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Abstract

In fetal neurosonography, aligning two-dimensional (2D) ultrasound scans to

their corresponding plane in the three-dimensional (3D) space remains a chal-

lenging task. In this paper, we propose a convolutional neural network that

predicts the position of 2D ultrasound fetal brain scans in 3D atlas space. In-

stead of purely supervised learning that requires heavy annotations for each 2D

scan, we train the model by sampling 2D slices from 3D fetal brain volumes,

and target the model to predict the inverse of the sampling process, resembling

the idea of self-supervised learning.

We propose a model that takes a set of images as input, and learns to

compare them in pairs, the pairwise comparison is weighted by the attention

module based on its contribution to the prediction, which is learnt implicitly

during training. The feature representation for each image is thus computed

by incorporating the relative position information to all the other images in the

set, and is later used for the final prediction.

We benchmark our model on 2D slices sampled from 3D fetal brain volumes

at 18-22 weeks of gestational age. Using three evaluation metrics, namely, Eu-
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clidean distance, plane angles and normalized cross correlation, which account

for both the geometrical and appearance discrepancy between the groundtruth

and prediction, in all these metrics, our model outperforms a baseline model

by as much as 23%, when the number of input images increases. We further

demonstrate that our model generalizes to (i) real 2D standard transthalamic

plane images, achieving comparable performance as human annotations, as well

as (ii) videos of 2D freehand fetal brain scan.

Keywords: Fetal neurosonography, Convolutional neural network, Plane

localization, Self-supervised learning

1. Introduction

Two-dimensional (2D) ultrasound, given its cost-effectiveness, safety and

real-time acquisition capabilities, is the preferred tool for routine monitoring of

fetal growth, and the assessment of fetal anatomy including the fetal central

nervous system (CNS). During routine 2D ultrasound fetal brain scanning, one5

of the major goals is to acquire standard planes for the assessment of structural

development, namely, the transventricular (TV) plane, the transcerebellar (TC)

plane and the transthalamic (TT) plane (Paladini et al., 2007). Standard bio-

metric measurements of the fetal head, for example head circumference (HC),

atrium of the lateral ventricle and transcerebellar diameter (TCD) are derived10

from those planes (Paladini et al., 2007). These biometric measurements are cor-

related with fetal brain development and, hence, serve as the essential metrics for

fetal growth monitoring (Loughna et al., 2009). Different anatomic structures,

such as the lateral ventricles, cavum septum pellucidum (CSP), cerebellum and

cisterna magna can also be qualitatively evaluated from the acquired images, for15

example, the CSP can be identified in the TV plane from as early as 15 weeks of

gestation and its absence or enlargement shown in the ultrasound images may

indicate abnormal brain development and diseases, such as septo-optic dyspla-

sia, holoprosencephaly and middle interhemispheric variant (Malinger et al.,

2005; Falco et al., 2000; Winter et al., 2010). The cerebellum and cisterna20
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Figure 1: Pipeline of our proposed work. During training, 2D slices sampled from aligned 3D

volumes are augmented and used to train our proposed CNN. The trained network can be

used to predict the 3D location of arbitrary number of 2D images. (Best viewed in color)

magna can be visualized in the TC plane and CNS abnormalities, such as mega

cisterna magna, dandy walker malformation, or spina bifida, may be suspected

by the absence or abnormal size or shape of these two structures (Filly et al.,

1989). Besides the major assessments and diagnosis from single standard plane,

multiplanar approach is sometimes required for a detailed fetal neurosonogra-25

phy, for example assessing the presence of corpus callosum, measuring the depth

and position of the cerebellar vermis, and comparing the size of the right and

left cerebellar lobes (Paladini et al., 2007; Bethune et al., 2013).

All the aforementioned assessments require accurate identification of dif-

ferent 2D views and matching them with the corresponding planes in the 3D30

brain. Conventionally, sonographers need to interpret the relationships between

the 2D views and the 3D brain anatomy and mentally reconstruct a 3D image

given just the 2D information (Gonçalves et al., 2005). This process requires

in-depth understanding of fetal anatomy and experience in ultrasound imaging,

which requires a significant amount of training and there may be a shortage35

of adequately skilled personnel in resource-constrained settings (Benacerraf,
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2002). Errors in identifying the corresponding 3D location of 2D scans may

lead to inaccurate measurements of biometric parameters and misjudgement of

fetal brain anatomy. Even though the 2D views are correctly identified, match-

ing them with the corresponding planes in the 3D brain involves subjective40

judgement and, hence, inter-operator variability is inevitable. In this work, we

propose a model that predicts the corresponding location of 2D scans in the

3D brain, which may help the clinicians identify and localize different scans, in-

cluding both standard and non-standard planes, more easily and hence lead to

more accurate and objective measurement and analysis. This may be useful for45

different potential clinical applications: (i) this can be used for training novices

because the model may help them visualize the correspondence between 2D

scans and 3D space and structures, which are achieved mentally by experienced

sonographer (Gonçalves et al., 2005); (ii) mapping 2D ultrasound images to 3D

space may facilitate a variety of tasks, such as quality control and guiding the50

scanning by human-computer interaction.

In this paper, we propose a convolutional neural network (CNN) for pre-

dicting the location of 2D ultrasound fetal brain images in a pre-defined 3D

reference coordinate system. As such, we present the following contributions:

(i) We define the localization of 2D ultrasound images of fetal brain in 3D55

space as a self-supervised learning problem. Using 2D slices sampled from

aligned 3D volumes as training data, which are processed by our proposed

preprocessing pipeline (i.e. Section 3.1), we further demonstrate that our

model generalizes to actual 2D ultrasound images and videos (Fig. 1).

(ii) We propose a new CNN model architecture that takes an arbitrary number60

of input images as a set, instead of individual images. We demonstrate that

this is a better utilization of available information and leads to improved

performance. This setting is particularly suitable for 2D freehand ultra-

sound scanning, where a large but indeterminate number of 2D images are

usually available.65

(iii) Inspired by the idea of relation networks (Santoro et al., 2017; Xie et al.,
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2018), we apply a pairwise comparison module to evaluate the geometrical

relationships between different planes. While fusing feature representa-

tions from different planes during prediction, attention mechanisms are

applied to dynamically assign importance to the information from other70

input planes, and we demonstrate that a fully trained model can indeed

learn to assign a meaningful attention weight to each input image without

extra supervision.

(iv) We first benchmark our model on a synthetic dataset, where 2D slices are

sampled from 3D volumes, and hence the groundtruth location of these75

slices is known. We show that our proposed model consistently outper-

forms a strong baseline described in Hou et al. (2017, 2018). In addition,

we test our model on real 2D ultrasound images and videos with anno-

tations from two experienced clinicians and medical professionals. Our

proposed model also outperforms the strong baseline (Hou et al., 2017,80

2018) and achieves comparable performance to human annotation.

