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Abstract

We propose a Deep learning-based weak label learning method for analyzing whole slide images (WSIs) of Hematoxylin and Eosin
(H&E) stained tumor tissue not requiring pixel-level or tile-level annotations using Self-supervised pre-training and heterogeneity-
aware deep Multiple Instance LEarning (DeepSMILE). We apply DeepSMILE to the task of Homologous recombination deficiency
(HRD) and microsatellite instability (MSI) prediction. We utilize contrastive self-supervised learning to pre-train a feature extractor
on histopathology tiles of cancer tissue. Additionally, we use variability-aware deep multiple instance learning to learn the tile feature
aggregation function while modeling tumor heterogeneity. For MSI prediction in a tumor-annotated and color normalized subset of
TCGA-CRC (n=360 patients), contrastive self-supervised learning improves the tile supervision baseline from 0.77 to 0.87 AUROC,
on par with our proposed DeepSMILE method. On TCGA-BRCA (n=1,041 patients) without any manual annotations, DeepSMILE
improves HRD classification performance from 0.77 to 0.81 AUROC compared to tile supervision with either a self-supervised or
ImageNet pre-trained feature extractor. Our proposed methods reach the baseline performance using only 40% of the labeled data on
both datasets. These improvements suggest we can use standard self-supervised learning techniques combined with multiple instance
learning in the histopathology domain to improve genomic label classification performance with fewer labeled data.
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1. Introduction

Early recognition of abnormalities in the DNA Damage Re-
sponse (DDR) machinery in tumors can greatly support person-
alized medicine by identifying patients that may benefit from
therapies that exploit DDR-related genomic alterations (van der
Velden et al. (2019); Pearl et al. (2015); Pilié et al. (2019)). For
example, Homologous Recombination Deficiency (HRD) and
MicroSatellite Instability (MSI) can function as a biomarker indi-
cating therapy sensitization in, respectively, breast cancer (Lord
and Ashworth (2016)) and colorectal cancer (Kather et al. (2018);
Mauri et al. (2020); Arena et al. (2020)) patients.

Currently, the most common techniques for determining HRD
or MSI are next-generation whole-genome and exome sequenc-
ing methods (Davies et al. (2017); Zhu et al. (2018)), targeted
DNA sequencing methods using Polymerase Chain Reaction
(Boland et al. (1998)), and immunohistochemistry (IHC) meth-
ods (Kawakami et al. (2015)). The former two techniques, how-
ever, are expensive, time-consuming, and not globally accessi-
ble (Snowsill et al., 2017). Additionally, the molecular features
that indicate functional deficiencies in the homologous recombi-
nation pathway, thus indicating targeted therapy sensitivity, are
inconclusive and debated (Davies et al., 2017). Therefore, these
techniques are not routinely applied in the clinic. Although IHC
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is more affordable and is becoming common practice for, e.g.,
Lynch syndrome (NICE (2017)), it still requires additional labo-
ratory testing.

Generally, the golden standard for solid tumor diagnostics is
the use of Hematoxylin & Eosin-stained (H&E) Whole-Slide Im-
ages (WSIs). In contrast to genome sequencing methods, H&E
WSIs are easily accessible, inexpensive, and reflect the cellu-
lar and tissue morphology that result from genomic alterations.
However, the morphology of the broad range of DDR defects has
not yet been described. Therefore, H&E WSIs are, at present, not
used to detect DDR defects in routine clinical diagnostics. This
is a missed opportunity as employing H&E WSIs to detect DDR
defects could assist personalized medicine by guiding early pa-
tient stratification for additional diagnostic tests or guiding ther-
apy decisions. The digitization of WSIs has opened up doors for
computational analysis to perform this task.

Recent work has shown great promise for deep learning meth-
ods for the computational analysis of digitized H&E WSIs for
genomic status classification (Echle et al. (2020); Kather et al.
(2020); Fu et al. (2020); Coudray et al. (2018)). Although end-
to-end supervised methods for a Convolutional Neural Network
(CNN) on gigapixel WSIs exist, they require specialized im-
plementations to circumvent the large memory requirements re-
quired for loss backpropagation with gigapixel images, and this
leads to a low training and inference speed (Pinckaers et al.
(2020b); Chen et al. (2021)). In contrast, two-stage methods stop
the gradient at the tile feature extraction or tile aggregation level.
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Generally, these methods do not pass the entire WSI through a
neural network but instead split the WSI into many small tiles
which are the input to the network. Either the task is framed
as tile-supervision, i.e., supervised learning from each tile to the
WSI-level label after which the proportion of positively predicted
tiles is said to be the WSI-level prediction (Kather et al. (2019,
2020); Echle et al. (2020); Fu et al. (2020)), or it is framed as
WSI-supervision in which the tiles are compressed using a pre-
trained feature extractor to perform supervised classification of
the WSI directly using all latent feature vectors of its constituting
tiles as input. This can be framed as either full WSI-supervision
(Tellez et al. (2020); Aswolinskiy et al. (2021)) or weak WSI-
supervision (Lu et al. (2021)).

However, these methods have their limitations. Since the cel-
lular and tissue morphology related to DDR defects are unknown,
there are no spatial annotations to guide training. This is why tile-
supervision uses the WSI-level label as a tile-level label, which
results in a noisy supervisory signal since the signal of the DDR
defect is, likely, not present in every tile. Noisy supervision, in
turn, leads to large data requirements (Echle et al. (2020)). Cur-
rent WSI compression techniques report that the top-performing
self-supervised learning (SSL) method is a bi-directional gener-
ative adversarial network, which is notoriously difficult to train
(Tellez et al. (2019)) and are outperformed by supervised pre-
training on large annotated datasets (Tellez et al. (2020)). The
field of SSL has grown quickly lately, however, and claims to
close the gap between supervised and unsupervised learning in
the natural image domain (Grill et al., 2020; Chen et al., 2020a).
In practice, though, most deep learning methods in histopathol-
ogy do not use a domain-specific feature extractor altogether by
employing an ImageNet pre-trained feature extractor (Coudray
et al. (2018); Kather et al. (2019, 2020); Fu et al. (2020); Lu et al.
(2021)). Since natural scenes and medical images have strongly
different data distributions, using an ImageNet pre-trained net-
work might not be optimal (Ke et al., 2021; Raghu et al., 2019),
and thus employing the latest SSL methods on unlabeled domain-
specific data is a promising avenue to increase performance,
generalizability, and robustness (Hendrycks et al., 2019). Re-
cently, work in the histopathology domain shows the value of
self-supervised learning with BYOL (Grill et al., 2020) and MO-
COv2 (Chen et al., 2020b) when the feature extractors are frozen
and treating the WSI classification problem as a multiple instance
learning problem (Saillard et al., 2021; Abbasi-Sureshjani et al.,
2021).

