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Towards annotation-efficient segmentation via
Image-to-image translation

Eugene Vorontsov, Pavlo Molchanov, Christopher Beckham, Jan Kautz, and Samuel Kadoury

Abstract— Often in medical imaging, it is prohibitively
challenging to produce enough boundary annotations to
train deep neural networks for accurate tumor segmenta-
tion. We propose the use of weak labels about whether
an image presents tumor or whether it is absent to ex-
tend training over images that lack these annotations.
Specifically, we propose a semi-supervised framework that
employs unpaired image-to-image translation between two
domains, presence vs. absence of cancer, as the unsu-
pervised objective. We conjecture that translation helps
segmentation—both require the target to be separated from
the background. We encode images into two codes: one
that is common to both domains and one that is unique
to the presence domain. Decoding from the common code
yields healthy images; decoding with the addition of the
unique code produces a residual change to this image
that adds cancer. Translation proceeds from presence to
absence and vice versa. In the first case, the tumor is re-
added to the image and we successfully exploit the residual
decoder to also perform segmentation. In the second case,
unique codes are sampled, producing a distribution of
possible tumors. To validate the method, we created chal-
lenging synthetic tasks and tumor segmentation datasets
from public BRATS (brain, MRI) and LitS (liver, CT) datasets.
We show a clear improvement (0.83 Dice on brain, 0.74
on liver) over baseline semi-supervised training with au-
toencoding (0.73, 0.66) and a mean teacher approach (0.75,
0.69), demonstrating the ability to generalize from smaller
distributions of annotated samples.

Index Terms— Adversarial networks, Image-to-image
translation, Semi-supervised learning, Weak labeling

[. INTRODUCTION

The segmentation of pathological anomalies in medical
images can be performed efficiently with deep neural net-
works, but these require a large quantity of pixel-level an-
notations. Obtaining a sufficient quantity of annotations is
difficult, costly, and sometimes impractical; on the other hand,
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unlabeled or weakly annotated data is easier to obtain. This
weakly annotated data can be used to improve the performance
of a semi-supervised segmentation model. Specifically, we
target the scenario of medical images acquired for oncology
purposes, where two image sets are available: (i) those that
are diagnosed as healthy and (ii) those that are diagnosed
as pathological but for which only some of the pathological
images have pixel-level annotations. We use this weak image-
level annotation to extend the training of the segmentation
model to images that lack pixel-level annotations.

The use of generative adversarial networks (GANs) has been
explored to improve the semantic segmentation of medical
images. Most of these improve segmentation with the addition
of an adversarial objective [1], [2], [3], [4], [5], [6], [7], [8],
[9]. Others perform data augmentation within the training set
[10], [11], [12]; however, they do not augment the training
set beyond annotated examples. On the other hand, some
works have explored unsupervised anomaly localization using
autoencoding [13] or GANs [14], [15] to learn a generative
model of healthy cases. Another GAN-based approach is to
train an error model that could be used for updates on unla-
beled data [16]. However, these approaches are approximate
and do not make full use of available weak labels (healthy and
diseased domain labels). Making better use of available data,
some recent approaches relied on image-to-image translation
between diseased and healthy cases [17], [18] but these were
unsupervised and either approximate or not validated against
baselines or on multiple tasks.

We focus on the common scenario of tumor segmentation
where a large number of images lack pixel-level segmentation
annotations but are weakly annotated in that they are known
to be either healthy or diseased cases. This binary weak anno-
tation identifies whether there is something to be segmented in
an image. For example, when segmenting cancerous lesions,
images marked ‘healthy’ do not contain cancerous tumors,
while images marked ‘diseased’ do. We use a domain transla-
tion objective, transforming diseased images to healthy images
(and vice versa) to reveal the boundaries of the pathological
artifacts in the diseased images. This allows the segmentation
model to use this weakly labeled data for training in addition to
the diseased cases that have reference pixel-level annotations.
We argue that the objective of translating from diseased to
healthy images is similar to a segmentation objective. Conse-
quently, we develop a semi-supervised segmentation method'
with image-to-image translation, trained on unpaired images
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Fig. 1: We address a common scenario in medical image segmentation where cases are known to either be diseased (eg.
contains a tumor) or healthy (eg. no tumor) but only some of the diseased cases have pixel-level annotations for training an
automated segmentation model. Slices of brain hemispheres from magnetic resonance imaging volumes are used for illustration
purposes. We propose a model that uses image-to-image translation, from diseased to healthy and from healthy to diseased,
in order to use the unannotated data to help it learn the segmentation task. Left: When transforming a diseased image into a
healthy image, a residual image output locates the tumor. This output is similar to the segmentation output (dashed red line).
Summing the residual image with the generated healthy image recreates the original diseased image. Right: When transforming
a healthy image into a diseased image, residual images to add tumors need to be sampled from a learned prior distribution.

from diseased and healthy domains.