2. Related Works

2.1. Standard Planes Detection

In the literature, a number of methods have been proposed for automated

standard plane detection for 2D fetal ultrasound. Earlier studies (Zhang et al.,85

2012; Ni et al., 2013; Yang et al., 2014) proposed to use the Adaboost classifier

or support vector machine classifier to detect key anatomical landmarks in a

sequence of 2D ultrasound images. Presence and orientation of the detected

landmarks were used to identify an image as either a standard or non-standard

plane of view.90

Recently proposed methods employed convolutional neural networks (CNN)

for standard plane detection. Chen et al. (2015b) fine-tuned a pretrained Caf-

feNet Model (Deng et al., 2009) to detect the standard planes in ultrasound fetal

abdominal images. Baumgartner et al. (2017) further trained a CNN model
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to classify fetal ultrasound images into 14 categories, including different types95

of standard plane images and background images. Using an attention mecha-

nism, Schlemper et al. (2018) proposed a CNN model that may simultaneously

perform standard plane detection and weakly supervised structure localization

using only image-level class label for training.

Spatio-temporal information of 2D ultrasound videos has also been explored100

for standard plane detection. Chen et al. (2015a) and Huang et al. (2017)

presented different multi-task recurrent neural network models that can utilize

the temporal information of consecutive sequences in ultrasound videos to pro-

vide extra contextual clues for the detection task. Gao and Noble (2017) used

image-level labels to train a two-stream spatio-temporal CNN to recognize fetal105

heart frames and localize the heart in freehand fetal ultrasound videos.

Despite their effectiveness in detecting standard plane images, all of the

above methods can only predict whether the image is acquired at a standard

plane, but not the exact location of the image in the corresponding 3D space.

Furthermore, a large amount of annotated data is required to train the model.110

Instead of training a classification model, we aim to learn a regression model

that predicts the location of 2D ultrasound images of the fetal brain in a pre-

defined 3D atlas space. This is a more general task, which can be easily adapted

to standard plane detection by simply identifying the standard planes in the pre-

defined 3D atlas space. Our model can further provide information about the115

relative position between the current plane and any standard or oblique planes

of interest. Also, we use 2D images sampled from 3D volumes that are aligned to

a common atlas space (Namburete et al., 2018) so that the locations of images

are automatically known and no further human annotation is needed, which

resembles the idea of self-supervised learning.120

2.2. Standard Planes Localization in 3D Volumes

A slightly different task is standard plane localization in 3D volumes, which

aims at identifying the standard planes (i.e. cross-sectional views) within a

given volume. Several studies have suggested different methods for this task.
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Ryou et al. (2016) proposed to exploit sharp boundary information in the 3D125

ultrasound volume to detect the fetal region-of-interest (ROI) and then classify

head and body slices within the ROI using a transfer learning CNN. The stan-

dard head and abdominal planes are automatically selected by incorporating

prior clinical knowledge about the position of the standard plane within the

two structures. Li et al. (2018) presented a CNN that is able to output the130

transformation required to move the input 2D cross-sectional image of a 3D

fetal brain ultrasound volume towards the standard plane of view. Such predic-

tion is computed iteratively during inference. Recent studies (Alansary et al.,

2018; Dou et al., 2019) proposed different reinforcement frameworks for standard

plane localization in 3D MRI and ultrasound volumes. These RL frameworks135

provide feedback from the environment (i.e. the 3D volume) during the search

for the standard planes, which mimics the navigation performed by experienced

operators when they are locating the target view planes in the volumes.

The aforementioned methods require 3D volume as an input, either directly

or by having information extracted from the volume as a feedback during the lo-140

calization process. This may limit their application as most of the current stan-

dard clinical tests rely on only 2D ultrasound, and 3D ultrasound is not always

available in many settings because of its cost and clinicians’ preference (Pala-

dini et al., 2007). On the other hand, our proposed method just relies on 2D

ultrasound images and it can be easily used with 2D ultrasound scanning to145

localize any standard or oblique planes of clinicians’ interest.

2.3. Slice-to-Volume Registration

Image registration is the process of aligning two or more images into a shared

coordinate system and slice-to-volume registration (SVR) is a sub-class of this

problem, where the images to be registered are 2D and the target coordinate150

system is 3D (Ferrante and Paragios, 2017). One of the major applications of

SVR in medical imaging is motion correction of fetal MRI.

Alansary et al. (2017) summarized a general framework about SVR for mo-

tion correction, where a few overlapping motion-corrupted volumes are used
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to reconstruct a clean volume. One volume is normally selected as the ini-155

tial reference and 2D slices of the remaining motion-corrupted volumes are

incrementally aligned to it to update the reference volume by optimizing the

similarity between the reference and motion-corrupted volumes. Different ob-

jective functions, including mutual information (Rousseau et al., 2006), cross-

correlation (Jiang et al., 2007; Kuklisova-Murgasova et al., 2012) and mean160

square difference (Gholipour et al., 2010), have been explored for SVR. De-

spite the effectiveness reported in these studies, the proposed approaches are

mainly for motion correction of 3D volumes, where the composing slices are

roughly aligned and span the whole anatomical structure. These assumptions

may not hold for our proposed task because of the relatively long duration and165

inter-operator variability of typical clinical ultrasound examination. Also, those

reviewed methods usually involve complicated pipelines, which are difficult to

reproduce and highly specific to the task and data concerned (Ferrante and

Paragios, 2017).

Recently, Hou et al. (2017, 2018) proposed to train a CNN to predict the170

rotations and translations of 2D slices sampled from a 3D MRI volume, which

is aligned to an atlas coordinate system. They firstly manually corrected a

set of motion-corrupted MRI volumes. The volumes were then aligned to an

atlas so that they were in the same coordinate system. Slices were randomly

sampled from these aligned volumes and a model was trained to predict their175

position in the atlas coordinate system using geometric loss. With their learned

model, slices from a motion-corrupted MRI volume can be registered to an

aligned space. Our work is inspired by theirs and we propose a new CNN model

architecture. Our proposed model accepts an arbitrary number of input images

as a set and takes the relationships between input images into account when180

predicting the location of each input image, using pairwise comparison and

attention mechanism (Santoro et al., 2017; Xie et al., 2018). A comparison of

the performance of these two CNN models is included in Section 5.1.1 and 5.1.2.
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Figure 2: Overview of our proposed network. It consists of 4 sequential modules, namely (a)

Feature Extraction, (b) Comparison, (c) Attention and (d) Prediction, which are represented

by the grey blocks in the figure. (Best viewed in color)

3. Methods

In this section, we describe the proposed regression CNN (Fig. 2) in detail.185

3.1. Training Data Generation for Self-Supervised Learning

Supervised learning requires paired training data in the form of {xi, yi},

where xi is the input data point (i.e. 2D ultrasound image of fetal brain)

and yi is the label (i.e. the 3D location of the input image). Conventionally,

the label is obtained by manual annotation, and the goal is usually to learn190

a function that maps the input sample x to a corresponding output label y.