In this paper, we investigate the performance increase offered
by SimCLR (Chen et al., 2020a), which makes latent represen-
tations of heavily augmented versions of the same tile similar
while making the latent representations of heavily augmented
versions of different tiles distinct. SimCLR is used to pre-train
a feature extractor without any spatial annotations or WSI-level
labels. This feature extractor is evaluated and compared to the
commonly used ImageNet pre-trained feature extractor on the
downstream task of HRD and MSI classification. We research its
relative effectiveness when finetuning the feature extractor with
noisy WSI label tile-supervision in a dataset with and without
tumor annotations. Additionally, we evaluate its performance in-
crease in the case when we freeze the feature extractor to per-
form Attention-Based Deep Multiple Instance Learning (Deep-
MIL, Ilse et al. (2018)) on the tiles of a WSI. Finally, we propose

a feature variability-aware variant of DeepMIL, which models tu-
mor heterogeneity and further increases performance.

1.1. Contributions

The main contributions of this work can be summarized as
follows: 1) We outperform existing tile-supervised WSI-label
learning methods for MSI classification for a tumor-annotated
and color-normalized colorectal cancer dataset using a feature
extractor pre-trained with SimCLR. 2) We show that this
improvement is not seen when predicting HRD in a dataset
without tumor annotations, and propose a method to improve this
performance. 3) We propose a Deep learning-based weak label
learning method for histopathology not requiring pixel-level
or tile-level annotations using Self-supervised pre-training
and heterogeneity-aware deep Multiple Instance LEarning
(DeepSMILE). DeepSMILE compresses a whole-slide image
with a self-supervised pre-trained feature extractor and uses
VarMIL, which extends DeepMIL with a feature variability mod-
ule to model tumor heterogeneity. DeepSMILE outperforms the
tile supervision baselines and DeepMIL for HRD classification,
and focuses on features that are expected to be related to DDR
deficiencies.

The paper is structured as follows: Section 2 provides an
overview of previous work and positions our work within it. Sec-
tion 3 describes the data used, followed by section 4 describing
our model details. Section 5 describes all experiments. We con-
clude with the discussion and conclusion in section 6.

2. Related work

We distinguish between two-stage (not end-to-end) and one-
stage (end-to-end) methods. DeepSMILE falls in the former cat-
egory, and we position our work in relation to other two-stage
methods in Table 1.

Two-stage methods generally cut the WSI into many small
cropped patches, the tiles, which are processed to classify the
WSI. In two-stage methods, one can distinguish between tile-
supervised WSI-label methods, fully supervised, and weakly su-
pervised methods.

2.1. Two-stage: tile-supervised WSI-label methods

Two-stage tile-supervised WSI-label methods assign the WSI-
level label to each tile of a region of interest of a WSI and treat the
tile classification as a supervised learning task. Most commonly,
the patient-level label is computed as the fraction of positively
classified tiles. This method has been applied to gene mutation
classification in lung cancer (Coudray et al. (2018)), MSI sta-
tus classification in colorectal and stomach cancer (Kather et al.
(2019); Echle et al. (2020)), and a large variety of genomic, tran-
scriptomic, and survival labels in pan-cancer tissue (Kather et al.
(2020); Fu et al. (2020); Echle et al. (2020)).

2.2. Two-stage: fully supervised methods

Two-stage fully supervised methods reduce the dimensionality
of the WSI by replacing each tile in place with its latent feature
representation as encoded by a pre-trained feature extractor. The
resulting compressed WSIs are subsequently used as input for
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fully supervised methods. Several methods can be employed to
pre-train the feature extractor. Self-supervised methods (Tellez
et al., 2019) and multi-task supervised pre-training on other tasks
and data (Tellez et al., 2020; Aswolinskiy et al., 2021) have been
described for this task in the literature.

2.3. Two-stage: weakly supervised methods

In contrast to fully supervised methods, two-stage weakly su-
pervised methods use a MIL approach. In a MIL approach, it
is assumed that some of the unlabeled tiles (or instances) in the
labeled WSI (or bag) contain the signal for the WSI-level label.
These methods propose a linear or non-linear combination of the
latent features or predicted scores of a selection of the tiles in a
WSI to represent the WSI latent features. This WSI latent feature
is then used to classify the WSI, so that a WSI-level loss can be
computed and backpropagated through the classification network.

Durand et al. (2016) compute a score for each instance and
use the top and bottom R scores to compute the bag-level pre-
diction. Courtiol et al. (2019) extend the work by Durand et al.
(2016) to tissue segmentation and WSI-level label classification
using an MLP on the top and bottom instance scores. As in our
work, Ilse et al. (2018) learn the bag-level classification by com-
puting an attention-weighted mean of all tile feature vectors. This
latent representation of the WSI is fed into an MLP to compute
the bag label. Lu et al. (2019) used DeepMIL and showed that
pre-training a feature extractor with contrastive predictive coding
(Oord et al. (2019)) on histopathology tiles improves downstream
malignancy classification performance when compared to an Im-
ageNet pre-trained feature extractor, yet this has not been eval-
uated on full WSIs. Additionally, Campanella et al. (2019) pro-
duce tile-level feature vectors and class scores using a network
trained with a max-pooling MIL approach. The top 20 scored
feature vectors are passed to an RNN to produce the WSI-level
label to detect metastasis. Similarly, Valieris et al. (2020) have ap-
plied this method to predict HRD and mismatch repair deficiency,
the DDR deficiency that is closely related to MSI. Recently, self-
supervised pre-training has been shown to be effective for MSI
prediction using MoCo V2 (Saillard et al., 2021) and breast can-
cer subtype classification using BYOL (Abbasi-Sureshjani et al.,
2021) in a MIL setting, and various more involved MIL classi-
fiers have been developed that, compared to vanilla DeepMIL,
alter the attention computation or ranking (Lu et al. (2021); Bilal
et al. (2021)).

2.4. End-to-end methods: contextless

Xie et al. (2020) cluster the latent features of tiles of a WSI
into representative parts and concatenate each part’s representa-
tive tile. This concatenation is mapped to the WSI-level label by
a fully connected layer. For prostate cancer classification, they
obtain similar results to the MIL-RNN method by Campanella
et al. (2019). Although training is end-to-end, this method only
concatenates tile-level features and thus does not model tile inter-
actions to include higher-level spatial context.