Considering the healthy domain as a subset of the informa-
tion in the diseased domain, we encode images into two latent
codes: information that is common to both and information that
is unique to the diseased domain. This allows decoding in two
parts: (1) a ‘healthy’ image decoder from the common latent
code and (2) a residual decoder from the unique and common
codes, producing the residual (additive) change required to
make the ‘healthy’ image ‘diseased’ (example in Fig. 1).

Because the the residual decoder produces the object that is
to be segmented, its output is similar to a segmentation. Con-
sequently, we re-use the decoder to also perform segmentation.
In doing so, we maximize the proportion of model parameters
that receive updates even during unsupervised training, when
there are no pixel-level annotations available. Furthermore,
whereas image-to-image translation models do not use long
skip connections from the encoder to the decoder, we propose
a long skip connection variant in our method. Long skip
connections are common with supervised encoder-decoder
models [19], where they help preserve spatial detail in the
decoder even when the encoding is very deep.

In this paper, we propose a semi-supervised segmentation
method that relies on image-to-image translation to use a small
quantity of annotations efficiently. Specifically, we propose:

1) New segmentation tasks (brain, liver, synthetic) with

both ‘healthy’ and ‘diseased’ cases.

2) A new semi-supervised segmentation method for these

tasks, using adversarial image-to-image translation.

3) Maximizing parameter updates by sharing a decoder for

both translation and segmentation.

4) New long skip connections.

We validate our method on brain tumor in MR images,
colorectal liver metastases in CT images, and challenging syn-
thetic data, significantly improving over well-tuned baselines.

Il. RELATED WORKS

Anomaly localization. Generative models have been used
to fit the distribution of healthy images in order to locate
anomalies in images. To localize lesions in brain MRI that
are known to be either healthy or with cancer, [13] fit the
healthy data distribution with an autoencoder. Given an image
presenting a lesion, the reconstruction of the image is likely
to appear healthy, allowing rough localization of the lesion
via the difference between the image and its reconstruction.
Similarly, [14] and [15] employ a GAN to locate anomalies
in retinal images and brain MR images, respectively. While
these models require that weak ’diseased’ or “healthy’ labels
are known, they are trained only on the latter. Furthermore,
they allow only rough unsupervised localization.

Semi-supervised segmentation. By translating from dis-
eased to healthy images, [17] trains a network to localize
Alzheimer’s derived brain morphological changes using the
output residual. Bidirectional translation is used in [18] via a
multi-modal variant of CycleGAN [20] applied to brain MRI
with presence of tumors. Diseased images that are translated
to healthy images are reverted back to the original image space
via a residual inpainting of the lesions. Lesions are localized
and segmented by predicting a minimal region to which to
apply inpainting. Segmentation is unsupervised, while using a
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prior term minimizing the inpainting region. However it has
been tested on a single dataset with no comparison to other
unsupervised methods, and has not been extended to a weakly-
or semi-supervised setting. Our work differs in that we propose
a semi-supervised architecture that uses fewer parameters by
reusing mappings, skipping information from the encoder to
decoders, and proposing a decoder that is trained with both
translation and segmentation objectives, where we validate the
method on multiple tasks.

A semi-supervised segmentation method for medical images
was proposed in [16], where a discriminator learns, on the
annotated dataset, a segmentation corrector that can be used
with unannotated data. This method may be limited in how
well it could scale with the proportion of unannotated data
since the discriminator’s behaviour may not generalize well
beyond the annotated dataset on which it is trained. Because
this method can be applied to the output of any segmenta-
tion model, we consider it complementary to our proposed
method. Similarly, the mean teacher method was adapted for
segmentation [21]. In this formulation, the teacher network is
an exponential moving average of weights from the student
network and the student network seeks to learn to segment
(supervised) and to be consistent with the teacher network’s
predictions (unsupervised). As before, the reliability of the
teacher may depend on the size of the training set.

Adversarial learning. Image to image translation is most
prominently done with the CycleGAN [20], which performs
bidirectional translation between two domains. UNIT [22]
proposed a similar approach but with a common latent space,
shared by both domains, from which latent codes could be
sampled. Augmented CycleGAN [23] and Multimodal UNIT
[24] respectively extended both methods from one-to-one
mappings to many-to-many.

The one-to-many mapping required to translate healthy
images into diseased images (there are many ways an image
can appear diseased) is turned into a many-to-many mapping
in [25]. By jointly inputting a lesion segmentation mask with a
healthy mask, a lesion is introduced to the image as specified
in the mask.

Both [24] and [26] present methods that learn shared and
domain-specific latent codes to disentangle domain-specific
variations. These differ from the proposed method in that
they do not segment and do not assume (and benefit from)
an absence domain as a subset of a presence domain. In
addition, the domain-specific ’style” codes are encoded with
a shallow network which may bias the model to indeed learn
domain-specific styles; whereas, the proposed method uses
deep encodings (enabled by long skip connections from the
encoder to the decoders) for all codes. Explicit disentangling
of variations between these codes has recently been proposed
in [27] by way of a gradient reversal layer [28]. Work by [29]
that is concurrent to and related to ours uses image-to-image
translation and segmentation objectives to learn normal and
abnormal latent codes of medical images to aid in image
retrieval.