However, annotating the location of a random 2D ultrasound image of the fetal

brain in the 3D space is very challenging. Therefore, we artificially sample 2D

slices from aligned 3D ultrasound volumes of the fetal brain, results in almost

infinite number of data pairs {xi, yi}. Despite the volume alignment is semi-195

automatic (minimal effort is required from manual correction), the training for

our proposed model resembles self-supervised learning, in the sense that training

labels can be generated from the data itself. Three main steps are involved in

generating the training data, {xi, yi}:
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(I) The raw 3D volumes are firstly aligned to a common reference atlas space200

with the method proposed in (Namburete et al., 2018), followed by a

manual correction step. For every aligned 3D volume, V ∈ Rh×w×d,

where h, w and d are the height, width and depth of the 3D volume

respectively, there is an associated binary mask of skull, B ∈ {0, 1}h×w×d.

The masks are generated by the CNN model proposed in (Moser et al.,205

2019).

(II) Following the sampling scheme adopted by Hou et al. (2017, 2018), 2D

images and their corresponding 2D binary masks are sampled from the

aligned 3D volumes (V ), and 3D binary mask (B). In order to generate

2D images that are evenly distributed in a 3D volume, the surface normal

of the sampling planes should be evenly spaced on the surface of a unit

sphere (Hou et al., 2017), and this can be achieved by Fibonacci sphere

sampling of polar coordinates, p(φ, θ), where φ and θ are the azimuth and

elevation angles respectively. Assuming m surface normals are sampled,

{φi}mi=1 and {θi}mi=1 can be calculated by:

φi =
2π(i− 1)

(
√

5 + 1)/2
(1)

θi = cos−1 (
2(1− i)
m

) (2)

By defining the surface normal by Eq. 1 and 2, the coordinate of the

centre point of the sampling plane as well as the in-plane rotation (i.e.

plane rotation about its surface normal), 2D images can be sampled from

3D volumes.210

(III) The sampled 2D images are randomly processed by one of the three pro-

posed ways during training, namely (i) masking the 2D images by the

convex hull of the associated sampled 2D binary masks to remove most

of the extracranial contents, (ii) masking the 2D images by 2D circular

masks with arbitrary size larger than the associated sampled 2D binary215

masks to remove part of the extracranial contents or (iii) not masking
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the 2D images at all to keep all the extracranial contents. While (i)

and (ii) prevent the model from making predictions based on the back-

ground (i.e. extracranial structures) of the images, (iii) tries to minimize

the influence of the shape and size of the binary masks, which are nor-220

mally unavailable during inference, towards the prediction. Also, since

2D images are artificially sampled from 3D fetal brain volumes, they may

look differently compared to the actual 2D images, in terms of resolution,

intensity and noise. We use extensive data augmentation to make the

model more generalizable, including geometrical transformation, scaling,225

contrast modification, and addition of random noise.

These three pre-processing steps are only required during training, but not

for inference when the trained network is being employed to actual 2D images.

3.2. Model Architecture

The input to our proposed network is a set of an arbitrary number of 2D im-230

ages {Ii}Ni=1, Ii ∈ Rh×w, where N,h and w are the number of images, height and

width of image, respectively. The output is the set of corresponding predicted

locations {pi}Ni=1, where pi ∈ R3×3, referring to the 3 Cartesian coordinates

(i.e. x, y, z) of the 3 landmarks that define the predicted plane. Following the

approach proposed in Hou et al. (2017, 2018), we use the centre, the bottom235

right and left corners of a plane as the landmarks to define the predicted plane.

In order to simulate the motion of an actual ultrasound scan, during training,

a constraint is imposed to the N input images such that the distance between

two consecutively sampled slices (i.e. Ii and Ii+1) should be smaller than a

predefined value, which is 20 pixels.240

Our proposed network consists of 4 sequential modules: Feature extraction

(Fig. 2a): a feature encoder (i.e. a shared CNN backbone) is used to generate

a fixed-length feature vector, vi, to represent each input image. Comparison

(Fig. 2b): the feature vectors for each image are compared pairwise to compute

the relationship between every pair of input images, which is further represented245
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Figure 3: The processing unit of the Comparison module (Fig. 2b). A pair of feature vectors,

vi and vk, are concatenated and passed to the comparison network, f(·, θcomp), to output a

comparative feature vector, cik. (Best viewed in color)

by the set of comparison feature vectors, {cij}N,N
i=1,j=1. Attention (Fig. 2c): an

attention mechanism is applied on the set of feature vectors to weight the con-

tribution of each pairwise relationship. Prediction (Fig. 2d): while generating

a summarization feature vector of every input image for prediction of position

in 3D space, the attention matrix, is used to weight the comparison feature250

vectors. Each module is described in more detail below.

3.2.1. Feature extraction (Fig. 2a)

A feature extractor (i.e. a shared CNN backbone) is used to generate a fixed-

length feature vector, vi ∈ R1×512, for each input image, Ii. A common feature

encoder (i.e. shared weights) is used for all input images, such that the feature255

extraction is invariant to the permutation and number of input images. This is

a desirable property for ultrasound images analysis due to the randomness of

freehand image acquisition.

In our case, the feature extractor, ψ(·, θfeat), parameterized by θfeat, is

based on the VGG-16 network architecture (Simonyan and Zisserman, 2015).

With an arbitrary number of 2D input images, {Ii}Ni=1, Ii ∈ Rh×w, the output

from this module is:

[v1, v2, ..., vN ] = [ψ(I1; θfeat), ψ(I2; θfeat), ..., ψ(IN ; θfeat)] (3)
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3.2.2. Comparison (Fig. 2b)

The set of feature vectors, {vi}Ni=1, is compared pairwise in this module.260

Instead of directly predicting the location of the image from its corresponding

feature vector (i.e. each image position is predicted independently of all oth-

ers) (Hou et al., 2017, 2018), we believe that it will be beneficial for each input

image to also consider its relative position with respect to other images, as all

images are different planes of the brain of the same fetus and, hence, likely to be265

inter-correlated. This is achieved by combining the feature vector to generate a

comparative feature vector, cij , of every input image pair, Ii and Ij .

This comparison is implemented in two steps, which are summarized by the

processing unit as shown in Fig. 3. Firstly, concatenation between vector pairs

is computed, which can be formally expressed as:

[m11, m12, ..., mNN ] = [(v1 ‖ v1), (v1 ‖ v2), ..., (vN ‖ vN )] (4)

where ‖ is the concatenation operator and {mij}N,N
i=1,j=1, mij ∈ R1×1024 is the

set of concatenated feature vectors.

