clip of
0.8 can usually have and only have one complete cardiac cycle
and one key-frame. The originally collected video dataset has a
different video length for different patients and different views.

Actually, the labeling of cardiac cycles is very costly in real-
world implementations. Besides, taking many cardiac cycles as

Fig. 3. Data pre-processing flowchart.

input will be very redundant. Considering we are using the same
instrument for collection, the temporal resolution is consistent
for all of the samples. The final dataset has two versions, i.e., the
original video and the cropped video. We utilize the cropped ver-
sion for our video-based experiments, while the original version
is possible to support more sophisticated settings.

The key-frame is manually selected by the experienced doctor.
We selected the isovolumic relaxation phase as a key-frame when
the ventricles finish contracting and start to relax, the defects of
VSD and ASD both could be shown clearly at that time. The
flowchart in Fig. 1 could show the key-frame selection process,
and the selected samples of different views are shown in Fig. 2.

We select 10% patients to construct our fixed testing set (i.e.,
82 healthy control, 21 ASD and 28 VSD patients) in a patient-
independent manner. That means the videos or keyframes used
in training will not be incorporated in testing. Noticing that all
our selected testing patients have all the five views original video
records or selected key-frame.

3.2. Pre-processing

Each frame in the video or the selected keyframe is a
two-dimensional echocardiogram with color instrument marks,
which is essentially the three-channel RGB image. We first
processed each frame to a single-channel grayscale image, and
the region of interest (ROI) is cropped to remove the irrelevant
parts. Because the collected ultrasonic image is a circular sector
and some labels cannot be removed by rectangular cropping, a
mask is designed to cover these factors. This is necessary, since
only the positive samples have electrocardiogram record in our
dataset and the CNNs can easily discriminate the samples ac-
cording to this clue. To align with the input of CNNs, the masked
ROI is resized to 128×128. The flow chart of pre-processing
is shown in Figure 3. We use the same pre-processing for the
image of each view and concatenate these five images following
fixed order: PSLAX of left ventricle, PSSAX of aorta, A4C,
SXLAX of two atria and SSLAX of aortic arch. Noticing that
each view only has one image in our 2D echocardiogram dataset.

3.3. Key-frame based multi-view echocardiograms analysis

DSC for multi-view echocardiograms
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Table 2. Multi-channel DSC network architecture. dw denotes the depth-
wise convolution with size H ×W, and keep the same for N channels. pw
denotes the point-wise convolution with size 1× 1× N. We note that the first
layer uses the conventional convolution with stride size 2 as in Howard et al.
(2017).

Input Size Type / Stride Filter Shape
128 × 128 × 5 Conv / s2 32 kernels of 3 × 3 × 5
64 × 64 × 32 Conv dw / s1 32 kernels of 3 × 3 dw
64 × 64 × 32 Conv pw / s1 64 kernels of1 × 1 × 32 pw
64 × 64 × 64 Conv dw / s2 64 kernels of3 × 3 dw
32 × 32 × 64 Conv pw / s1 128 kernels of1 × 1 × 64 pw
32 × 32 × 128 Conv dw / s2 128 kernels of 3 × 3 dw
16 × 16 × 128 Conv pw / s1 128 kernels of 1 × 1 × 128 pw
16 × 16 × 128 Conv dw / s2 128 kernels of 3 × 3 dw
8 × 8 × 128 Conv pw / s1 128 kernels of 1 × 1 × 128 pw
8 × 8 × 128 Flatten N/A
8192 FC1 1024
1024 FC2 128
128 Classifier Softmax; 2 or 3-dim

It is well known that neural networks are trained to approxi-
mate a mapping function by concatenation of multiple-layer sim-
ple non-linear functions and that the deeper structure is usually
more powerful with respect to representational ability. However,
deep learning is data starved. Thus, the limited training data
cannot support tuning of the network with a large number of
parameters, and usually results in overfitting. To alleviate this
problem in our congenital cardiovascular disease diagnosis task,
the Depthwise Separable Convolution (DSC) (Howard et al.,
2017) is adopted to largely reduce the network parameters.

We give a detailed comparison of the standard and depth-
wise separable convolution in Figure 4. In DSC the convolution
process is broken down into two operations: depth-wise convo-
lutions and point-wise convolutions. In depth-wise operation,
convolution is applied to a single channel at a time unlike stan-
dard CNN’s in which it is done for all the N channels.

Noting that the DSC is originally designed for RGB data,
which differs from our input, we inherit the idea of the DSC to
construct our multi-channel CNN.

The widely used AlexNet (Simonyan and Zisserman, 2014)
has 60 million to-be-learned parameters, while the DSC (with
width multiplier 0.50) (Howard et al., 2017) can achieve compa-
rable performance in the ImageNet object classification dataset
using only 1.32 million parameters.
Network structure design

The diagnosis of congenital cardiovascular disease is more
challenging than a common object recognition task because of
its multi-view data structure as well as the relatively limited and
unbalanced training sample.