Data augmentation is achieved with GANs for liver lesion
classification in [30]. In [31], data is synthesized to cover

uncommon cases such as peripheral nodules touching the lung
boundary. A segmentation mask generator is introduced in [10]
and [11] to augment small training datasets. Pathological x-
ray images are generated from healthy images to augment the
training dataset for segmentation in [32]. Our method goes
beyond data augmentation to achieve semi-supervised segmen-
tation with GAN-based image-to-image translation employed
in a way that disentangles the details needed for segmentation.

1. METHODS

Segmentation labels are often available for an insufficiently
representative sample of data. We propose a semi-supervised
method that extends supervised segmentation to weakly la-
beled data using a domain translation objective. In addition
to a segmentation objective, the method attempts to learn the
translation between the distribution of images presenting the
segmentation target (P) and the distribution of images where
this target is absent (A). In section III-A, we argue that this is
an appropriate choice of training objective for semi-supervised
segmentation. Our training method is then detailed in III-
B in a manner that is agnostic to the underlying network
architectures. The baseline methods, network architectures,
and training details are discussed in the Experiments section
(IV-A, IV-B).

A. Translation, segmentation, and autoencoding

Translating images between two domains, one with a seg-
mentation target present (presence domain P) and another
with is absent (absence domain A) requires a model to learn
segmentation implicitly. To remove the segmentation target,
a model must learn to localize it and disentangle it from
everything else in the image. We conjecture that segmentation
relies on the same disentangling as translation and that this
is the most difficult part of both objectives. Autoencoding
of the model’s input, the canonical objective of unsupervised
feature learning, also disentangles variations in an image, as
demonstrated by the winners of the Brain Tumor Segmentation
challenge (2018) [33] by augmenting a fully convolutional
segmentation network with an autoencoding objective. How-
ever, diagnostic information about presence (P) or absence
(A) of the segmentation target in the image may guide a
domain translation objective to more specifically isolate the
information that is important for segmentation [27]. Thus, we
identify domain translation as a particularly useful objective
for semi-supevised segmentation. For example, the tumor
localized in Fig. 1 is visible in the residual image which
is similar to a tumor segmentation. We propose an encoder-
decoder model leverages the similarity between the translation
residual image and segmentation to employ a decoder that
is shared by both objectives. Implicit data augmentation is
achieved by translating not only from diseased to healthy but
also vice versa. With our choice of objectives, we designed the
method to scale better (in terms of segmentation performance)
with the proportion of unannotated data than baseline methods.



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2020

Transformed
(absence domain)

cp
Input image . < , Reconstruction
(presence domain) 8 OIS XPA (presence domain)
s g decoder
E S
” —> Encoder
. up
K ;
o
g @ Residual
=
= decoder Apa
MLP
Residual
Legend
——> Always active
Pnorm
Segmentation
Image translation Yseg
and reconstruction
Concatenation
Segmentation

Fig. 2: Simultaneous segmentation, image translation and
reconstruction. Images are transformed from the presence to
the absence domain (discriminator not shown).

f

u~ N(0,T) —»

Reconstructed
(absence domain)

o
»>

Input image
(absence domain)

Translated
(presence domain)

Common
decoder

Common

Encoder

Residual
decoder

‘ Legend ‘
—> Cycle consistency ‘

Residual

‘ ——> Always active

Fig. 3: Image translation from the absence to the presence
domain (discriminator not shown). The input image is recon-
structed from the common code. An image in the presence
domain is generated by adding a residual change to this
reconstruction. Blue lines: cycle consistency path.

B. Semi-supervised segmentation via image-to-image
translation

The proposed model builds on an encoder-decoder fully
convolutional network (FCN) segmentation setup by introduc-
ing translation between a domain of images x presenting the
segmentation target (P) and a domain where it is absent (A),
Xp to xXpa, as shown in Fig. 2. The encoder separates codes
into those that are common to both A and P and those that
are unique to P; essentially, the information in A is a subset
of the information in P. For example, in the case of medical
images with tumors, both A and P contain the same organs
but P additionally contains cancerous tumors.

Latent code decomposition. Starting with images x in
domains A or P (xap or xp), the encoder (f) yields common
(c) and unique (u) codes:

[ca,ua] = f(xa),
[cp,up] = f(xp).

(D

This decomposition of the latent codes is reminiscent of the
style and content decomposition in [24] or the domain-specific

codes in [26].

Presence to absence translation. Translation is achieved by
selectively decoding from the latent codes ¢ and u. A common
decoder (gcom) uses only the common code, c, to generate
images in A:

XAA = Jecom (CA); (2)
XPA = gcom(cP>7
where xaa is essentially an autoencoding of xa, whereas
XpAa i an image translation of xp from the P domain to the
A domain where the segmentation target is removed. With
this translation, the target can be recovered separately, by
computing a residual change Apa to xpa that reconstructs
xp as xpp. The residual change is computed by a residual
decoder (g,.s) which uses all codes: those extracted from xp
that are common to both domains (cp) together with those
that are unique to P (up) as in Fig. 2:
XpPP = XpA + Apa, 3)
where APA = Jres (Cp, llp).