Secondly, the set of concatenated feature vectors is passed as input to the

comparison network, f(·, θcomp), parameterized by θcomp. The comparison net-

work is a fully connected layer that merges the information of the two feature

vectors into a comparative feature vector:

[c11, c12, ..., cNN ] = [f(m11; θcomp), f(m12; θcomp), ..., f(mNN ; θcomp)] (5)

where {cij}N,N
i=1,j=1, cij ∈ R1×512 is the set of comparative feature vectors.270

3.2.3. Attention (Fig. 2c)

Different comparative feature vectors (cij), may contribute differently to

the final prediction of plane position. We propose to compute the relative con-

tribution of each pairwise comparison by using an attention module (Vaswani

et al., 2017). The module will learn to assign more attention (i.e. a higher scalar275

weight) to comparisons with higher relational contribution and vice-versa. Con-

tribution means the extent of any type of relationship, for example the similarity
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Figure 4: The processing unit of the Attention module (Fig. 2c). The dot product between a

pair of embedded feature vectors, qi and kk, gives rise to Aik. (Best viewed in color)

between a pair of images, which is related to the final prediction and hence can

be learned by the model from the loss. The output of this attention module will

be an attention matrix, A.280

Fig. 4 displays the processing unit of the Attention module. To compute the

attention matrix, A ∈ RN×N , we will compute the dot product between pairs

of feature vectors, {vi}Ni=1, in an embedding space as follow:

A (i, j) = q(vi; θattI)k(vj ; θattII)
T

(6)

where q(·, θattI) and k(·, θattII) are embedding networks (i.e. multilayer per-

ceptrons), parameterized by θattI and θattII , respectively, that map the feature

vectors into an embedding space, R1×256.

3.2.4. Prediction (Fig. 2d)

Fig. 5 shows the processing unit of the Prediction module. To compute the

final prediction of each input image, the prediction module uses the attention

matrix, A, to weight the comparative feature vectors, {cij}N,N
i=1,j=1, to compute

a summarization feature vector, si ∈ R1×512, for every input image, Ii. The

summarization feature vector, si, gathers information from all images, weighted

by the learned contribution towards the prediction of Ii and is computed as

14



Figure 5: The processing unit of the Prediction module (Fig. 2d). The summarization feature

vector, si, is computed by {Aik}Nk=1 and {cik}Nk=1. It is then processed by the prediction

network, g(·, θpred), to output the set of predicted locations pi. (Best viewed in color)

follow:

si =

∑N
j=1 A(i, j)cij∑N
j=1 A(i, j)

(7)

The set of predicted locations {pi}Ni=1, pi ∈ R3×3, is obtained by passing the set

of summarization feature vectors, {si}Ni=1, to the prediction network, g(·, θpred),

parameterized by θpred:

[p1, p2, ..., pN ] = [g(s1; θpred), g(s2; θpred), ..., g(sN ; θpred)] (8)

In summary, the predicted location, pi, of image, Ii, is derived from si and hence285

the weighted sum of cij for all j. In other words, when predicting the location

of image Ii, information of all images within the same space, {Ij}Nj=1, will be

considered. Furthermore, their relative contribution and degree of relationships

with Ii will be taken into account by the attention matrix, A.

3.3. Loss Function290

During training, we apply the mean least-square error as the loss function:

L2 (p̂,p) =
1

N

N∑
i = 1

(p̂i − pi)
2

(9)

where p̂ and p are the ground-truth and predicted locations, respectively.
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4. Experimental Setup

4.1. Dataset

The 3D ultrasound fetal brain volumes (160×160×160 voxels at a resolution

of 0.6 × 0.6 × 0.6 mm3) were obtained as part of the INTERGROWTH-21st295

study (Papageorghiou et al., 2014), which were collected using a Philips HD9

curvilinear probe at a 2–5 MHz wave frequency. For each 3D volume, there is at

least one associated 2D image taken at the standard TT plane routinely used for

biometric and structural assessment. Both the 2D images and 3D volumes were

acquired following strict requirements to ensure that the image quality satisfied300

pre-defined criteria (The INTERBIO-21st Consortium, 2012). For instance, the

fetal skull occupied at least 50% of the image, and the image was not affected by

fetal or maternal movements. Fetal anomaly ultrasound scan is recommended

to be undertaken between 18 to 21 gestational weeks and some flexibilities are

allowed for this age range (Public Health England, 2018). In this study, images305

were selected from fetuses with gestational age ranging from 18 to 22 gestational

weeks. Each image was masked and aligned to a coordinate space as described

in Section 3.1.

A summary of training and different experiments and their corresponding

dataset is presented in Table 4 in the Supplementary Materials.310

4.2. Training Details

In this study, we re-implement a baseline model (only slight modification

based on network architecture proposed by Hou et al. (2017, 2018)) and com-

pared its performance to our proposed model. The exact network architectures

of the baseline model and our proposed model are presented in Table 3 in the315

Supplementary Materials. Optimization was achieved using the ADAM algo-

rithm (Kingma and Ba, 2015) with mini-batches of size 32. The initial learning

rate was set to 10−4, which was decreased by half when errors plateaued.

Fifty and fifteen 3D volumes acquired at 21 gestational weeks were selected

for training and validation, respectively. For each 3D volume in each training320
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epoch, 50 evenly distributed normals were sampled using the Fibonacci Sphere

Sampling method as described in Section 3.1. Along each normal, 15 planes per-

pendicular to the normal, with average spacing of 2.4 mm were chosen (Fig. 7a).

For each plane, four 2D slices (160× 160 pixels), with random in-plane rotation

were sampled. Therefore, in total, there were 150, 000 and 45, 000 images for325

each training and validation epoch, respectively.

Since an infinite number of different 2D slices can be sampled from a 3D

volume in principle, we made use of this feature and introduced random varia-

tion to the sampling parameters for each training epoch. Therefore, the 150, 000

training images were expected to be different for every epoch. This kept the330

number of training data for each training epoch relatively small as compared

to Hou et al. (2017, 2018), while the number of different images used for the

whole training was much larger. We regarded this as a type of data augmenta-

tion, which may prevent the model from overfitting while having a reasonable

amount of varied training data for each epoch.335

4.3. Evaluation metrics

Three evaluation metrics were used to evaluate and compare the performance

of the models. First, Euclidean distance (ED) between all the coordinates of

the predicted and ground-truth planes is computed as follow:

ED =

∑h, w
i=1, j=1 dist(p̂ij , pij)

h · w
(10)

where p̂ and p are the predicted and ground-truth planes and dist(p̂ij , pij) =

|p̂ij−pij |2 computes the Euclidean distance between the two points, p̂ij and pij ,

where p̂ij and pij are the (x, y, z) coordinates of the pixel ij on the predicted

and ground-truth planes.340

Secondly, plane angle (PA) between the predicted and ground-truth planes

are computed as follow:

PA = cos−1(n̂ · n) (11)
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where n̂ and n are the surface normals of the predicted and ground-truth planes,

respectively. Smaller ED and PA suggest that the ground-truth and predicted

planes locate closely to each other, which may represent more accurate predic-

tion.