The decision is based on five views, which can incorporate
more complementary information than a single view-based diag-
nosis. However, this also introduces the challenge of information
fusion. We propose to concatenate the five views sequentially
and produce a matrix with size 128×128×5. A five-channel
CNN, as shown in Figure 5, is developed to take the concate-
nated matrix as input. Each DSC block incorporates a depthwise
convolution and a pointwise convolution. After a few DSC lay-
ers, the feature maps will be flattened as the feature vector that
will be processed by two fully connected layers with sizes 1024
and 128, respectively. The detailed network structure is given in

Table 3. Multi-branch DSC network architecture. Each channels are pro-
cessed by the independent convolutional layers and concatenated in the first
fully connected layer.

Input Size Type / Stride Filter Shape
Five 128 × 128 × 1 Conv / s2 5-group of 32 kernels of 3 × 3 × 1
Five 64 × 64 × 32 Conv dw / s1 5-group of 32 kernels of 3 × 3 dw
Five 64 × 64 × 32 Conv pw / s1 5-group of 64 kernels of1 × 1 × 32 pw
Five 64 × 64 × 64 Conv dw / s2 5-group of 64 kernels of3 × 3 dw
Five 32 × 32 × 64 Conv pw / s1 5-group of 128 kernels of1 × 1 × 64 pw
Five 32 × 32 × 128 Conv dw / s2 5-group of 128 kernels of 3 × 3 dw
Five 16 × 16 × 128 Conv pw / s1 5-group of 128 kernels of 1 × 1 × 128 pw
Five 16 × 16 × 128 Conv dw / s2 5-group of 128 kernels of 3 × 3 dw
Five 8 × 8 × 128 Conv pw / s1 5-group of 128 kernels of 1 × 1 × 128 pw
Five 8 × 8 × 128 Flatten N/A
40960 FC1 5120
5120 FC2 128
128 Classifier Softmax; 2 or 3-dim

Table 2.
We note that the multi-branch framework can be an alternative

to the multi-channel network. In the multi-branch framework
(Lee et al., 2016), each of the five views is passed through an
independent neural network to create high-level features, which
are then combined at the end of the network before making a
final prediction.

Following the comparison setting in (Lee et al., 2016), we con-
figure the convolutional layers for the view-independent branch,
and the fully connected layers for the merged feature processing
network. Considering the input sample of each branch has a size
of 128×128×1, we change the first convolutional layer to the 32
kernels with the size of 3× 3× 1 kernels. With five branches, we
have five 8 × 8 × 128 to be fused feature maps. As in (Lee et al.,
2016), we concatenate the five flatted 8192-dimensional vectors
and followed by the first fully connected layer. The detailed
network structure of multi-branch DSC is detailed in Table 3.

Our paper proposes to explore the CHD diagnosis with multi-
view echocardiograms, and develop a powerful baseline model.
The multi-channel scheme can adaptively learn the information
fusion in each layer, instead of the simple concatenation in a fully
connected layer (Lee et al., 2016). Actually, the different views
of echocardiograms also share some similarities. Therefore, the
filters learned in a view may potentially be helpful in the other
view. Moreover, the multi-channel model with a single-branch
can have significantly fewer parameters than the multi-branch
counterpart. The fewer parameter is important for the limited
training data. Besides, the memory cost of the multi-channel
module is much fewer than the multi-branch module. We note
that the multi-channel model is not applicable for heterogeneous
inputs (e.g., image and EEG data), since they require different
network structure for different inputs. With sufficiently training
data, the performance of multi-branch and multi-channel are
usually similar for homogeneous input (Lee et al., 2016).

For binary classification (negative or positive), we use the
sigmoid function as the output unit and optimize the network
with binary cross-entropy loss.

For the three-class classification (negative, ASD and VSD),
we use the transfer learning from binary task. We choose the best
pretrained binary classification model and configure its output
layer as three neural units followed by a SoftMax function. The
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Fig. 4. Illustration of the convolution operation. a. the standard convolution;
b. the Depthwise Separable Convolution.

network is fine-tuned with multiclass cross-entropy loss. To save
time, the CNNs could initially be trained to solve the 3-class
task and their outputs could be then merged to get the binary
prediction results.
Balancing classes with data augmentation In the three-class
classification case, the number of collected negative samples is
almost four times larger than that of VSD or ASD. The richer
source of the healthy control sample is common in many medi-
cal tasks. However, the unbalanced data distribution potentially
results in the inference of network bias to the negative class.
Therefore, we propose augmentation of the positive training
samples by constructing “virtual” positive patients using a differ-
ent combination of the original positive patients in the training
set. We note that the testing set is always fixed with the orig-
inal five views. Specifically, for the training samples without
all five views, we randomly sample the missed views from the
other patients in the same class (i.e., negative, ASD and VSD)
to construct more patient samples. Since the original 1 to 4
views can be sufficient for diagnosis, the added view from the
same class will not change the disease class. In our experimental
settings, we construct 4 times positive (VSD+ASD) samples
of the original positive patients to achieve a balanced training
distribution.