The residual decoder (g,.s) takes all of the latent codes
because the unique code decodes to the image space in a
way that is dependent on the common code. For example,
the way cancer manifests in a brain or liver scan depends on
the location and structure of the brain or liver in the scan.
Note also that because the common decoder (gcom, Eq. (2))
only uses the common latent code, the encoder must learn to
disentangle common and unique codes.

Segmentation. The cp and up codes contain sufficient
information for segmentation. Indeed we reuse the residual
decoder, used with xp, for segmentation. We parameterize a
segmentation decoder g, using the residual decoder g5 to
produce a segmentation y:

y= gseg(CPvuP)v
= (gAres © 5)(CP3 uP)a

“)

where s is a pixel classification layer and §,.s is a subset
of the g¢,.s network that contains all but the last layer.
Normalization parameters in g,.s are replaced by ones specific
to the segmentation task, allowing gs., to produce outputs that
differ from §es.

Absence to presence translation. Finally, we conclude
the set of autoencoding and translation equations with xap
and xapa, Where images in A are translated to images in P
(Fig. 3). We note that although these translations are not useful
for segmentation, they are useful during training since they
effectively augment the training updates that our encoders and
decoders can receive. Since P contains additional information
to that found in A, we sample a random code from a prior
distribution:

XAP = geom(CA) + gres(ca,u ~ N(0,1)),
XAPA = Jcom(CAP), ()
[cap,uap] = f(xap).
Here, xap is the image translation of xa in A to domain
P using the common decoder g, for the code ca that is

common to both domains and the residual decoder g¢,.s for the
code u that is unique to P; since this unique information is
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absent from A, it is randomly sampled from a zero-mean, unit
variance Normal prior distribution, A/(0,I). Note that unlike
in a variational autoencoder, the encoder f (Eq. (2)) does
not parameterize a conditional distribution over the unique
codes but rather encodes a sample directly. We ensure that
the distribution of encoded samples matches the prior by
making uap match u, where uap is obtained by encoding
the image xap that is produced using the random sample u.
The translation of xaAp to xapa completes a cycle as in [20].
When xapa must match x o, this ensures that the translations
retain information about their source images, ensuring that the
encoder and decoders do not learn trivial functions. As shall
be seen below, this is already achieved by other objectives,
making the cycle optional.

Total loss. The training objective consists of a segmentation
loss L,e, combined with four translation losses, each weighted
by some scalar \:

Ltotal = Lseg + )\7'ecLT'ec + AlatLlat

(6)
+ )\cychyc + Aadeadu-

Segmentation loss. We use a soft, differentiable Dice loss
for segmentation, as in [19], [34], which measures the overlap
between the predicted segmentation y (Eq. (4)) and reference
segmentation ¥:

Lseg = Dice(Y7 y) (7)

Reconstruction losses. To ensure that the encoder and
decoders can cover the distribution of images, we reconstruct
input images (see Eqgs. (1), (3)):

Lyee = Lyec (XPa XPP) 4 Lyec (XA7 XAA)- ()

Similarly, we reconstruct the latent codes of translated
images xap, Xpa and reconstructed images Xaa, Xpp by
re-using the encoder f so as to ensure that their distributions
match across domains A and P

[cap,uap] = f(xap)

[CPA, uPA] = f(xpa)
[caa,uaa] = f(xaa)
[cpp,upp] = f(xpp) )]

Ligt = Ligi(ca,cap) + Ligt(cp, cpa)
+ Ligi(ca,can) + Ligi(cp, cpp)

+ Ligt(up,upp) + Ligt (1, uap),

where u is a sample from the prior distribution, A/(0,T)), and
CA, UA, Cp, and up are the original codes from Eq. (1). This
encourages the unique codes to match the prior.

The reconstruction objectives encourage the mappings to
be bijective, ensuring that there is a unique output for every
input. If an image or a latent space can be reconstructed, this
means that the mapping does not discard information about
it. Without the reconstruction objectives, the healthy parts of
an input image may not be retained in the output and mode
dropping may occur in image-to-image translation where many
inputs map to the same output. This is because a single output
that is independent of the choice of input is sufficient to satisfy
a domain translation objective.

Furthermore, we define a cycle consistency loss for the APA
cycle (Eq. (5)):

Lcyc - Lrec (XA7 XAPA)~ (10)

It should be noted that there is no PAP cycle since in the
proposed method this is equivalent to PP reconstruction, as
can be seen in Fig. 2. Because both images and their latent
codes are reconstructed, the cycle consistency loss is optional.

We use the L distance for all reconstruction losses.