Thirdly, normalized cross-correlation (NCC) (Yoo and Han, 2009) between345

the input image and image sampled from the predicted plane is computed.

Larger values may suggest higher similarity between the two images and more

accurate prediction of plane position.

4.4. Comparison with Baseline Model

Images sampled from 3D volumes were used to quantitatively evaluate the350

performance of different models. Our proposed model and the baseline model

were compared using the evaluation metrics introduced in Section 4.3. In addi-

tion, in order to investigate the individual contribution of our newly proposed

modules, namely the Comparison module (Section 3.2.2) and the Attention

module (Section 3.2.3), ablation study has been conducted by removing the At-355

tention module of our proposed network and applying equal weighting to every

comparative feature vector, cij (i.e. replacing the attention matrix, A, with a

matrix of ones).

4.4.1. Sensitivity to Input Image Support

Since our proposed model makes a prediction for each image by grouping360

information of all input images, prediction accuracy may be sensitive to the num-

ber of input images. Therefore, different numbers, N ∈ {1, 2, 4, 8, 16, 32, 64, 128},

of input images were tested to investigate on how changing the number of input

images may affect the prediction of our proposed model.

4.4.2. Application to Broader Gestational Age Range365

Trained on images at 21 gestational weeks, images within a broader ges-

tational age range (i.e. 18 to 22 gestational weeks) were tested to evaluate the

generalizability of the models to different ages. For different ages, a slight change

of brain anatomical structure is expected (Pistorius et al., 2010).
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As a comparison, images of the whole gestational age range (i.e. 18 to 22370

gestational weeks) were used to train a different set of models to verify if a single

model can be used on a broad gestational age range.

4.5. Relationship between Plane Location and Accuracy of Prediction

In Section 4.4, 2D images have been sampled at different locations in each

3D volume. The results of the images sampled from the 15 fetal brain volumes375

in Section 4.4.1 were further analyzed to investigate how accurate our proposed

model is in predicting images in different regions of the 3D brain. Specifically,

the accuracy of prediction of images sampled along different directions and at

different distances from the centre of the brain were studied. Fig. 7a shows how

planes were sampled from the 3D volume along one normal using the Fibonacci380

Sphere Sampling method as described in Section 3.1.

4.6. Real 2D Image Acquisition of Standard TT Plane

Real 2D images taken at the standard TT plane were tested. These images

were acquired with the 15 3D test volumes in Section 4.4.1. For each 2D image,

plane location was predicted by our proposed model and annotated by 2 individ-385

ual experts separately. Using the predicted plane locations, the corresponding

2D images were sampled from the associated 3D volume. Variations, measured

by the evaluation metrics introduced in Section 3.1, were estimated between the

3 different sets of predictions and annotations. They were further analyzed by

one-way ANOVA.390

4.7. Video of Freehand Fetal Brain Scanning

In addition to the single standard plane images as described in Section 4.6,

15 videos of 2D scans acquired from 4 subjects with gestational age between 19

to 21 weeks during fetal exams of the brain were also tested. The videos were

acquired by sweeping the ultrasound probe along different directions during395

scanning. Therefore, the videos were composed of 2D views corresponding to

different locations of the fetal brain, which may or may not be a standard
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Score 1 3 5

Description The video frame

presents totally dif-

ferent structures

from the sampled

atlas slice; the lo-

cation of the plane

in 3D atlas space is

incorrect

The video frame

presents most of

the structures as

the sampled atlas

slice; the location

of the plane in 3D

atlas space indicates

roughly correct

and reasonable

location

The video frame

presents the same

structures as the

sampled atlas slice;

the location of the

plane in 3D atlas

space indicates the

correct location

Table 1: Description of the scoring scale for evaluating the performance by the models on real

2D ultrasound images sampled from scanning videos. Scale of score 1 to 5 is used, where score

1 indicates totally incorrect prediction while score 5 indicates perfect prediction.

plane. Every video was treated as a set of 2D images for testing. Using the

predicted plane locations, 2D slices were sampled from the 3D atlas volume.

The video frames and the corresponding sampled 2D atlas slices were compared400

qualitatively, in terms of structures present and image orientation. Also, we

selected 50 frames from the videos and obtained the predictions by both our

proposed model and the baseline model. Using the scoring scale as described in

Table 1, our clinical collaborators scored the predictions from both models for

further comparison.405

4.8. Impact of Learned Attention

As mentioned in Section 3.2.3, the attention matrix (A) weights the contri-

bution of each pairwise comparison of the set of input images. To verify that

the Attention module (Fig. 2c) actually learns to assign meaningful weights, we

further analyzed the results of the slices sampled from the 15 fetal brain volumes410

in Section 4.4.1. Using N = 4 input images (for easier comparison and visu-

alization), the normalized attention,
∑4

j=1 A(i,j)∑4
i=1

∑4
j=1 A(i,j)

, associated to each input
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image was investigated.

5. Results

5.1. Comparison with Baseline Model415

The results of the two experimental settings (Section 4.4.1 and 4.4.2) are

presented in Fig. 6. For both settings, all three evaluation metrics indicated

that the performance of our proposed models surpassed that of the baseline

model.

For each 3D volume, 3000 2D images were sampled in the same way as420

described in Section 4.2. Two settings were investigated, namely variation on

number of input image (Section 4.4.1) and generalization to a broader gesta-

tional age range (Section 4.4.2).

5.1.1. Sensitivity to Input Image Support

Fifteen 3D fetal brain volumes with gestational age of 21 gestational weeks425

were used for evaluation, yielding at total of 45, 000 2D test images. Different

numbers, N ∈ {1, 2, 4, 8, 16, 32, 64, 128}, of input images were tested.

The results of this experiment are presented in Figs. 6a to 6c. Since the

number of images would not affect the prediction of the baseline model, results

of the baseline model were the same for different number of input images.430

For our proposed models, both with and without the Attention module, per-

formance increased with the number of input images by as much as 17%, 7%

and 5% as indicated by ED, PA and NCC, respectively. This may be reasonable

because our proposed models make a prediction for each image by grouping

information of all input images. More input images may provide more informa-435

tion for the prediction. Also, the ablation study suggested that the Comparison

and Prediction modules, which are responsible for grouping information of all

input images, may primarily lead to improvement when compared to the base-

line model by around 19% (ED), 8% (PA) and 15% (NCC). The addition of the

Attention module, which assigns weights to the grouping of information, con-440

tributed to further improvement by an extra 5% (ED), 2% (PA) and 5% (NCC).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: The accuracy of the baseline model (green),our proposed model (blue) and our

proposed model without Attention module (orange). Upper row shows the mean results (±

standard deviation) of (a) Euclidean distance, (b) plane angle and (c) normalized cross corre-

lation between groundtruth and prediction for different numbers of input images. Middle row

shows the mean results (± standard deviation) of (d) Euclidean distance, (e) plane angle and

(f) normalized cross correlation between groundtruth and prediction for different gestational

ages. Bottom row shows the mean results (± standard deviation) of (g) Euclidean distance,

(h) plane angle and (i) normalized cross correlation between groundtruth and prediction by

models trained with images of all gestational ages for different gestational ages. The dots in

the graph are slightly shifted for better visualization of the standard deviation. (Best viewed

in color)
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Although such further improvement may appear to be marginal as shown in

Figs. 6a to 6c, it is statistically significant for every number of input images and

evaluation metric concerned (p<0.05, t-test).