3.4. Video based multi-view echocardiogram analysis
Keyframe selecting can always be costly, and the automatic

analysis of multi-view videos in an end-to-end fashion is nec-
essary when large scale samples are collected. Therefore, we
propose to investigate the possible deep aggregation frameworks
for our video-based multi-view two-dimensional echocardio-
gram analysis. The basic idea is to assign a larger weight for the
more important frame in the diagnosis procedure.

The overall framework is shown in Figure 6. The video of
each view is feed to a view-specific encoder to extract the frame-
independent feature representations. For example, the k A4C
frames xk

A4C is encoded to k f k
A4C feature vectors. This is a typical

solution for dimension reduction and information compressing
(Liu et al., 2019b, 2018a). Specifically, it embeds the images
into latent space independently and generates the corresponding
feature sets { f k

A4C}, where f k
A4C ∈ RH×W×D, k ∈ 1, 2, · · ·K in-

dicates the K frames, H, W and D are the height, width and

Fig. 5. Illustration of the multichannel convolutional neural networks for
key frame-based multi-view diagnosis.

channel dimension of our representation, respectively. Em-
pirically, we use the convolutional layers of key-frame based
model DSC as our encoder (e.g., EncA4C), and the size of xk

A4C
is H = 8,W = 8,D = 128.

Then, a feature aggregation module is applied to the features
of each frame and produces a representation of this view. The
ordered representations for all five views are concatenated to the
later disease classifier Clsd for binary or three-class classifica-
tion. We adapted four possible feature aggregation modules for
our video-based echocardiogram analysis.
Frame-independent aggregation

The first is frame-independent aggregation (Yang et al., 2017),
which uses a neural quality assessment module to assign a weight
for each frame (Figure 9). Then, the features are averaged accord-
ing to the weight. The f k

A4C is flattened to an 8192-dimensional

vector f k
A4C and followed by the weight assignment network

(Yang et al., 2017). We also chose the two-block neural network
as in (Yang et al., 2017) for weight assignment.

The first attention block is the linear transformation with
softmax normalization ak

A4C =
exp(ek

A4C )∑
j exp(e j

A4C )
and ek

A4C = qA4C
T f k

A4C ,

where ak
A4C ∈ R, vector qA4C has the same size as a single feature

f k
A4C . Then, the weighted sum of f k

A4C with the weights ak
A4C is

calculated to form the aggregated feature rA4C =
1
K
∑

k ak
A4C f k

A4C ,
where rA4C is also a 8192-dimensional vector, k is the index of
K frames.

With the linear aggregated rA4C , the nonlinear block applies
the tanh operation to calculate the final aggregation f̃A4C =

tanh(wT rA4C + b), where w and b are the weight and bias term
of linear neural unit.

The aggregated 8192-dimensional feature representation f̃A4C

is concatenated with the feature vector of the other views and
followed by the fully connected layer. We also use the two-layer
fully connected layers with the size of 1024 and 128 as in image-
based classification settings. The frame-independent weighting
scheme has a simple structure and each frame can be processed
parallel. However, the assessment is only based on a single
frame input and cannot consider the inter-frame relationship.
Actually, the neighboring frames in the echocardiogram video
are closely related and follows the cardiac cycle.
Recurrent neural network

The recurrent neural network (RNN) is a well-established
method for video processing. Although its training can be un-
stable and the processing is relative slow (Yang et al., 2017; Liu
et al., 2018a).

We propose to use RNN to assign the weight of each frame
by considering the correlations with the neighboring frames. We
adapt our video-based attention scheme based on RNN as shown
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Fig. 6. The overall framework of video-based multi-view two-dimensional echocardiograms analysis. The view classification module adopts the same
backbone as the view-independent encoder.

Fig. 7. The frame-independent aggregation module used for video-based
echocardiogram analysis.

in Figure 8. The f k
A4C is also flattened to an 8192-dimensional

vector f k
A4C and followed by the RNN.

Specifically, the bi-directional long short-term memory net-
work is employed as the recurrent layer, which takes the se-
quential feature vectors as inputs and produces a sequence of
activations. Then, the activations are normalized via the soft-
max. It is a typical solution for sequential data, but usually takes
much more processing time in both training and testing, and
hard to train (Liu et al., 2019c). Actually, the cardiac cycle in
echocardiogram videos is important for keyframe selection.
Non-local aggregation

Considering the training difficulty of RNN and information
loss along with the recurrent scheme, we propose to utilize the
non-local aggregation framework which can take an arbitrary
number of frames as input and adaptively learn a complemen-
tary representation by considering the redundancy between each
frame. A shown in Fig. 9, the non-local block receives K ex-
tracted features { f k

A4C} and restructuring them based on inner-set
correlations. { f k

A4C} are deterministically computed from the
image set {xk

A4C}, they also inherit and display large variations
and redundancy.