Adversarial loss. Finally, we use the hinge loss for the
adversarial objective, together with spectral norm on the
encoder and decoders as in [35]:

Logw = Z min max
de{A,P} ¢ b [
- EdePd [min(O, Dd(xd) - 1)]

— Egg~p, min(0, =Dy (Gg(%q)) — 1)]

~ Exyvp, Da(Ga(%a))|,

(11)
where, for each domain d € {A, P}, G4 is the generator
network for some generated image Xq4 ~ pg (specifically,
Xap Or Xpa) and Dy is a discriminator network which
discriminates between real data xq ~ pg and generated data
X4, effectively matching the distribution of generated images
Pq to the distribution of real images pg .

C. Compressed long skip connections

In the proposed and baseline methods, every decoder (except
for the reconstruction decoder in the autoencoding baseline)
accepts long skip connections from the encoder, as in [19].
These connections skip features from each layer in the encoder
to the corresponding layer in the decoder, except for the
first and the last layers. Because long skip connections make
autoencoding trivial, they are used only with the segmentation
decoder of the autoencoding baseline and not with its recon-
struction decoder.

Typically, feature maps from the encoder are either directly
summed with [19] or concatenated to [36] those in the decoder.
We propose here a modified variant of long skip connections
where any stack of feature maps is first compressed (via 1 x 1
convolution) to a single map before concatenation. We note
that concatenating all feature maps is costly computationally
and appears to increase training time for image translation
whereas summing feature maps makes the image translation
task difficult to learn. To further stabilize training, all features
skipped from the encoder are normalized with instance nor-
malization [37]. We find that these long skip connections help
train the model faster and help produce higher quality image
outputs even with a deep encoder.

D. Shared network for translation and segmentation

Finally, in the proposed method, the residual decoder net-
work (Eq. (3)) is used both for translation and for segmen-
tation. For segmentation, all but the last layer is replaced
by a classification layer (1x1 convolution with 1 output
channel). The segmentation output differs from the translation
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output both in texture and global structure. For example, the
translation output for brain tumor segmentation produces a
tumor but also changes to the surrounding brain. Therefore,
to produce a segmentation, the representation in the residual
decoder is modified at every scale: a different normalization
is applied to each layer depending on whether the output is a
translation residual or a segmentation.

IV. EXPERIMENTS

We evaluate our proposed semi-supervised segmentation
method on both synthetic and real data (brain and liver
images). First, we demonstrate our method on challenging
synthetic data, then we validate it on brain tumor segmentation
in MRI and on liver tumor segmentation in CT. We present
ablation studies in the end.

A. Baseline methods

The proposed method is compared against three baseline
approaches: (1) a fully supervised encoder-decoder model
(“Segmentation only”); (2) the same but semi-supervised
with an additional decoder with an autoencoding objective
(“AE baseline”); and (3) a semi-supervised mean teacher
approach [21] (“Mean teacher”). To allow for direct com-
parison, all models (baselines and proposed) share the same
encoder and decoder architectures (detailed in Table I). To
better match the proposed method, the autoencoding baseline
reconstructs images from both domains A (absence, healthy)
and P (presence, diseased). All encoder-decoder models are
inspired by the UNet [36] which employs a convolutional
neural network (CNN) to encode features at decreasing resolu-
tion and increasing field of view (encoder) and an upsampling
CNN that decodes the features into a full resolution output
(decoder). The proposed method has one encoder and two
decoders (common and residual). The fully supervised and
mean teacher baselines use a single encoder with a single
decoder. This is equivalent to the proposed method with only
the segmentation loss, using only the residual decoder. The
AE baseline uses one encoder and two decoders; the additional
decoder reconstructs the input.

B. Network architectures and training

To compare the effect of different training objectives, we
try to reduce the confounding effect of differing architectures
between the proposed model and baseline models. For each
task, we use the same encoder (f, Eq. (1)) for all models;
likewise, the common decoder (Eq. (2)) in the proposed model
and all decoders in the baseline models are the same. The
residual decoder in the proposed model is similar, differing
in that it lacks short skip connections and uses slightly larger
convolution kernels.

Encoder and decoder architectures. Network layers are
denoted in Table I. For 48x48 synthetic tasks, the encoder
is missing the first NRC block (starts with C 32) and the
decoders are missing the last. The discriminator for all syn-
thetic tasks lacks the first NRC block (starts with C 128).
All decoders except those used for input reconstruction in the

autoencoder baseline models receive long skip connections
from the encoder of the type proposed in section III-C.
All latent bottleneck representations of every model have
512 channels. In the proposed model, 128 of these channels
are specified as the unique latent code and the rest as the
common latent code. Mean teacher models [21] were trained
with an exponential moving average weight of 0.99 (applied
constantly, with no gradual change as this worked better on
our data) and consistency weight of 0.01 (selected from {0.01,
1, 1, 10}). The best mean teacher model variation was also
selected on the validation set for each task: using dropout
but no normalization layers, using normalization layers but
no dropout, or using both dropout and normalization layers.
All encoders and decoders were initialized with the Kaiming
Normal approach [38]. Convolutions are applied to inputs with
reflection padding. For all experiments we use PyTorch [39].