2.5. End-to-end methods: context-aware

Pinckaers et al. (2020b) reduce the memory requirements of
a CNN by 97% with a streaming CNN, which allows applying
the CNN directly to megapixel histopathology images. Pinckaers

et al. (2020a) further extended the method to accommodate
gigapixel WSIs, applied to prostate cancer detection, reaching
similar results to the MIL-RNN method by Campanella et al.
(2019). Chen et al. (2021) instead leverage the unified memory
mechanism and other GPU optimization techniques to overcome
the memory constraints. Although these methods reach state-of-
the-art results, streaming CNNs are approximately 16× slower
than MIL methods during training and inference on WSIs at low
resolution, which scales non-linearly with increasing resolution.

Our proposed method, DeepSMILE, is a two-stage weakly su-
pervised method applied to HRD and MSI classification. Com-
pared to the existing methods, it introduces and evaluates the use
of SimCLR, a contrastive self-supervised learning method, to pre-
train a histopathology-specific feature extractor used for tile su-
pervision models and multiple instance learning models. Further-
more, we introduce an extended version of DeepMIL that models
tumor heterogeneity. We describe our model in detail in section 4.

3. Materials and methods

3.1. Data

We use digitized H&E tissue slides of breast (BC) and col-
orectal (CRC) cancer tissue to classify a tumor’s genomic la-
bels. These WSIs are large gigapixel images that can exceed
100,000×100,000 px, whereas the genomic labels are binary rep-
resentations of complex genomic features derived from DNA se-
quencing results. This section describes the data collection and
pre-processing steps for each dataset, and how the genomic la-
bels are obtained. A detailed description of demographic vari-
ables (age, race, AJCC pathologic stage, prior treatment, gender,
genomic label) per data split can be found in the Supplementary
materials.

3.1.1. Colorectal cancer tissue dataset: TCGA-CRCk
We use the pre-processed (tiled from tumor annotations

and color-normalized) colorectal tumor tiles extracted from
Formalin-Fixed, Paraffin-Embedded (FFPE) WSIs from the Can-
cer Genome Atlas (TCGA) with accompanying binarized MSI la-
bels from Kather (2019). We use the train-test split as given and
perform a 5-fold patient-level train-validation split. This dataset
consists of 192,314 (train: 93,408, test: 98,906) tiles from 360
patients (train: 260, test: 100). The train and test set respectively
consist of 39 and 26 MSI, and 221 and 74 MicroSatellite Sta-
ble (MSS) patients. These patients are from multiple centers in
the United States of America. We refer to this dataset as TCGA-
CRCk.

3.1.2. Breast cancer tissue dataset: TCGA-BC
We obtain all FFPE WSIs for BC tissue from TCGA (referred

to as TCGA-BC), which is collected from multiple centers in the
United States of America, and retrieve genomic DDR-related la-
bels, including HRD Score, from Knijnenburg et al. (2018). The
HRD Score (Timms et al. (2014); Marquard et al. (2015)) is a
discrete score computed as the sum of the number of subchromo-
somal regions with allelic imbalance extending to the telomere
(Birkbak et al. (2012)), the number of chromosomal breaks be-
tween adjacent regions of at least 10 megabases (Popova et al.
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Table 1: Overview of two-stage tile-supervised and weak label learning methods for WSI-level label classification.

Class of
methods Method(s)

Domain-
specific
feature
extractor

Evaluates
MIL

Evaluates tile
supervision

Applied to
WSIs

Models
feature
variability

Predicts
genomic
labels

Two-stage
tile-supervised
WSI label
learning

Kather et al. (2019, 2020)
Echle et al. (2020)
Coudray et al. (2018)
Fu et al. (2020)
Muti et al. (2021)

✓/ ✗ ✗ ✓ ✓ ✗ ✓

Two-stage weak
label learning

Valieris et al. (2020) ✗ ✓ ✗ ✓ ✓/ ✗ MSI, HRD
Campanella et al. (2019) ✗ ✓ ✗ ✓ ✓/ ✗ ✗
Courtiol et al. (2019) ✗ ✓ ✗ ✓ ✗ ✗
Lu et al. (2020, 2021) ✗ ✓ ✗ ✓ ✗ ✗
Ilse et al. (2018) ✗ ✓ ✗ ✗ ✗ ✗
Lu et al. (2019) CPC ✓ ✗ ✗ ✗ ✗
Bilal et al. (2021) ✗ ✓ ✗ ✓ ✗ MSI
Saillard et al. (2021) MoCov2 ✓ ✗ ✓ ✗ MSI

Abbasi-Sureshjani et al. (2021) BYOL ✓ ✗ ✓ ✗
molec.
subtype

DeepSMILE (Ours) SimCLR ✓ ✓ ✓ ✓ MSI, HRD

(2012)), and the number of regions with a loss of heterozygos-
ity event of intermediate size (Abkevich et al. (2012)). Since the
relationship of the HRD Score to actual homologous recombina-
tion functionality and cellular morphology is not known, we test
two binarization strategies to define the classification task of dis-
tinguishing HRD-high (assumed to be HR deficient and thus sen-
sitive to targeted therapy) and HRD-low patients (assumed to be
HR proficient and thus not sensitive to targeted therapy). First, we
split the score at the median (mHRD), similar to previous work
(Kather et al., 2020). Secondly, we aim to provide a better super-
visory signal by splitting the set in tertiles (tHRD) and assigning
a top-tertile or bottom-tertile label, discarding patients with an
HRD score close to the median. That is,

mHRDm =

1, if HRDm > q(0.5; DTCGA-BC) = 21
0, otherwise

(1)

where HRDm is the HRD score of patient m and q(α; Dd) indi-
cates the α-quantile of the HRD scores of dataset d. For tHRD:

tHRDm =


1, if HRDm ≥ q(0.66; DTCGA-BC) = 13
0, if HRDm ≤ q(0.33; DTCGA-BC) = 30

discard patient otherwise
(2)

The train-test splits for TCGA-BC are generated for those pa-
tients provided by Knijnenburg et al. (2018) for which HRD la-
bels and FFPE WSIs are available. The splits are patient-level
stratified for mHRD score. We create 5-fold cross-validation
splits with 20% (215-231 patients) in the test set, 20% (219-229
patients) in the validation set, and 60% (660-670 patients) in the
training set. The exact patient distributions and their demographic
and clinical variables can be found in the Supplementary materi-
als.

The background of WSIs is segmented using the FESI (Bug
et al. (2015)) algorithm on the WSI at 10 microns per pixel, and
tiles of which more than half of the pixels is covered by the back-
ground segmentation mask are discarded. The remaining tissue
tiles are then tiled at a spacing of 1.14 microns per pixel (mpp)
with a tile size of 224 × 224px, resulting in an edge length of
256 µm. We selected the zoom level best representing this spac-
ing, before downsampling. We use all extracted tissue tiles for all

training and inference pipelines, resulting in 2,889,870 tiles for
1,127 WSIs of 1,041 patients.