In addition, all three evaluation metrics showed that the performance of our445

proposed models surpassed that of the baseline model by as much as 23% (ED),

11% (PA) and 21% (NCC) and when the number of input images increased,

the improvement was more significant. We observed that the gain in accuracy

nearly saturated when the number of inputs exceeds 32 and therefore in Figs. 6a

to 6c, we omitted the results for N ∈ {64, 128} for clearer visualization. The450

result distribution of N = 4 and N = 64 is further displayed in Fig. 12, which

shows that although increasing the number of input images may not have a

significant impact on reducing outliers, it shifted the distribution towards better

performance.

5.1.2. Application to Broader Gestational Age Range455

Fetal brain volumes with gestational age of 18 gestational weeks (50 vol-

umes), 19 gestational weeks (34 volumes), 20 gestational weeks (57 volumes),

21 gestational weeks (15 volumes) and 22 gestational weeks (9 volumes) were

used for testing in this experiment.

The results of the first part of this experiment are summarized in Figs. 6d460

to 6f. Using models trained on images with gestational age of 21 weeks, we

tested the models on images with gestational age ranging from 18 to 22 weeks.

Two observations can be obtained: firstly, for all ages, predictions made by

our proposed models were more accurate than those made by the baseline model

by as much as 23% (ED), 11% (PA) and 21% (NCC). Also, predictions made by465

our proposed model without the Attention module were slightly less accurate

than the complete version of the proposed model. The slight improvement

caused by the incorporation of the Attention module is statistically significant

for every age and evaluation metric concerned (p<0.05, t-test). Secondly, we

observed that in general, predictions on images at younger gestational ages470

were less accurate by as much as 51% (ED), 26% (PA) and 13% (NCC). A
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potential explanation is that fetuses during the second trimester are undergoing

rapid neuro-development (Pistorius et al., 2010). Therefore, brain structures

of fetuses at younger gestational ages may look quite different from those of

fetuses of gestational age of 21 weeks, which are the images that the models475

were trained on.

The results of the second part of this experiment are summarized in Figs. 6g

to 6i, where the models have been trained and tested on images of the whole

gestational age range (i.e. 18 to 22 gestational weeks). When compared to the

results of models trained on images of a single age, two observations can be480

obtained: firstly, predictions made by our proposed models were more accurate

than those made by the baseline model by as much as 21% (ED), 16% (PA) and

9% (NCC). Also, predictions made by our proposed model without the Attention

module were slightly less accurate than the complete version of the proposed

model. The slight improvement caused by the incorporation of the Attention485

module is statistically significant for every age and evaluation metric concerned

(p<0.05, t-test). Secondly, predictions made by models trained on images of the

whole gestational age range were less accurate when compared to those made

by models trained on images of just 21 weeks. This may be reasonable because

images of different gestational ages were registered to different atlases as brain490

structures presented at different gestational ages may look quite different. For

a single age, every plane location in the atlas space corresponds to a unique

set of 2D image features. However, when a single model is trained with images

of different gestational ages, it is equivalent to combining different unique atlas

spaces into one and every plane location in this combined atlas space corresponds495

to multiple sets of 2D image features, each belongs to a specific age and hence

they can be quite different to each other. This may be a more difficult and

ambiguous learning task when compared to training models on images of a

single age. Therefore, one single model trained on images of a broad gestational

age range may have poorer performance when compared to models trained on500

a single age.
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(a) (b)

(c) (d)

Figure 7: Plane location and accuracy of prediction. (a) shows how planes were sampled from

the 3D volume along one normal of the unit sphere. Mean results (± standard deviation) of (b)

Euclidean distance, (c) plane angle and (d) normalized cross correlation between groundtruth

and prediction for images sampled from different locations of the 3D brain volumes are com-

puted. Each curve in the figure indicates the mean results of one normal of the unit sphere

and the blue shadow around it is the standard deviation of the results. Slices perpendicular

to it and at different distance away from the centre of the 3D brain volumes were sampled

and tested. (Best viewed in color)

5.2. Relationship between Plane Location and Accuracy of Prediction

The results of finding the relationship between plane location and accuracy

of prediction are presented in Fig. 7. Similar to the sampling procedure as

introduced in Section 4.2, for each 3D volume, 50 normals evenly distributed505

on the unit sphere were chosen and each of them was represented by a colored

curve in Fig. 7. In Fig. 7, values on each colored curve indicate the mean results,

while the blue shadow around the curve is the standard deviation of the results.

Along each normal and at different distance away from the centre of the 3D

brain volumes, planes perpendicular to the normal were sampled.510
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ED (voxels) PA (rad) NCC

M1 v.s. M2 9.12± 4.01 0.126± 0.055 0.867± 0.093

M1 v.s. Model 11.36± 3.26 0.179± 0.095 0.841± 0.096

M2 v.s. Model 11.44± 5.02 0.180± 0.120 0.837± 0.080

P value (one-way ANOVA) 0.257 0.227 0.639

Table 2: Comparison with manual annotation on real 2D images taken at the standard TT

palne. Mean results (± standard deviation) and one-way ANOVA results between first manual

annotation (M1), second manual annotation (M2) and prediction by our proposed model are

displayed. P values of the one-way ANOVA suggests the comparable performance by our

proposed model and human annotations.

Firstly, suggested by all three evaluation metrics, the performance of our

proposed model in predicting images sampled along different directions (i.e.

different lines in Fig. 7) were similar. The Euler distance, plane angle and

normalized cross correlation were around 10 voxels, 0.20 rad and 0.75 respec-

tively, which were similar to the overall result presented in Figs. 6d to 6f. In515

other words, the performance of our proposed model does not depend on the

geometric orientation of the images sampled, which is desirable because dur-

ing 2D freehand ultrasound scanning, images along different directions may be

acquired.