Normalization. All encoders use instance normaliza-
tion [37], while all decoders use layer normalization [40].
In order to use the residual decoder for both translation and
segmentation, its normalization layers use a separate set of
parameters for each of these two tasks, allowing the same
learned features to be used in different ways.

Adversarial discriminators. We use multi-scale discrimi-
nators as proposed in [41], [22]. The discriminator architecture
shown in Table I describes the network that is applied at each
of the three scales, where the discriminator outputs a map
of values per image instead of a single value. Discriminator
outputs are averaged across all scales. All discriminators use
leaky ReLU [42] with a slope of 0.2 and were initialized with
the Kaiming Normal approach [38].

Optimization. For all experiments, we used the AMSGrad
optimizer [43] with 7 = 0.5 and B> = 0.999, a learning
rate of 0.0001, and batch sizes of 20 for brain and synthetic
data and 10 for liver. Training was run for 500, 200, and 300
epochs for the brain, liver, and synthetic data, respectively.
In the proposed method, we used the hinge loss for the
adversarial objective, with spectral normalization [44] applied
to all networks, as in [35], [45]. All objective weights for the
proposed method were always normalized so that they sum
to 1; as such, the weights reported here are relative weights.
We found that the following objective weights yielded the
best overall performance for brain and synthetic data when
reference annotations were used for 1% of the data: \,,q = 3,
Arec = 50, Aigt = 1, Aeye = 50, Ageg = 0.01. (AE: Ao =
Aseg = 1). For liver data, higher reconstruction weights were
found to be sometimes required to avoid mode dropping in
image-to-image translation; A,... = 200 and A.y. = 200 and/or
At = b were used whenever these produced a better score
on the validation subset. When using reference annotations for
10%, 20%, and 100% of the data, we set \g;.. for the proposed
method as 10, 100, and 1000, respectively. Importantly, for
brain and liver data, reference annotations were only made
available for all or none of the slices from any single volume.
This limits the variety of labeled cases in the training set.

Data augmentation. We applied data augmentation on the
fly during training for brain and liver but not for synthetic
tasks since a large amount of data is generated for the latter.
Data augmentation involved random rotations up to 3 degrees,
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TABLE I: Architecture used for the proposed and baseline methods. ‘Ch’ is the number of channels. The decoder refers to the
common decoder in the proposed method and all decoders in the baseline methods. C = convolution, NR = normalization +
ReLU nonlinearity, NRC = normalization + ReLU + convolution; * = a short skip connection.

Encoder Decoder

Layer Ch Kernel Stride Layer Ch Kernel Stride

C 16  3x3 1 C 256  3x3 1
NRC* 32 3x3 2 NRC* 128 3x3 1
NRC* 64 3x3 2 NRC* 64 3x3 1
NRC* 128 3x3 2 NRC* 32  3x3 1
NRC* 256 3x3 2 NRC* 16 3x3 1
NRC* 512 3x3 2 NRC 1 3x3 1

NR

random zooms up to 10% in or out, random intensity shifts
up to 10%, random horizontal and/or vertical flips, and spline
warping. Spline warping used a 3x3 grid of control points
with each point placed according to a Normal distribution
with variance ¢ = 5. In those cases where data augmentation
created new pixels along image edges or corners, these were
filled by the reflection of the original image outward toward
the edges and corners.

Data batches. Every batch of the training data, with a
size N contains N diseased slices and N unpaired healthy
slices. We consider an epoch of training complete when every
diseased slice has been provided to the model once. For the
supervised segmentation objective, reference annotations are
provided for some fraction (typically 1%) of the diseased
slices. For any fraction, the same set of diseased and healthy
cases is used for all semi-supervised methods. For the fully
supervised segmentation baseline, only the annotated subset
of diseased slices is used and every batch contains only these
slices.

Multiple runs. All experiments were run three times, with
a different random model initialization each time, using three
random seeds. Performance is reported as the mean score with
a standard deviation of the means across the three runs. The
variance across inputs is not considered.

C. Synthetic tasks

To simulate both simple and challenging examples in the
data setup which is addressed with our method, we constructed
an image set for synthetic segmentation tasks where some data
is known to present the object of interest for segmentation
(domain P), some data is known to be absent of the object
of interest (domain A), and most of the data in P lacks
reference segmentations. We constructed a synthetic task for
digit segmentation using MNIST digits, similar to the cluttered
MNIST dataset in [46]. Each image in P contains a complete
randomly positioned digit placed on a background of clutter.
The clutter is produced from random crops of digits sampled
from within the same data fold (training, validation, or test set).
In all experiments, we used crops of 10x10 pixels. Using the
60,000 MNIST training images, the same number of cluttered
images were produced in P and in A, using each digit once
in the foreground of images in P. 500 of these were used as a
validation set for hyperparameter tuning. The 10,000 MNIST
testing images were similarly used to produce the test set.