3.2. Evaluation

The model performance is evaluated using the area under the
receiving operator characteristic curve (AUROC, or AUC) and F1
score at a cut-off of 0.5 on slide level predictions compared to the
genomic binary labels. For each experiment, we report the mean
and standard deviation of the AUC and F1 scores on the test split
for 5 different folds and visualize the ROC and precision-recall
curves. To statistically compare two methods we use the boot-
strapping method. More specifically, for each fold we sample 40
random samples with replacement from the test set 100 times and
compute the metric for each bootstrapped sample. We then use
a two-sided student’s t-test to compare mean of the distribution
of bootstrapped metric values, assuming independence between
samples and similar variance. With a p < 0.05 we reject the null
hypothesis that the metrics are similarly distributed, and conclude
that the model with a higher mean performs significantly better.
The complete experimental pipeline is summarized in Algorithm
1. We use common training, intermediate validation, and final
validation steps as presented in Algorithm 1 line 13-26. We select
the model with the highest patient-level AUC on the validation set
for final validation on the test set.

4. Model

In this section we describe our model, which is a two-stage
weakly supervised method, using self-supervised pre-training
and feature variability-aware deep multiple instance learning. We
will refer to this model as DeepSMILE (from Self-supervised
heterogeneity-aware Multiple Instance LEarning). Our model is
visualized in Figure 1 and its comparison to existing methods is
summarized in Table 1.

We split this section into two parts. In the first part in sec-
tion 4.1.1, we present how we train an in-domain pathology-
specific feature extractor with SimCLR to extract the latent fea-
ture vector of each tile. In the subsequent section 4.2.3, we
present VarMIL, which comprises the second stage of the model.
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Algorithm 1: Summary of experimental pipeline. Square
brackets contain section number providing details for that
step.

1 Download WSIs with matching genomic labels [sec 3.1]
2 Extract tissue-containing tiles from WSI [sec 3.1.2]
3 Split tiles on patient level into 5-fold cross-validation

train, val (and test) split [sec 3.1.2]
4 Perform self-supervised pre-training on tiles from train

set, save model weights, extract features from training
and test tiles and save to disk [sec 4.1.1]

5 if pipeline == "baseline" then
6 model = ImageNet pre-trained CNN with tile-level

MLP classifier [sec 4.2.1]
7 data loader = load tiles as samples, with

patient-level label per tile
8 else if pipeline == "DeepSMILE" then
9 model = VarMIL WSI-level classifier [sec 4.2.3]

10 data loader = load latent features of all tiles of a
WSI as samples, with patient-level label per sample

11 end
12 optimizer = ADAM [sec 4]
13 for fold in k folds do
14 for (x, y, step) in data loader do
15 pred = model.forward(x)

16 loss = CE(y, pred) [sec 4]
17 loss.backward()

18 optimizer.step()

19 if step % evaluate every == 0 then
20 val pred = model.forward(X val)

21 AUC = compute auc(val pred, Y val)

[sec 3.2]
22 save(AUC, model)

23 end
24 end
25 Pick model with top AUC on val set [sec 3.2]
26 Use best model to evaluate performance on test set
27 end
28 Report k-fold µ ± σ of slide-level AUC and F1 [sec 5]

This is a MIL approach extending DeepMIL, detailed in sec-
tion 4.2.2, that models the variance of each latent feature of all
instances in a bag.

In the experiments (section 5), we will compare DeepSMILE
to a tile-supervised WSI-label learning baseline with an Ima-
geNet pre-trained feature extractor as presented in section 4.2.1.

4.1. Feature extraction

4.1.1. Self-supervised pre-training
In the feature extraction stage, we use a CNN to map each tile

of a WSI to a lower-dimensional representation. Formally, this
neural network zθ parametrized by θ maps the ith tile of patient m,
Xm

i , into an H-dimensional vector Zm
i :

Zm
i := zθ(Xm

i ) (3)

To find the parameters θ we use SimCLR, which is a contrastive
self-supervised learning method. We thus obtain an in-domain
histopathology-specific feature extractor without requiring pixel-
level annotations or WSI-level labels. This is particularly relevant
when the cellular and tissue morphologies related to the genomic
label are unknown, as is the case with HRD and MSI.

The feature extractor zθ is initialized using He initialization (He
et al., 2015). The loss function, data augmentations and their pa-
rameters are identical to those in Chen et al. (2020a); we use the
normalized temperature-scaled cross-entropy (NT-Xent) loss on
projected latent feature vectors of images that are augmented us-
ing a random crop, random horizontal flip, color jitter, and a ran-
dom grayscale transformation. A visual representation of Sim-
CLR is provided in the lower-left frame of Figure 1. The parame-
ters θ are optimized using the Adam optimizer with a learning rate
of 3 × 10−4, β1 = 0.9, β2 = 0.99, with no learning rate schedule
or weight decay.

Similar to previous work (Kather et al., 2019, 2020; Echle
et al., 2020) we use different networks for TCGA-CRCk and
TCGA-BC, where we use Resnet18 (He et al., 2016) and Shuf-
flenetV2 (Ma et al., 2018) respectively. This design choice was
made to be able to directly compare the results. This difference in
networks and dataset size leads to different choices in batch size
and number of epochs. On TCGA-BC we train zθ for 60 epochs
with a batch size of 1024, whereas we use 100 epochs and a batch
size of 128 for TCGA-CRCk. The pre-training respectively takes
approximately three days using four or one Nvidia Titan RTX
card(s) (24GB VRAM). The code and run configuration can be
found on https://github.com/NKI-AI/hissl.

4.2. Classification

To predict the genomic label, which is a whole-slide level la-
bel, we introduce VarMIL, an extension of DeepMIL which ad-
ditionally takes the intra-WSI inter-tile variance of extracted tile
features into account. We compare with two baseline models:
DeepMIL and a tile-supervision baseline with a tile-level ma-
jority vote. For each classification method, we use the cross-
entropy loss. The code and run configuration can be found at
https://github.com/NKI-AI/dlup-lightning-mil.

As our method extends DeepMIL, we first introduce the base-
line models in sections 4.2.1 and 4.2.2.
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Figure 1: A visual summary of DeepSMILE. Top-left: We extract all non-background tiles from a WSI, and from each tile extract the latent feature vector using
a domain-specific feature extractor pre-trained with SimCLR. Bottom-left: During pre-training, SimCLR transforms each image twice with random augmentations,
extracts latent features using the backbone of interest, maps each vector to a projection head, and uses these to compute the loss. After training, the projection MLP is
discarded and the backbone of interest is used to compress tiles. Top-right: VarMIL computes the attention-weighted mean and variance of all tile latent feature vectors.
The concatenated mean and variance are passed to a linear classification layer to compute the WSI-level genomic label classification, and the loss is backpropagated
through the right side of the system. Bottom-right: VarMIL computes the attention weight from each latent feature vector, and computes an attention-weighted mean
and variance of all tile latent feature vectors of the WSI.