Secondly, as suggested by ED (Fig. 7b) and NCC (Fig. 7d), when the images520

were farther away from the centre of the 3D brain volumes, the accuracy of

the prediction dropped. This is reasonable because in general, images farther

away from the centre, especially those near the edge of the brain, contain fewer

indicative structures and hence are less informative and it is more difficult to

predict their 3D location (Hou et al., 2017, 2018).525

5.3. Real 2D Image Acquisition of Standard TT Plane

Real 2D images taken at the standard TT plane were tested. Table 2 sum-

marizes the variations between the plane locations predicted by our proposed

model and manually annotated by 2 individual experts. Although the mean val-
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Figure 8: Visualization of manual annotation comparison. Six examples of native and masked

2D scans taken at the standard TT plane (first column); slices sampled from the corresponding

3D volume using the first manual annotation (second column), second manual annotation

(third column) and our proposed model’s prediction (fourth column); slices sampled from

the 3D atlas using our proposed model’s prediction (fifth column) and the position of the

aforementioned slices in the 3D atlas space (sixth column). Frame color of the images (second

to fifth column) corresponds to the planes as shown in the 3D atlas space (sixth column).

(Best viewed in color)
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ues of the three evaluation metrics may suggest that the variation between the530

two sets of manual annotation is smaller than that between the model prediction

and the manual annotations, p values of 0.257, 0.227 and 0.639 as calculated by

the one-way ANOVA pointed out that we failed to reject the null hypothesis,

and there is no difference between the three groups of comparison, suggesting

the comparable performance by our proposed model and human annotations.535

We understand that the result obtained by the one-way ANOVA may not

be convincing enough due to the limited amount of test images. Therefore, we

further analyzed the 15 test images independently. While for most cases, the

model prediction closely matched both (case 1 and 2 in Fig. 8) or either (case 3

in Fig. 8) set(s) of the manual annotation, we found out that only three cases540

exhibited significant difference (i.e. more than 30% difference) between the

model prediction and both sets of the manual annotation. They are presented

as cases 4 to 6 in Fig. 8. It is evident that both the appearance (fourth column)

and 3D location (sixth column) of the sampled slices using our proposed model’s

prediction differ significantly with those sampled from the manual annotations545

(second and third column). However, the slices sampled from the 3D atlas using

the prediction by our proposed model (fifth column) actually look much more

similar to the input standard plane image (first column) than the slices sampled

from the 3D volume (fourth column). In other words, the large variation between

the model prediction and the manual annotations in these three cases is mainly550

due to the misalignment between the three volumes and the atlas. We checked

the three volumes again and verified that the poor volume quality makes perfect

alignment to the atlas space extremely challenging.

5.4. Video of Freehand Fetal Brain Scanning

Fig. 9 shows the results of four video examples. It can be observed that555

the video frames and the corresponding slices sampled from the atlas present

similar anatomical structures in the same orientation. Also, the predicted plane

locations generally match with the motion of the probe when acquiring the

videos, which were roughly along the longitudinal axis (videos 1 and 2 of Fig. 9)
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Figure 9: Results of four video examples. For each example, the upper row shows multiple

frames of the video, which were input to our proposed model. Using the predicted plane

locations, corresponding slices were sampled from the 3D atlas, which were shown in the

middle row. The prediction plane location of each input video frame in the 3D atlas space

was displayed in the bottom row. (Best viewed in color)
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and the sagittal axis (videos 3 and 4 of Fig. 9), respectively.560

It may be noted that the anatomical structures in the upper hemisphere of

some of the video frames (e.g. video 2 of Fig. 9) are not clearly discernible.

This is due to the interaction between the ultrasound wave and concave fetal

skull, which results in the anatomical structures presented in the hemisphere

near the ultrasound probe (i.e. upper part of the video frames) generally being565

less visible (Namburete et al., 2017). On the other hand, the atlas represents

both hemispheres. Therefore, the upper hemisphere of some of the video frames

and that of their corresponding atlas slices may look different.

It was demonstrated in Section 5.2 that the accuracy of prediction decreases

when the input 2D image locates farther away from the centre of the brain.570

Fig. 10 shows two sets of consecutive frames which capture the external areas

of the supratentorial region of the fetal brain. It can be observed that the slices

sampled from the 3D atlas using the predicted plane location show completely

different structures from their corresponding input frames and the predicted

locations for consecutive frames do not show a smooth transition, which both575

further verify that the performance of our proposed model would decline when

the input 2D images capture areas farther away from the centre of the brain,

which present very limited structural features.

In addition, our clinical collaborator scored the predictions from both our

proposed model and the baseline model for 50 selected frames following the580

scoring system as described in Table 1. The mean (± standard deviation) results

for our proposed model and the baseline model are 3.12 (±1.24) and 2.83 (±0.84)

respectively, with full score being 5.0. Fig. 13 shows the distribution of the

scores. The better performance achieved by our proposed model is statistically

significant (p<0.05, t-test). This result may further verify that our proposed585

model not only performs better on images sampled from 3D volumes, but also

on real 2D ultrasound images.
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Figure 10: Suboptimal prediction. Predicted locations of consecutive frames, which capture

the external areas of the supratentorial region of the fetal brain, are completely different and

do not show a smooth transition. (Best viewed in color)
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(a)

(b)

(c)

Figure 11: Attention visualization. (a) displays the relationship between the mean normalized

learned attention (± standard deviation) and the sampled slices’ distance from the centre of

the fetal brain. (b) and (c) are two sets of attention visualization example. The 3D positions

of the images are shown in the 3D fetal brain simulation on the left. (Best viewed in color)
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5.5. Impact of Learned Attention

The results of the slices sampled from the 15 fetal brain volumes in Section

5.1.1 were further analyzed to verify that the Attention module (Fig. 2c) actually590

learns to assign meaningful weights. Fig. 11a shows that the learned attention

decreases with the increasing sampled slices’ distance from the centre of the fetal

brain. If the learned attention is interpreted as the weighting of contribution of

the pairwise comparison of input images, as mentioned in Section 3.2.3, Fig. 11a

may verify that the Attention module of our proposed model actually learns to595

assign meaningful weights, because in general, regions closer to the centre of are

more likely to contain richer structural information, and hence more indicative

towards the final prediction. This can be visualized in Figs. 11b and 11c, where

the images with blue and gray frames (i.e. sampled farther away from the

centre) present less indicative structural information than the images with red600

and green frames (i.e. sampled closer to the centre). Therefore, the attention

weight assigned to the images sampled farther away from the centre of the 3D

volume, which quantify their degree of contribution towards the final prediction,

is smaller in general.