We tested the proposed model and the baseline methods

Residual decoder Discriminator
Layer Ch Kernel Stride Layer Ch Kernel Stride
C 256  5x5 1 C 64  4x4 1
NRC 128 5x5 1 NRC 64 4x4 2
NRC 64 5x5 1 NRC 128 4x4 2
NRC 32 5x5 1 NRC 256 4x4 2
NRC 16 5x5 1 NRC 512 4x4 2
NRC 1 5%5 1 C 1 1x1 1
128x128
Presence
domain
Reference
annotation
Absence
domain

Fig. 4: Examples of images from the synthetic datasets.

on three variants of the synthetic task, at two resolutions:
48x48 simple, with 8 pieces of clutter; 48x48 hard, with
24 pieces of clutter; and 128x 128, with 80 pieces of clutter.
Samples from these generated datasets are shown in Fig. 4; all
datasets were generated prior to training. In all experiments,
we provided reference segmentations for 1% of the training
examples. In addition, to mimic the issue of small training
datasets where the training sample of images fails to cover all
modes of variation of the population of images, we trained on
reference segmentations only for the digit 9.

As shown in Table II, the proposed method clearly outper-
forms all baseline methods, achieving a Dice score of 0.84,
0.62, and 0.74 on the simple, hard, and large variants of the
task, respectively. The mean teacher baseline method nearly
matches the proposed model (0.83 Dice) on the simple task
and performs well on the other synthetic tasks. This suggests
that the mean teacher model implementation that we use is
competitive but struggles with more complex cases such as real
brain and liver data. Overall, we conjecture that this synthetic
data is particularly simple, compared to real medical data, as
in the brain and liver tumour segmentation tasks where the
proposed method clearly outperforms all baseline methods.

Specifically, the task of disentangling the segmentation
target (digits) from the background (clutter) appears simple
compared to real data and so may not benefit as much from
our method’s unsupervised ability to separate the target from
the background. When a digit is placed over a background
of clutter, it does not modify the background in any way. On
the other hand, a tumour in a brain can affect the background
by deforming all of the surrounding brain tissue. To verify
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whether synthetic data is disentangled better than real data,
we evaluated the mutual information between the common
and unique codes (ca and ua in Eq. 1) throughout training
on synthetic and on brain data by using a jointly trained Mutual
Information Neural Estimator (MINE) [47]. Indeed, we found
that the model learns to completely disentangle the unique
and common codes for synthetic data (nearly zero mutual
information) but not for brain data, as shown in Figure 5.

Brain

& 0.5
= : Wv
£
S
£ 0.05
g ‘
B Synthetic hard
= 0
0 100 Epoch 200 300

Fig. 5: Mutual information computed between the common
and unique codes, per epoch, for synthetic (48x48 hard) and
brain tumour segmentation tasks. Mean (solid) and standard
deviation (shaded) across three training runs.

D. Brain tumor segmentation

We created a 2D brain tumor segmentation dataset that
corresponds to the problem definition for which we propose
our segmentation training method. Specifically, we created
a dataset with a set of known healthy cases (domain A)
and a set of (diseased, domain P) cases known to present
cancerous tumors. Pixel-level reference segmentations were
made available for only a subset of the diseased cases. Both
healthy and diseased cases were created from the 3D brain
tumor segmentation challenge (BraTS) 2017 MRI volumes,
all of which contain brain tumors.

Using 210 high grade glioma (HGG) volumes and 75 low
grade glioma (LGG) volumes in the BraTS training set, we
allocated 80% of the data for training, 10% of the data as a
validation subset for hyperparameter tuning, model selection,
and early stopping and 10% for final testing and comparison to
baseline methods. Training, validation, and testing subsets all
had approximately equal proportions of HGG and LGG cases.
No volumes were represented in more than one subset; models
must generalize across cases. Splitting the volumes into axial
slices as described below, 8475 healthy slices (domain A) and
7729 tumor slices (domain P) were generated.

Healthy cases were collected from axial slices without tu-
mors. As in [48], we split the slices into two hemispheres and
selected only those half-slices of which at least 25% of the area
is brain tissue, so as to better balance the slice distributions
between the two domains A and P. Considering that more
tumors may be found in larger brain slices, this ensures that
slice sizes and locations are more equally represented in A
and P and the main difference between them is the absence or
presence of tumor. In P, we also limited the minimal number
of tumor pixels to 1% of brain pixels.

We pre-processed every volume by mean-centering the
brain regions and dividing them by five times their standard
deviations, considering only brain tissue and ignoring the

background. Finally, we used half-slices extracted from the
processed volumes as model inputs. Each input has four
channels, corresponding to four registered MRI sequences: T1,
T2, T1C, and FLAIR.