4.2.1. Baseline: tile supervised WSI-label learning
We compare against a tile-supervised method as used in, e.g.,

Kather et al. (2019, 2020) and Fu et al. (2020). In these models,
the patient-level label is assigned to each tile from the tumor bed,
and the classification task is defined to predict the WSI-level la-
bel directly from a single tile. The final WSI-level prediction is
defined as a variant of the majority vote, computed as the mean
of all tile predictions, that is:

pm =
1
N

Im∑
i=1

pm
i , (4)

where Im is the number of tiles for patient m and pm
i is the class

probability of tile i for patient m belonging to the positive class.
On TCGA-BC we follow the approach of Kather et al. (2020)

and train a ShufflenetV2 for 10,000 steps (approximately 4
epochs) with a learning rate of 5 × 10−5 and a batch size of 512.
Whereas, on TCGA-CRCk, we follow the approach of Kather
et al. (2019) and train a ResNet18 for 20,000 steps (approxi-
mately 100 epochs) with a batch size of 256, learning rate of
10−6 (selected following a hyperparameter search in the origi-
nal paper). For both datasets, we use the Adam optimizer with
β1 = 0.9, β2 = 0.99, without a learning rate schedule, and eval-
uate the performance every 100 steps. Each image is augmented
with a random flip-transform (horizontal flip with p = 0.5, ver-

tical flip with p = 0.5, random rotation of 0, 90, 180, or 270
degrees with equal probability.

The convolutional layers are initialized using either an Ima-
geNet pre-trained network or a self-supervised pre-trained net-
work on histopathology tiles as presented in section 4.1.1. The
final fully connected layers are re-initialized using He initializa-
tion. In contrast to Kather et al. (2020) we fine-tune all layers
instead of only the last layers.

4.2.2. Weak label classification: DeepMIL
DeepMIL is a permutation-invariant MIL model that represents

the bag-level latent features as the attention-weighted average of
instance-level feature vectors. This bag-level representation is
subsequently classified by a fully connected layer. DeepMIL is
applied to the encoded tile feature vectors from the first stage as
described in section 4.1.

The DeepMIL algorithm predicts for each patient m an atten-
tion weight vector am := (am

1 , a
m
2 , . . . , a

m
Im

) where Im are the num-
ber of available tiles for this patient. This is computed as the soft-
max of the output of a two-layer multilayer perceptron (MLP)
with weights (Wi, bi)i=1,2 on top of all tile-level feature vectors
Zm:

am := softmax
(
W2 tanh

(
W1Zm + b111×Im

)
+ b2
)
, (5)

where the dimensionalities of the weights (Wi, bi)i=1,2 depend on
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the output dimension H of the feature extractor of the first stage
and the MLP dimension ν. In particular W1 ∈ Rν×H , b1 ∈ Rν

and W2 ∈ R1×ν and b2 ∈ R. We define 11×Im as [1 · · · 1] ∈ R1×Im ,
meaning that b1 is added tile-wise to each ν-dimensional column
of W1Zm. The output of the MLP is 1-dimensional for each tile,
and therefore am ∈ RIm .

Subsequently the WSI-level representation Z̄m ∈ RH is com-
puted as the matrix-vector product between the attention vector
am and the tile feature vector matrix Zm ∈ RH×Im from (3):

Z̄m := Zmam =

Im∑
i=1

am
i Zm

i , (6)

Finally, the two class output probabilities pm = (pm
1 , pm

2 ) are
computed by a linear layer with trainable weights (Wξ, bξ) on top
of the WSI-level latent representation Z̄m:

pm = sigmoid
(
WξZ̄m + bξ

)
, (7)

where Wξ ∈ R2×H and b ∈ R2. As in Ilse et al. (2018) we select
ν = 128 and use the Adam optimizer with β1 = 0.9 and β2 =

0.99. The parameters are initialized using the He initialization.
The learning rate and weight decay were found using grid search.
For the learning rate and weight decay, this results in values of
5 × 10−4 and 10−4, respectively. On both TCGA-BC and TCGA-
CRCk we train for 20,000 steps with a batch size of 1 and evaluate
the performance every 20 steps.

4.2.3. Our method: Weak label classification with VarMIL
A limitation of DeepMIL is that the attention-weighted mean is

unable to capture tile interactions and global, high-level features.
This results in an aggregated feature vector that only represents
local, tile-level features. However, global features, such as tumor
border shape and intratumor heterogeneity, might be indicative of
HRD or MSI. Therefore, we extend DeepMIL with an attention-
weighted variance module, termed VarMIL, which computes the
variability in features across tiles within a single WSI as a mea-
sure of tissue heterogeneity. In addition to Z̄m from the original
DeepMIL framework, we propose to model the feature variability
of the tiles by adding a learned attention-weighted variance. The
weighted variance for any patient m is defined as

Zm
σ =

Im

Im − 1

Im∑
i=1

am
i (Zm

i − Z̄m)2 (8)

We then concatenate Zm
σ and Z̄m into a single vector, that is

Ẑm B

[
Z̄m

Zm
σ

]
, (9)

which is the novel WSI-level latent representation that is passed
to a linear layer with trainable weights (Wψ, bψ):

pm = sigmoid
(
WψẐm + bψ

)
, (10)

where Wψ ∈ R2×2H and bψ ∈ R2.
We use the same hyperparameters and initialization as used for

DeepMIL (section 4.2.2).

5. Experiments

5.1. Experiment 1: Self-supervised learning improves MSI clas-
sification on TCGA-CRCk for MIL and tile supervision

We perform an ablation study to show the added value of each
of our proposed components on the downstream task of MSI clas-
sification on the TCGA-CRCk dataset (for dataset details, see
section 3.1.1). Since this is a published pre-processed dataset,
we can directly compare the results with those from Kather et al.
(2019), Saillard et al. (2021) and Bilal et al. (2021). From Table
2 we see that our ImageNet-initialized tile-supervision baseline
achieves an AUC of 0.77 ± 0.06, similar to the published results
in Kather et al. (2019). In row 2 one can see that a SimCLR pre-
trained feature extractor increases AUC by 0.1 up to 0.87 ± 0.01,
and increases F1 score from 0.46 ± 0.18 up to 0.61 ± 0.11 for the
tile-supervision method.
When using DeepMIL on top of extracted ImageNet feature vec-
tors, the baseline performance is low at 0.65 ± 0.11 AUC and
0.26±0.14 F1. Using a SimCLR-pretrained feature extractor lifts
this to 0.85 ± 0.03 AUC and 0.36 ± 0.23 F1, similar to the re-
sults reported in Saillard et al. (2021). VarMIL further increases
this to 0.86 ± 0.02 AUC and 0.47 ± 0.10 F1, which are both sig-
nificantly higher (p < 0.05) than SimCLR-DeepMIL, but still
significantly lack behind (p < 0.05) to tile supervision initialized
with a SimCLR pretrained feature extractor, especially on the F1
score. SimCLR tile-supervision, however, still lacks behind the
top results from Saillard et al. (2021) and Bilal et al. (2021).
The ROC and PR curves in Figure 2c and Figure 2f show that
all methods that use a SimCLR-pretrained feature extractor far
outperform their ImageNet versions. The ROC and PR curves
of SimCLR-VarMIL and SimCLR tile supervision can barely be
distinguished, however.
Investigation of tiles receiving high and low attention by
SimCLR-VarMIL by a pathologist (HMH) revealed that the
model pays attention to tiles containing features that are predic-
tive of MSI that were described before by Greenson et al. (2009).
These results are detailed in the Supplementary material.