For K feature maps, there are K × 8 × 8 positions in the HW
plane. Following (Wang et al., 2018), we use i ∈ {1, 2, · · · ,K ×
8×8} to index the position whose response is to be computed, and
j is the index that enumerates all of the other possible positions.

We omit the superscript k and subscript A4C for simply and
use fi ∈ R1×1×128 denote the feature vector at position i. After

Fig. 8. The recurrent neural network module used for video-based echocar-
diogram analysis.

the to be processed fi is chosen, there are K × 8 × 8 − 1 possible
to be compared features which are denoted by f j ∈ R1×1×128.
The non-local block can be formulated as

f ′i = w[
1
Ci

∑
∀ j

e f T
i f j g(xi)] + fi

Ci =
∑
∀ j

e f T
i f j (1)

where the scalar e f T
i f j ∈ R is the dot-product similarity of fi and

f j. We can also use the Euclidean distance to model the rela-
tionship of fi and f j, but the dot-product similarity is more
implementation-friendly in modern deep learning platforms.
g( fi) is an embedding function, which applies the point-wise
1 × 1 × 128 convolutions to f j, and output a vector with the size
of 1 × 1 × 128. Ci is a normalization term. w ∈ R1×1×128 is a to
be learned weight vector.

For a specific fi, we traverse its K × 8 × 8 − 1 possible neigh-
boring fi to compute 1

Ci

∑
∀ j e f T

i f j g(xi). After the processing
of a non-local block, fi is reconstructed to f ′i ∈ R1×1×128. By
traversing all K × 8 × 8 fi, the non-local block output K feature
maps, each with the size of 8 × 8 × 128. Then, the global pool-
ing (Wang et al., 2018) is applied for these K feature maps to
calculate the element-wise average.
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Fig. 9. The non-local aggregation module used for video-based echocardio-
gram analysis.

Temporal convolution Considering the complicated processing
of the RNN and non-local modules, we propose to utilize the
temporal convolution (Bai et al., 2018) to explore the neighbor-
ing relationships. Specifically, we adapt it to assign the attention
score for aggregations as shown in Figure 10. It is introduced as
a more efficient alternative for RNN (Gao and Nevatia, 2018).

Following (Gao and Nevatia, 2018), we first apply 64 spatial
convolution kernels with the size of 8 × 8 × 128 for each input
feature map as the first layer to summarize the spatial informa-
tion and produce a 1× 1× 128 feature vector for each frame. We
note that the spatial convolution is shared for all frames.

Then, we concatenate K feature vectors to a spatial-temporal
feature map with the size of k×1×1×128. It is followed by two
temporal convolution layers with padding and stride size is set to
1. The first layer uses 64 temporal convolution kernels with the
size of 3×1×1×128, where 3 is for the time sequence direction,
and the last three-dimension matches the size of the input frame-
wise feature vector. Actually, each temporal convolution kernel
output a K-dimensional vector which can be directly used as the
attention score. However, the convolutional window for time
direction is limited to three. To further enlarge the reception field
in the time direction, we adopt the multiple temporal convolution
layers as in (Bai et al., 2018). For the input of 64-dim features,
i.e., the input matrix has the size K × 1 × 1 × 64, the second
layer temporal convolution kernel has the size of 3 × 1 × 1 × 64.
The dimension of the output vector is equal to the number of
frames in a video K. We use softmax to get the normalized
attention score.

We note that the receptive field of temporal convolution is
relatively small compared to the RNN. However, the redundancy
in the video is mostly confined to neighboring frames. It can
be a good balance of exploring the sequential relationship and
processing speed.
Network and training details. The encoder and disease classi-
fier Clsd use the same backbone as the image-based setting (i.e.,

Fig. 10. The temporal convolution module used for video-based echocardio-
gram analysis.

AlexNet or DSC) for a fair comparison. The key-frame label
in the training set can also be used as an additional signal to
guide the neural aggregation modules, e.g., frame-independent
aggregation, recurrent neural network, temporal convolution.
Actually, the key-frame-based diagnosis is essentially a hard
attention scheme that assigns 100% attention in the key-frame
and 0% for the others. Since we know which frame should
have a large weight (i.e., 100%), the difference between the pre-
dicted weights and the expert labeled weight can be used as an
additional L2 loss for optimization.

3.5. View classification

Moreover, the view-specific encoder requires the collected five
videos to be ordered with their view labels. A practical way is
letting the user or clinician note the view in the collection stage or
label the view based on collected echocardiograms. To alleviate
the labeling task in real-world application and double-check
the possible mislabeling of views, we propose an additional
multi-view classification module.