6. Discussion and Conclusion605

The methodology presented in this work was developed for the task of pre-

dicting the location of 2D ultrasound fetal brain images in a pre-defined 3D

space. This may facilitate better identification and localization of different ul-

trasound scans clinically, and hence lead to more accurate and objective image

acquisition and the analysis of fetal growth and development. In the recent liter-610

ature, a closely related task is standard plane detection, which can be achieved

using deep learning techniques (Chen et al., 2015b; Baumgartner et al., 2017;

Chen et al., 2015a; Huang et al., 2017; Gao and Noble, 2017). In contrast, out

work attempted to tackle a more general task, where not only standard plane,

but also any arbitrary plane of the fetal brain can be detected and located.615

The idea is inspired by (Hou et al., 2017, 2018), but differs in that an arbitrary
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number of images can be packed as a set input. Our proposed model makes use

of all input images in the set to predict the location of each image, which leads

to more accurate predictions. One may raise the concern that 2D slices sampled

perpendicularly to the beam direction of a 3D volume will be of poor resolu-620

tion, ending up with a domain gap between artificially sampled slices and real

ultrasound video scans. However, in this paper, we demonstrate that, based

on extensive data augmentation and complementary information from differ-

ent volumes, i.e. 3D training volumes were acquired at different orientations

and plane with poor-resolution image at one volume may have a corresponding625

plane with better-resolution image in another volume, the model trained with

2D slices sampled from 50 aligned 3D volumes can well generalize to real 2D

ultrasound acquisitions and videos.

We have shown that the performance of our proposed model surpasses that

of the baseline model for images with gestational age ranging from 18 to 22630

weeks. It also shows that when the number of input images increases, the im-

provement is more significant. For freehand 2D ultrasound scanning, it is easy

to acquire a large number of images. Therefore, it is practical to utilize our pro-

posed model to predict the 3D location of the acquired images. Nevertheless,

when more images are input to the model at the same time, more computing635

resources are needed but the gain in accuracy is marginal. Therefore, it may

be reasonable to keep the number of images around 20 to 40 in practice. In

addition, it has been demonstrated that our proposed model that was trained

on images with gestational age of 21 weeks may somehow generalize to images

of 18 to 22 gestational weeks. Nevertheless, fetuses during the second trimester640

are undergoing rapid neuro-development and brain structures of fetuses sepa-

rated by one or two weeks may already look quite different (Pistorius et al.,

2010). Also, we have shown that one single model trained on images of a broad

gestational age range may have poorer performance. Therefore, different models

trained on images with different gestational ages should be used in practice to645

achieve more accurate prediction. This may not be ideal as the current models

are sensitive to gestational ages, which may affect the performance when ab-
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normal brain development is present. As future works and clinical application,

3D volumes of different ages should be further registered to a single 3D atlas

space to avoid non-deterministic prediction when a single model is trained with650

images of different gestational ages registered to different atlas spaces.

As shown by the results of both sampled and actual 2D ultrasound data,

the performance of our proposed model declined with increasing distance of

the input images from the centre of the brain. This may be due to the fact

that images farther away from the centre generally contain fewer indicative655

structures and hence are less informative. Therefore, it is more difficult to

predict 3D location of these images (Hou et al., 2017, 2018). Nevertheless, as

shown by the results of our tests on the real 2D ultrasound acquisitions and

videos, our proposed model can generally predict the location of the planes

of view located in the central region of the fetal brain quite successfully. In660

practice, these predictions and the continuous movement of the probe during

freehand scanning may provide clues for identifying the 3D location of images

farther away from the central region of the fetal brain.

Computational cost is another important factor when employing our pro-

posed model for prediction. When using single GPU (GeForce GTX 1080 Ti),665

the total time needed for loading images to the GPU and making prediction

is around 0.059 second with 32 images (i.e. N = 32) being used for attention

and comparison calculation. The computation cost increases to around 2.26 sec-

onds if only CPU is available. Therefore, our proposed model can potentially

be used for real-time or near-real-time applications if hardware is available and670

implementation is further optimized.

In summary, we have presented a new CNN that can predict the location of

2D ultrasound fetal brain images in the 3D space. Using sampled 2D images

from 3D volumes, we demonstrated that when more images are inputted to

our proposed model, prediction is more accurate. Furthermore, the prediction675

made by our proposed model generalizes to real 2D ultrasound acquisitions and

videos, despite the model having only been trained with artificially sampled

2D slices. As future works, we would like to further develop our work as a
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training and diagnostic tool that can help clinicians and sonographers when

they are acquiring and analyzing 2D fetal brain images in real time, to facilitate680

more accurate and objective monitoring of fetal growth and diagnosis of CNS

abnormalities.
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7. Supplementary Materials

7.1. Network Architecture
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Module Baseline Model Proposed Model Output Size

Feature

Extraction

Input Layer N × 160× 160× 1

conv, 3× 3, 64

N × 80× 80× 64conv, 3× 3, 64

max pool, 2× 2, stride 2

conv, 3× 3, 128

N × 40× 40× 128conv, 3× 3, 128

max pool, 2× 2, stride 2

conv, 3× 3, 256

N × 20× 20× 256
conv, 3× 3, 256

conv, 3× 3, 256

max pool, 2× 2, stride 2

conv, 3× 3, 512

N × 10× 10× 512
conv, 3× 3, 512

conv, 3× 3, 512

max pool, 2× 2, stride 2

conv, 3× 3, 512

N × 5× 5× 512
conv, 3× 3, 512

conv, 3× 3, 512

max pool, 2× 2, stride 2

Fully Connected Layer
N × 512

({vi}Ni=1)

Comparison

-
Pairwise Feature N ×N × 1024

Concatenation {mij}N,N
i=1,j=1

- Fully Connected Layer
N ×N × 512

{cij}N,N
i=1,j=1

Attention

-
Embedding Networks × 2

(i.e. Fully Connected Layers)

N × 256

(q(vi; θattI))

N × 256

(k(vj ; θattII))

- Dot Product
N ×N
(A)

Prediction

- Weighted Average
N × 512

({si}Ni=1)

Fully Connected Layer

N × 9

(Resize to N × 3× 3,

{pi}Ni=1)

Table 3: Network architectures of the baseline model and our proposed model. For the feature

extraction module and the final layer of the prediction module, the baseline model and our

proposed model have the same architecture, but they do not share weights (i.e. they are

trained separately).
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7.2. Dataset and Experiments Summary835

XXXXXXXXXXXXExperiment

Dataset INTERGROWTH

(3D Volumes)

INTERGROWTH

(2D TT Plane Images)

Video of Freehand

Brain Scanning

Training
X(21 weeks

& 18-22 weeks)

Testing

Sections 4.4.1 and 5.1.1 X(21 weeks)

Sections 4.4.2 and 5.1.2 X(18-22 weeks)

Sections 4.5 and 5.2 X

Sections 4.6 and 5.3 X

Sections 4.7 and 5.4 X

Sections 4.8 and 5.5 X(21 weeks)

Table 4: Summary of different experiments and the corresponding dataset.

7.3. Result Distribution

(a) (b) (c)

Figure 12: The result distribution of our proposed model. Result distribution of (a) Euclidean

distance, (b) plane angle and (c) normalized cross correlation at 21 gestational weeks with

N = 4 and N = 64 are shown.

7.4. Score Distribution
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Figure 13: Manual score distribution of prediction on real 2D ultrasound images. The score

ranges from 1 to 5, with full score being 5.
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