5.2. Experiment 2: Self-supervised learning and VarMIL im-
proves HRD Score classification in TCGA-BC compared to
tile supervision

In contrast to Experiment 1, a SimCLR-pretrained feature ex-
tractor does not improve performance for tile supervision on the
TCGA-BC dataset (for dataset details, see section 3.1.2) for ei-
ther binarized HRD labels. As seen in Table 2, tile supervision
using either an ImageNet or SimCLR-pretrained feature extrac-
tor reaches similar performance at 0.71 AUC and 0.64 F1 for
mHRD (p > 0.05 for both) and 0.78 AUC (p > 0.05) and
0.71 to 0.72 (p < 0.05) F1 for tHRD. Similarly to Experiment
1, we see that doing WSI compression and MIL using an Im-
ageNet pre-trained extractor generally performs worse than tile
supervision, reaching only 0.68 ± 0.02 AUC and 0.46 ± 0.27
F1 for mHRD, and 0.69 ± 0.04 AUC and 0.69 ± 0.03 F1 for
tHRD when using DeepMIL. A SimCLR-pretrained extractor and
VarMIL boosts this performance, though, up to 0.75 ± 0.03 AUC
and 0.69 ± 0.04 F1 for mHRD, and up to 0.81 ± 0.04 AUC and
0.72 ± 0.05 F1 for tHRD. Bootstrapping only reveals a signifi-
cant difference between the AUC scores of SimCLR-VarMIL and
SimCLR-DeepMIL for mHRD, however (p < 0.05).
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Table 2: Comparison of DeepSMILE (SimCLR-VarMIL) to the baseline (ImageNet pre-trained tile-supervised WSI-label learning) using the area under the receiver
operating characteristic curve. Top row shows the results of our baseline model, second row shows same method but with a SimCLR pre-trained network. Third
(fifth) row shows weak label learning with DeepMIL (VarMIL) on features extracted with an ImageNet pre-trained feature extractor, while the fourth (sixth) row uses
a SimCLR pre-trained feature extractor. The top row of the rightmost column reproduces the same results of Kather et al. (2019) (reported as 77 (95% CI, 62–87))
with the same method on the same dataset. The following rows show the added effect of each our our proposed modules, illustrating that self-supervised learning
improves performance for both tile supervision and multiple instance learning methods. Bold indicates statistically significant (p < 0.05) greater value than second
greatest score.

Extractor
initialization

Classification
Method

TCGA-BC TCGA-CRCk
mHRD tHRD MSI

AUROC F1 AUROC F1 AUROC F1
ImageNet Tile supervision 0.71 ± 0.03 0.64 ± 0.04 0.78 ± 0.03 0.71 ± 0.04 0.77 ± 0.06 0.46 ± 0.18
SimCLR Tile supervision 0.71 ± 0.04 0.63 ± 0.05 0.78 ± 0.06 0.72 ± 0.04 0.87 ± 0.01 0.61± 0.11

ImageNet DeepMIL 0.68 ± 0.02 0.49 ± 0.27 0.69 ± 0.04 0.69 ± 0.03 0.65 ± 0.01 0.26 ± 0.14
SimCLR DeepMIL 0.75 ± 0.04 0.68 ± 0.03 0.79 ± 0.05 0.71 ± 0.01 0.85 ± 0.03 0.36± 0.23

ImageNet VarMIL 0.68 ± 0.03 0.44 ± 0.31 0.71 ± 0.05 0.68 ± 0.03 0.69 ± 0.04 0.43 ± 0.04
SimCLR VarMIL 0.75 ± 0.03 0.69 ± 0.04 0.81 ± 0.04 0.72 ± 0.05 0.86 ± 0.02 0.47 ± 0.10

Although the differences in the ROC and PR curves are less
marked than for MSI, the general observation in Figure 2d, 2e,
2a, and 2b are that the SimCLR-pretrained MIL methods are bet-
ter across the entire curve than ImageNet MIL methods or any
tile supervision method.
Investigation of tiles receiving high and low attention by
SimCLR-VarMIL by a pathologist (HMH) revealed that the
model gives high attention to features that are expected to be in-
dicative of a DDR deficiency. These results are detailed in the
Supplementary material.

5.3. Experiment 3: Self-supervised learning reduces label re-
quirement by over 50%

In Figure 3 we show the AUC (top row, y-axis) and F1 scores
(bottom row, y-axis) for every model combination (lines in the
graph) of every dataset and label (from left to right: TCGA-BC
(mHRD), TCGA-BC (tHRD), TCGA-CRCk (MSI)) when trained
on fractions of the labelled training data (x-axis).
Generally, these results confirm the findings from Experiment
1 and 2, and show that the differences between the models are
consistent for varying numbers of training samples. For every
method, we see that the AUC improves as more labeled train-
ing data is available. The AUC curves for TCGA-BC (mHRD)
are relatively flat, likely because the supervisory signal of the
median-split HRD labels is relatively weak. For TCGA-BC
(tHRD) and TCGA-CRCk (MSI), none of the methods reach a
clear point of exhaustion; it seems that all methods would simi-
larly benefit from more data, and the results shown in Experiment
1 and 2 might extrapolate to models trained on larger datasets.
Finally, we see that when using DeepSMILE (SimCLR-VarMIL)
on only 40% of the labeled data, we achieve a higher mean AUC
than ImageNet tile-supervision trained on 100% of the labeled
data.

6. Discussion and conclusions

We proposed DeepSMILE, which uses a histopathology-
specific self-supervised pre-trained feature extractor with
VarMIL, a classification network that correctly deals with the
weak label and learns an aggregation function over the tiles while
modeling intratumor heterogeneity. We have evaluated the added

value of a self-supervised pre-trained feature extractor in both the
MIL setting where the extractor is frozen and in the tile supervi-
sion setting where the extractor is fine-tuned.