The view classification module is used to predict the five
echocardiograms views. Based on the view classification result,
the five views are ordered and feed to their corresponding view-
specific encoders.

The backbone structure of view classification module is the
same as the normal/patient classifier, but without the multi-view
feature concatenation and the Clsv has five output units for five
views instead of 2 or 3.We note that the aggregation in view-
classification is the same as the diagnosis network in all of our
network settings.

We note that the dataset has one video for each view. In
some cases, more than one video may be classified to the same
view and some of the other views are empty. For example, two
videos’ Clsv softmax prediction has the maximum probability
for the PSLAX view. Considering the softmax probability well
calibrates the prediction confidence Zou et al. (2019), we com-
pare the maximum probability and choose the larger one as the
PSLAX view, while another video is assigned to the empty view.

The view classification for image-based diagnose is relatively
redundant, since the user/doctor needs to know the view, and
then make the key-frame selection. With the view classifier, our
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Table 4. Performance of the disease classification task. The threshold for bi-
nary classification is 0.5, while we use argmax function to choose the largest
probability in softmax output as the prediction of 3-class classification. VSD:
ventricular septal defect; ASD: atrial septal defect; A4C: the apical four
chambers view; DSC: Depthwise Separable Convolution.

Methods

Binary classification 3-class classification
(Negative / VSD+ASD) (Negative / VSD / ASD)
ACC AUC ACC

AlexNet (A4C view only) 0.840 0.806 0.817
AlexNet (Multi-branch) 0.893 0.843 0.876
AlexNet 0.895 0.845 0.878
DSC (A4C view only) 0.885 0.813 0.855
DSC (Multi-branch) 0.946 0.918 0.916
DSC ( 1

5 Multi-branch) 0.935 0.904 0.907
DSC 0.947 0.918 0.917
DSC (w/o transfer learning) 0.939 0.924 0.908
DSC+Augmentation 0.954 0.942 0.923

Fig. 11. Comparison of the DSC and AlexNet baseline with respect to ROC
curves in the binary classification setting, when using five convolutional
layers and a 128×128 input image size.

video-based diagnose system can take unordered five videos as
input and automatically make the prediction.
4. Experiments and results

4.1. 2D key-frame testing set analysis

To investigate the diagnostic performance, we evaluate the
neural network system in both binary and three-class classifica-
tion settings. We choose the AlexNet as our baseline, which is a
widely used structure but has significantly more parameters. As
shown in Table 4, use of the DSC as the backbone outperforms
the AlexNet baseline by 5.4% with respect to testing accuracy
in the binary classification setting. More appealing, DSC is 45
times smaller and 9.4 times less compute than AlexNet. The pos-
itive data augmentation can efficiently improve the performance
without sophisticated algorithms.

We note that the results of multi-channel network is compara-
ble or even better than the multi-branch model. Moreover, the
multi-channel model has a fifth of parameters in the convolu-
tional layers.

Moreover, we propose to configure a multi-branch DSC net-
work that has roughly the same parameters of our multi-channel
DSC. Specifically, we use 7, 7, 14, 14, 28, 28, 28, 28, 28 ker-
nels for each DSC layers instead of 32, 32, 64, 64, 128, 128,

Table 5. Confusion matrix of the key-frame-based binary classification task
with DSC+Augmentation when setting the threshold with respect to ỹ= 0.5.

y=Negative y=Positive
ỹ= Positive 0.061 0.980
ỹ= Negative 0.939 0.020

Fig. 12. The accuracy with respect to the number of epochs for our DSC. a.
training loss; b. training validation accuracies.

128, 128, 128 respectively. Moreover, we set the first fully con-
nected layer to the 1024-dimension. We denote this setting as
DSC( 1

5 Multi-branch) in Table 4, which is significantly worse
than the multi-channel DSC. Largely reduce the parameters can
significantly affect the expressivebility of the neural network
and result in the performance drop of the vanilla multi-branch
network.

By pre-train the network with binary classification and then
modifying the sigmoid output unit to a three-way softmax unit,
we can re-train the network in the three-class classification set-
ting. The accuracy of three-class classification is usually lower
than the binary counterpart since more fine-grained discrimina-
tion is required. While the pre-training with binary classification
can be helpful for the performance.

To evidence the effectiveness of using five views as input
rather than only using A4C view, we also propose the perfor-
mance of a baseline that only use A4C view image as a single-
channel input to AlexNet and our DSC networks. The improve-
ments of the accuracy are more than 6.2%. We note that the
proposed data augmentation does not apply to the single-channel
case. In Table 4, we show the present model can diagnose pos-
itive or negative sample with an accuracy of 95.4%, 3-class
classification (negative, ASD and VSD) with an accuracy of
92.3%. From the confusion matrix in Table 5, we can see that
98.0% of ASD/VSD samples are correctly diagnosed as positive.

The receiver-operating characteristic (ROC) curve plots the
true positive rate (TPR) against the false positive rate (FPR) by
varying a threshold. It illustrates the diagnostic ability of a binary
classification system. A larger area under the curve indicates
better performance. From Figure 11, we can see that the DSC
outperforms the AlexNet baseline by a large margin, and that
the data augmentation can further improve the performance
consistently.

The loss value and training validation accuracies concerning
the number of epochs are shown in Figure 12. The DSC con-
verges to a steady optimum after about 120 epochs. Moreover,
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Table 6. The video-based binary and 3-class classification accuracy and
testing time. †Using the ground truth view label directly. *The key-frame
annotation in the training set is used for the aggregation module training.

Accuracy AUC Accuracy Testing time
(Binary) (Binary) (3-class) (Titan X)

Frame-independent 0.908 0.894 0.893 98ms
Frame-independent† 0.913 0.898 0.901 42ms
Frame-independent* 0.915 0.902 0.903 98ms
RNN 0.918 0.909 0.912 1537ms
RNN† 0.921 0.912 0.916 716ms
RNN* 0.931 0.917 0.918 1537ms
Non-local 0.933 0.918 0.914 294ms
Non-local† 0.935 0.920 0.918 187ms
Temporal convolution 0.939 0.922 0.921 132ms
Temporal convolution† 0.944 0.926 0.923 60ms
Temporal convolution* 0.947 0.928 0.925 132ms

Table 7. Confusion matrix of the video-based binary classification task with
DSC+Augmentation (without key-frame label for training) when setting the
threshold to ỹ = 0.5.

Frame-independent aggregation y = Negative y = Positive
ỹ =Positive 0.073 0.918
ỹ =Negative 0.902 0.082

Recurrent neural network y = Negative y =Positive
ỹ =Positive 0.085 0.939
ỹ =Negative 0.914 0.061

Non-local aggregation y = Negative y =Positive
ỹ =Positive 0.080 0.939
ỹ =Negative 0.920 0.061

Temporal convolution y = Negative y =Positive
ỹ =Positive 0.073 0.959
ỹ =Negative 0.927 0.041

the training becomes saturated in the middle stage, but does not
settle down at the saddle point, which can be attributed to the
Adam optimizer. The DSC yields reliable validation accuracies
without overfitting to the training data.

4.2. The video-based model analysis
The video-based classification accuracy and testing time are

compared in Table 6. The frame-independent aggregation is the
fastest method, while the temporal convolution achieves the best
accuracy and still has fast processing speed (132ms). We note
that without the view classification module and use the ground
truth view label, the processing can be 60ms. We also give the
confusion matrix of four aggregation methods in the Table 7.

RNN can outperform the frame-independent aggregation,
since it can take the other frames into account. However, its
sequential processing can be much slower than the compared
methods. The non-local scheme can utilize the powerful parallel
computing ability of GPU and achieve comparable or even better
performance than RNN with about five times faster processing.
The non-local scheme considers all of the positions equally,
while the neighboring frames in the echocardiogram video are
closely related and follow the cardiac cycle. By considering this
property, the temporal convolution can be a good solution and

Table 8. Five-view classification accuracy with different aggregation module.
The correct classification of a subject indicates all five views are correctly
classified.

Aggregation Frame-independent Non-local RNN Temp
Accuracy 0.992 0.995 0.991 0.994

Fig. 13. The relative importance of different parts associated with the diag-
nosis. a. the apical four-chamber view of ASD patient; b. its corresponding
relative importance visualization of different parts associated with ASD; c.
the apical four-chamber view of VSD patient; d. its corresponding relative
importance visualization of different parts associated with VSD.

achieves a good balance between the accuracy and processing
speed.

Moreover, the frame-independent aggregation, RNN, and tem-
poral convolution module can utilize the key-frame label. With
the expert labeled keyframe, the performance of the aggregation
module can be further improved.

Using the view classification module can achieve comparable
performance as using the ground-truth view label. In Table 8, the
view detection performance is compared. All of the aggregation
methods can well maintain the view information and potentially
facilitating the data collection in real-world implementations.

4.3. Understanding the perception area

Additionally, to understand the behavior of our neural network
and identify regions for concatenated input that are critical for
medical diagnosis, we propose an image occlusion analysis on
our DSC model. We slide a box of 4×4×1 zero-valued pixels
along with the layer of the A4C in concatenated ultrasonic im-
ages from a patient that was correctly labeled as VSD or ASD
samples by our trained model. As a consequence, the importance
of each area can be characterized by the relative confidence of
the samples being classified as positive. The resulting heat map
is shown in Figure 13. The intensity of the heat map indicates the
relative importance of each pixel block. The dark areas decrease
the confidence of the model, suggesting that they are critical
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Fig. 14. Classification accuracy with different input image sizes. a. binary
classification; b. three-class classification.