Self-supervised pre-training with SimCLR was shown to be
effective in the histopathology domain, in the MIL pipeline on
raw TCGA-BC data for HRD prediction, and for both the MIL
pipeline and tile supervision pipeline on pre-processed TCGA-
CRCk data for MSI prediction. It was valuable even when using
the transformations and hyperparameters that were optimized for
the ImageNet dataset. Even though pre-training demands more
compute time than a single tile supervised training run, training
a MIL classifier with frozen features on any downstream task
finishes in mere minutes, compared to several hours for tile su-
pervision on a large dataset. For the experiments of this paper,
more GPU days were used for the tile-supervision experiments
than for the self-supervised pre-training. Additionally we believe
that similarly to the pre-trained ImageNet models that are avail-
able, the future will see published and shared pre-trained mod-
els as done by Ciga et al. (2021). For this purpose, our models
can be found online at https://github.com/NKI-AI/hissl
in the model zoo.

Only when the tile latent features were extracted with a
domain-specific SimCLR pre-trained feature extractor we notice
an improved performance with DeepMIL and VarMIL. This per-
formance improvement was not seen when using DeepMIL or
VarMIL on top of tile latent feature vectors extracted with an Im-
ageNet pre-trained feature extractor. The tile-supervision base-
line, however, only benefited from a histopathology-specific fea-
ture extractor for MSI classification on TCGA-CRCk, and not for
HRD classification on TCGA-BC. We believe that this is due to
the tumor annotations done in TCGA-CRCk, strengthening the
supervisory signal for the MSI classification task as most tiles
contain tumor tissue that reflects information about the cancer
genotype.

More specifically, when using a SimCLR pre-trained feature
extractor, the attention-weighted mean of tile feature vectors as
WSI-level latent representation is expressive for HRD and MSI
classification. For HRD classification on TCGA-BC, DeepMIL
increased AUC by up to 0.04, and F1 score by up to 0.05 com-
pared to tile-supervised WSI-label learning. For MSI classifica-
tion in TCGA-CRCk, self-supervised initialized tile-supervision
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Figure 2: Top row, from left to right: Receiver operating characterstic curves for a) TCGA BC (mHRD), b) TCGA BC (tHRD) and c) TCGA CRCk (MSI) for each
combination of feature extractor and classifier method. Bottom row, from left to right: Receiver operating characterstic curves for d) TCGA BC (mHRD), e) TCGA
BC (tHRD) and f) TCGA CRCk (MSI) for each combination of feature extractor and classifier method.

increased performance by 0.10 AUC and 0.15 F1 compared to the
ImageNet-initialized tile supervision, outperforming the use of a
SimCLR-pretrained feature extractor with DeepMIL.

Finally, an attention-weighted variance of tile feature vectors
adds valuable information for HRD and MSI classification. Com-
pared to SimCLR DeepMIL, SimCLR VarMIL increased perfor-
mance by 0.02 AUC and 0.01 F1 for TCGA-BC (tHRD), and by
0.01 AUC and 0.11 F1 on TCGA-CRCk (MSI).

For the MSI classification task, our SimCLR-DeepMIL model
reproduces the results achieved by Saillard et al. (2021) when us-
ing DeepMIL, showing that the use of MOCOv2 or SimCLR is
likely equivalent in the histopathology domain. We should note
that our SimCLR tile-supervision and VarMIL result is slightly
lower than those achieved with Chowder (0.92 AUC), although
this improved performance doesn’t transfer to the full TCGA-
CRC dataset. Similarly, Bilal et al. (2021) achieve a slightly
higher score (0.9 AUC) on the same dataset using an ImageNet-
initialized extractor and an end-to-end finetuning pipeline.

On TCGA-BC, DeepSMILE achieved similar performance on
mHRD classification on TCGA-BC as Kather et al. (2020), while
we did not use tumor bed annotations, stain normalization, qual-
ity assessment of the WSIs, and use lower-resolution tiles. We

also show that the supervisory signal can be strengthened by set-
ting different cut-off points, which leads to a performance that is
similar to that presented in Valieris et al. (2020), although a per-
fect comparison is not possible since they use a different HRD
label.

The relatively high performance with very few available la-
beled samples indicates that DeepSMILE may be especially use-
ful for tasks where labels are limited, which is the case when one
would want to predict, e.g., immune therapy response directly
from H&E WSIs.

Finally, the results presented in this work point towards the
following recommendations in relation to other work in the liter-
ature. 1) We recommend the use of SSL-pretrained feature ex-
tractors instead of an ImageNet feature extractor for every WSI-
level DDRd classification pipeline in which the tiles are encoded
by a frozen feature extractor (e.g. Lu et al. (2021)), supported
by our results that using DeepMIL on a SimCLR-pretrained fea-
ture extractor improved mHRD (AUROC +7%, F1 +19%), tHRD
(AUROC +10%, F1 +2%), and MSI (AUROC +20%, F1 +10%)
compared to using an ImageNet-pretrained feature extractor. 2)
For tile supervision finetuning pipelines the added value of an
SSL-pretrained feature extractor appears to be determined by the
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Figure 3: Top row (AUROC), bottom row (F1), from left to right: achieved metric on test set when trained on 20%, 40%, 60%, 80%, and 100% of available labelled
training data on (a)/(d) TCGA BC (mHRD), (b)/(e) TCGA BC (tHRD) and (c)/(f) TCGA CRCk (MSI) for each combination of feature extractor and classifier method.

strength of the supervisory signal and not the size of the dataset.
The TCGA-CRCk dataset with tumor bed annotations benefits
from SSL pre-training for tile-supervision (AUROC +10%, F1
+15%), whereas on the TCGA-BC dataset with no tumor bed
annotations the noisy supervisory signal appears to impair the
benefit of SSL-pretrained initialization (AUROC +0%, F1 +0%
for mHRD). These dynamics are not affected by labelled training
dataset size (see Figure 3). 3) We recommend to use SimCLR
or MoCoV2 as a self-supervised learning method, supported by
the evidence that our results with SimCLR are similar to the re-
sults reported by Saillard et al. (2021) which used MoCoV2 and
DeepMIL on the same dataset, whereas the gains with BYOL by
Abbasi-Sureshjani et al. (2021) are less apparent. 4) For end-to-
end WSI-level label learning pipelines (e.g. Bilal et al. (2021)
we recommend using an SSL-pretrained extractor, since the su-
pervisory signal is strong (only tumor tiles, similar to the an-
notated TCGA-CRCk dataset combined with WSI-level supervi-
sion made possibly by tile subsampling), yet there are only few
labelled instances (WSIs) for a multi-million parameter model
that is being finetuned. We expect this will further increase
the performance of their model further surpassing DeepSMILE’s
performance. 5) Compared to the tile-supervision pipeline we
recommend the DeepSMILE (SimCLR-VarMIL) pipeline as this

showed improvements (AUROC: +4% to +9%, F1 +1% to +5%)
across both evaluated datasets. 6) Compared to DeepMIL, we
would recommend to use VarMIL on problems where it is likely
that heterogeneity of tiles may be predictive of the label, as it
hints at achieving a slightly higher AUROC and F1 (0.01 to 0.02
across datasets, p > 0.05). 7) We can not necessarily recom-
mend VarMIL over CLAM (Lu et al., 2021) since the addition
of the cluster constraint leads to similar performance increases
as the feature variability to DeepMIL, with an increase of +0.01
to +0.02 AUC with 100% of labelled data and with an increased
benefit in low labelled data regimes for some tasks (e.g. Fig 3c).

6.1. Limitations

We acknowledge several limitations to the experimental setup
and our proposed method.

Firstly, we have not explicitly investigated the added effect
of self-supervised learning and VarMIL relative to varying pre-
processing steps like tumor annotation or H&E normalization.
We expect self-supervised pre-training to reduce the positive ef-
fect of stain normalization, and VarMIL to reduce the positive
effect of tumor bed annotations. With our current datasets, we
can not confirm the hypothesis that tile-supervision benefits from
a SimCLR-pretrained network in TCGA-CRCk but not in TCGA-
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BC due to the tumor annotations. This should be further investi-
gated in future work.

Similarly, this work has not investigated the improved gener-
alizability or robustness of models that use a SimCLR-pretrained
feature extractor when evaluating the models on external datasets.
We expect that these feature extractors are less prone to shifts
in H&E color distribution or microscope imaging features due
to their heavy data augmentations and inability to overfit on any
specific label, but this should be investigated in future work.

Thirdly, the performance of our proposed method can likely
be improved by using wider and deeper feature extractors, pre-
training for longer on a larger set of pan-cancer WSIs, and with
domain-optimized hyperparameters and data augmentations for
self-supervised pre-training in the histopathology domain. Sim-
ilarly, in our current set-up, the feature extractor is not further
fine-tuned for the task at hand when using DeepMIL or VarMIL.

Furthermore, one should remain aware that these models do
not necessarily find causal relationships between morphological
features and HRD or MSI. Although we find that DeepSMILE
focuses on tiles that contain features that are likely to be related
to the genomic markers (see Supplementary material), cancer is a
genetic disease which, through a complicated interplay of gene
expression, antigen production, and immune system response,
leads to complex cellular and tumor microenvironment pheno-
types. Likely, features like immune infiltrate, necrosis, and tumor
heterogeneity are detected by the model which are correlated with
DDRd labels, yet these features might also be present in tumors
not having these specific genetic features. This need not be a
problem for the grander goal of, e.g., immune therapy response
prediction, however, since such morphological features in the tu-
mor microenvironment are increasingly found to be an important
player when predicting therapy response (Blank et al., 2016). For
example, Mlecnik et al. (2016) show that MSS (MSI) patients
with high (low) immune infiltrate will (not) benefit from immune
therapy.

Finally, although VarMIL models inter-tile feature heterogene-
ity, the model does not take into account feature interactions, mul-
tiple resolutions, or the spatial context of the tiles. Future research
could investigate and compare the effectiveness and computa-
tional requirements of Neural Image Compression (Tellez et al.
(2019)) and end-to-end context-aware learning (Pinckaers et al.
(2020b); Chen et al. (2021)) for genomic label classification to
our proposed method. Additionally, it could be interesting to
investigate the performance of vision transformers (Dosovitskiy
et al., 2020) on top of extracted latent feature vectors of all tiles
of a WSI to model tile interactions with low computational com-
plexity.

6.2. Conclusions

We have shown that self-supervised learning and weak label
learning methods in computational histopathology can lift the
performance of HRD and MSI classification directly from H&E
WSIs on similar sized datasets, or reach the same performance as
the ImageNet-initialized tile supervision baseline with only 40%
of the labeled data.

In the future, these methodological improvements may reduce
the need for expensive genome sequencing techniques, provide
personalized therapy recommendations based on widely available

H&E WSIs, and improve patient care with quicker treatment de-
cisions - also in medical centers without access to genome se-
quencing resources.
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Supplementary material for “DeepSMILE: Contrastive self-supervised pre-training
benefits MSI and HRD classification directly from H&E whole-slide images in colorectal
and breast cancer”

Visualization of tiles indicative of the label of interest.

We have used the predictions of SimCLR-VarMIL of the first fold on the test for both TCGA-
BC and TCGA-CRCk. We then visualize once without cherry-picking:
• for positive and negative labels
• of the top 6 slides (highest WSI-level prediction score for positive labels, lowest WSI-

level prediction for negative labels
• the 1st and 5th highest and lowest attention tiles

These images can be viewed on the next four pages of this Supplementary material.

A pathologist (HMH) has viewed these images, compared the high- to low attention tiles,
and compared the high attention tiles of positive labels to the high attention tiles of
negative labels. In summary, we find similar features as were shown before for MSI
(Greenson et al (2009)), and find features in HRD patients that are expected for HRD
patients. A detailed description of the findings is as follows:

For MSI-H and MSS, we find that the visualized tiles that received high attention all
contain colorectal tumorous tissue, whereas most of the low attention tiles contain
normal epithelium and fibro-adipose connective tissue. For MSI-H, we see that these
tumour-containing tiles also display a high level of necrosis and mucinous differentiation.
These are features described ealier by Greenson et al (2009) and also shown to be present
in the models by, e.g., Saillard et al (2021). Surprisingly, however a high number of tiles
with low attention contain immune infiltrate, whereas we expected these to be given high
attention.

For HRD, we find again that, for both HRD-low and HRD-high patient, high attention is
given to tiles containing tumor tissue and low attention is given to tiles containing blood
vessels and connective tissue consisting of collagen and fat cells. The high attention tiles in
HRD-high patients, however, mostly contain tumor cells that show high nuclear
pleomorphism, whereas the HRD-low patients contain tiles that appear to be mucinous or
invasive lobular carcinoma. Additionally, the high attention tiles of HRD-high patients,
compared to those of HRD-low patient, contain unorganized and heterogeneous tumor
cells, many extravasated blood cells probably due to necrosis.

We have added these visualizations as supplementary material, and added a paragraph in
the results/discussion. We are aware, however, that the results might be biased due to
tile selection and only having a single pathologist look at these tiles. In future research, we
think that it would be a good idea to perform a blinded experiment with several
pathologists to investigate in more detail the association between the morphological
features found in the tiles that the model pays attention to and these genomic labels.
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