Fig. 15. Classification accuracy with different convolutional layers. a. binary
classification; b. three-class classification.

areas for the diagnosis of cardiopathy. The dark blue regions in
Figure 13 coincide with the ROIs of the VSD and ASD in the
ultrasonic images, respectively.

4.4. Ablation study
The input size can significantly affect system performance.

We further analyze the validation accuracy when choosing dif-
ferent input sizes. A low-resolution sample with too-small size
(e.g., 16×16) cannot offer sufficient information. Meanwhile, a
large size sample may require more neural network parameters
and training data. The size 128×128×5 consistently achieves
the best performance in our binary and three-class classification
settings as shown in Figure 14.

Using more convolution layers can improve the representation
ability of neural networks, but the additional parameters require
significantly more training data. As shown in Figure 15, when
we evaluate the performance with two to eight convolutional
layers, respectively, the five-layer setting can well balance the
number of parameters and training samples in our dataset.

5. Discussion

Clinical diagnosis of CHD is usually based on the compre-
hensive analysis of multiple views, and the disease diagnosis is
a challenging task for the primary doctors. This study intends
to develop a practical model to efficiently fuse the information
in different views with either image or video modality. Based
on clinical experience, we collect the five-view echocardiogram
videos from 1308 children, with fine-grained key-frame labels.

As we have seen in the results, the 2D key-frame model can
diagnose CHD or negative samples with an accuracy of 0.954,
and in negative, VSD or ASD classification with an accuracy

of 0.923. Moreover, the video-based model can diagnose with
an accuracy of 0.939 (binary classification), and 0.921 (3-class
classification) in a collected 2D video testing set, which does not
need key-frame selection and view annotation in testing. The
present model developed has high diagnostic rates for VSD and
ASD that can be potentially applied to the clinical practice in the
future.

5.1. Clinical insights of multi-view analysis for CHD

The multi-view diagnosis accuracy can be 0.05 higher than
the diagnose with only the A4C view as shown in Table 4. The
AUC metric also coincides with the accuracy. To the best of
our knowledge, this is the first effort to explore the five-view
echocardiogram, and the corresponding dataset.

Previous researches on the use of artificial intelligence-
assisted image processing mainly involved single view research,
which can show the application value of artificial intelligence
to a certain extent (Zheng et al., 2008). However, the clinical
diagnosis of CHD cannot be reliably obtained from a single view.
Instead, a multi-view joint diagnosis is necessary. A complete
examination requires that the cardiovascular structures be im-
aged from multiple orthogonal planes. Therefore, we chose five
standard 2D views, PSLAX of left ventricle, PSSAX of aorta,
A4C, SXLAX of two atria and SSLAX of aortic arch, which
in combination could describe all of the major cardiovascular
structures in sequence (Lai et al., 2006). This study is the first
to use five 2D views to assist with the diagnosis of CHD. For-
tunately, our study showed that artificial intelligence and deep
learning of the five standard 2D views could make identification
and classification diagnosis of CHD.

The ultrasound manifestations of CHD can be divided into
direct signs and indirect signs. Taking ASD as an example, the
direct signs are that the echo is interrupted in the A4C and the
SXLAX of two atria, and the blood flow communicates between
the two atria by the defect. The indirect signs are that the right
ventricle is enlarged in the PSLAX of left ventricle, the right
atrium and ventricle are enlarged in the A4C, and the main
pulmonary artery is widened in the PSSAX of aorta. For VSD,
the direct signs are that the echo is interrupted in the A4C and
the PSLAX of left ventricle, and the blood flow communicates
between the two ventricles through the defect. The typical VSD
indirect signs are that left atrium and ventricle are enlarged in
the PSLAX of left ventricle and the A4C. However, when VSD
is combined with pulmonary hypertension, it can also manifest
as right atrium and ventricle enlargement and pulmonary artery
widening which can be easily confused with ASD. At this time,
PSLAX of left ventricle and the A4C show the ventricular defect,
and the SXLAX of two atria show the completed atrial septum.
These performances can help us to differentiate between the
diagnosis of VSD and ASD, thereby showing the importance of
multi-view joint diagnosis.

Furthermore, the appearance of CHD is various. For exam-
ple, the defect site of VSD is variable, and defects at different
positions will be displayed on different views. The defect can be
shown in the A4C when it is located in the muscle and perimem-
brane, shown in the PSLAX of left ventricle when it is located
in the infracristal, and shown in the PSSAX of aorta when it
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is located in the subarterial, respectively. So comprehensive
judgment of multi-view images is required to achieve the correct
diagnosis.

5.2. Key-frame based multi-view analysis

In this work, we have investigated both the multi-channel and
multi-branch CNN models with AlexNet and DSC backbones to
aggregate the information in different views.

The single branch multi-channel structure can efficiently in-
corporate all the five views and correlate each channel via the
pointwise convolution. Compared with the multi-branch model
which fuse the information with the simple concatenation, the
multi-channel model is possible to adaptively fuse the informa-
tion in all of the layers.

Targeting for the limited training data, the DSC is adopted
which compresses the parameter used in our AlexNet baseline
by more than 32 times. To alleviate the class imbalance problem
in the diagnosis task, the virtual patients are constructed by
randomly sampling the missed view from the different patients
as data augmentation. Its lite structure makes it promise to
be deployed on many micro-embedded systems at a low cost.
With the DSC, data augmentation and transfer learning for either
binary classification or three-class classification, our method
requires less training data and found excellent performance.

As investigated in our ablation study (Fig. 14), the spatial
size of 128 × 128 can be an ideal choice of the input size. The
cardiopathy region is usually a hole that requires sufficiently
spatial resolution for diagnosing. While the larger input is found
to be redundant. The choice of five convolution layer is based
on our dataset. With more training data, we may expect a more
representative model using deeper networks.

5.3. Video-based multi-view analysis

The collected raw ultrasonic data is video, i.e., a sequence of
images. The key-frame selection is required for the 2D standard
view-based solution, which can be tedious in implementation and
hard for primary doctors. Actually, the video should cover the
information of the key-frame, since the key-frame is a sub-set of
the video. To alleviate the manually labeling task, we proposed
a soft-attention framework to aggregate the information from
these sequential frames.

We investigated four possible aggregation methods to adap-
tively assign the attention in each frame from the diagnosis per-
spective rather than the general image quality (e.g., blurry level).
We systematically analyzed their performance and processing
speed in Table 6.

The frame-independent aggregation is the fastest method,
while the temporal convolution achieves the best accuracy and
still has fast processing speed (132ms). RNN can take the other
frames into account, but its sequential processing can be much
slower than the other solutions. With parallel computing the non-
local scheme can speed up the processing, but it redundantly
considers all of the positions equally. However, the echocar-
diogram video follows the cardiac cycle, in which the frame is
closely related to its neighboring frames. The temporal convolu-
tion explores the neighboring frames with its proper reception

fields and the parallel convolution operation, which achieves the
real-time processing without sacrificing the accuracy.

With the key-frame annotation in the training samples, the
aggregation framework, especially the temporal convolution
scheme, can achieve comparable accuracy than the 2D standard
view-based solution.

The five views should follow the fixed order of views to consti-
tute an input of our model. As shown in Table 8, our multi-task
model can detect the view with high accuracy and order them
for the diagnosis. Actually, each view has significant patterns
that can usually easy to detect. The performance gap of using
view classifier and ground-truth view label is marginal in Table
7. The doctors in primary hospitals can collect the videos in
random order without the view annotation. Moreover, the view
classifier can also be used to double-check the clinical records.

5.4. Clinical prospects

The model developed in this study has high diagnostic rates
for VSD and ASD and can be potentially applied to the clinical
practice in the future, especially in primary hospitals. For exam-
ple, 2D standard views are selected by a doctor, and a preliminary
diagnosis of the echocardiogram image can be performed by an
end-to-end multi-view deep learning system. Then the positive
cases can be referred to specialist hospitals for further treatment.
The short-term automated machine learning process can partially
replace and promote the long-term professional training of pri-
mary doctors, improving the primary diagnosis rate of CHD in
China, and laying the foundation for early diagnosis and timely
treatment of children with CHD.

5.5. Limitations and future directions

Our model requires the input of five videos from five pre-
defined views. We plan to construct a free-hand diagnosis system
by detecting the view of each frame and aggregate the frames
from the same view automatically. Moreover, a feature work
can be using active learning to instruct the scanning which may
reduce the number of views to be collected in real-world imple-
mentations. Thirdly, we will gradually include more echocar-
diograms of patients with other CHD subtypes in the following
study, so that this diagnostic system can complete the diagnosis
of more CHD subtypes in the future.

6. Conclusion

This study proposes to automatically analyze the five-view
echocardiograms with end-to-end neural networks. Based on
the collected multi-view dataset with both disease labels and
standard-view key frame labels, our model can make the diag-
nosis on either selected 2D standard views or original videos.
The model has high diagnostic rates for VSD and ASD and can
be potentially applied to the clinical practice in the future, espe-
cially in primary hospitals. For example, 2D standard views are
selected by a doctor, and a preliminary diagnosis of the echocar-
diogram image can be performed by artificial intelligence. Then
the positive cases can be referred to specialist hospitals for fur-
ther treatment. The short-term automated machine learning



J. Wang and X. Liu et al. /Medical Image Analysis (Volume 69, April 2021, 101942) 13

process can partially replace and promote the long-term pro-
fessional training of primary doctors, improving the primary
diagnosis rate of CHD in China, and laying the foundation for
early diagnosis and timely treatment of children with CHD.
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