We trained the proposed model and baselines with reference
annotations available for approximately 1% of the training
data. In order to sample the same number of healthy slices
as diseased slices in each batch and epoch, some healthy
slices were sampled more than once in an epoch. As shown
in Table II, the proposed model achieves a 0.83 Dice score,
significantly outperforming the segmentation baseline (0.69)
and the semi-supervised autoencoding (0.73) and mean teacher
(0.75) baselines. Figure 7 shows how much of the gap is
covered by each method between segmentation using 1% of
the data vs using 100% of the data; viewed in this way, the
proposed method covers 64% + 7% of the gap, as compared
to 28% =+ 5% or 18% =+ 18% by the mean teacher and
autoencoding baselines, respectively.

Image translation and segmentation examples are shown in
Fig. 6, left. As shown in the figure, tumors were well removed
by image-to-image translation. Furthermore, the residual out-
put is similar to the segmentation output which supports our
conjecture that this translation is similar to segmentation.
Some of the sequences (T1, Tlc, T2) result in fairly com-
plicated residuals that are nonetheless correctly reinterpreted
as segmentations via the residual decoder. The first column
in Fig. 6 reveals an artifact of distribution imbalance where a
rare truncated input slice is transformed into a common non-
truncated slice. Artifacts of this sort are particularly common
when there is an imbalance in the distribution of slice sizes
between P and A (which we try to avoid). Ideally, entire brain
volumes would be used as inputs instead of slices as performed
here.

E. Liver tumor segmentation

Finally, a 2D liver tumor segmentation dataset was created
with sets of healthy and diseased cases (with and with-
out tumor, respectively) from the Liver Tumor Segmenta-
tion Challenge (LiTS) data [49]. The LiTS dataset contains
portal venous phase contrast enhanced abdominal computed
tomography (CT) scans along with pixel-level annotation of
the liver and liver tumor boundaries. Inclusion criteria were
the presence of colorectal cancer metastases; however, other
tumors may be present but are not identified. Every CT volume
corresponds to a single patient. The original data contains
130 CT volumes in the training set and 70 CT volumes in
the heldout test set. To create our 2D dataset, we extracted
and postprocessed relevant liver slices from only the publicly
available training cases. The LiTS dataset is highly heteroge-
nous, composed of cases collected from seven sites around the
world, presenting vastly different anatomical features across
cases; top methods submitted to the LiTS challenges predict
tumor segmentation with inconsistent performance across dif-
ferent volumes [49], [50]. Consequently, we performed a 4-
fold cross-validation on our data to reduce the effect of this
variability. Approximately 10% of the data in every fold was
used as a validation subset for hyperparameter selection and
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TABLE II: Segmentation Dice scores for the brain, liver, and synthetic data when annotations are available for only 1% of the

data: mean (standard deviation) across three runs.

Brain Liver Synthetic Synthetic Synthetic

240120 240%240  48x48 simple  48x48 hard 128 %128

Only segmentation  0.69 (0.04)  0.66 (0.01) 0.61 (0.01) 0.36 (0.01)  0.15 (0.01)
AE baseline 0.73 (0.04)  0.66 (0.02) 0.75 (0.01) 0.49 (0.02)  0.57 (0.02)
Mean teacher 0.75 (0.01)  0.69 (0.02) 0.83 (0.02) 0.56 (0.01)  0.70 (0.01)
Proposed 0.83 (0.01)  0.74 (0.01) 0.84 (0.00) 0.60 (0.01)  0.74 (0.02)
Proposed (sep dec)  0.79 (0.00)  0.69 (0.02) 0.83 (0.01) 0.62 (0.01)  0.73 (0.02)

Segmentation Residual Translation Input
(Absence) (Presence)

Ground-truth
segmentation

)}
4

FLAIR FLAIR TI
Brain

Fig. 6: Examples, per column, of image segmentation and translation from Presence to Absence domains for brain tumor (left)
and liver tumor (right). For brain, a different MRI sequence (input image channel) is shown for each example.

100%
80%
60% ® Proposed
A0% = Mean teacher
AE baseline
20%
0% -

Brain Liver

Fig. 7: The performance gap, covered by each semi-supervised
method, between supervised segmentation using 1% of the
data (lower bound) and all of the data (upper bound). At 0%,
a semi-supervised method performs as poorly as supervised
segmentation trained on 1% of the data; at 100% it performs
as well as a supervised method that is trained on all the data.
(Error bars: standard deviation across three training runs).

early stopping. Across training, validation, and testing subsets,
no volumes were represented in more than one subset; models
must generalize across cases.

Volumes were pre-processed by mean-centering the liver
region in each volume and dividing it by five times its standard
deviation, with statistics computed only in the liver. For each
volume in the training set, we extracted axial slices with the
constraint that the liver must cover at least 6% of the slice area.
Slices that contain no tumor are labeled as healthy; those with
at least one tumor that is at least 6 pixels wide (along the
coronal or sagittal directions) are labeled as diseased and the
rest were discarded. This produced 6,319 healthy slices across
123 volumes and 11,165 diseased slices across 112 volumes.
To focus on liver tumor segmentation and reduce the variability
in liver size and location, slices were cropped to the liver and
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resized to 256x256 pixels. The space outside of the liver is
zero-filled and liver boundary annotations were discarded.

Because the liver dataset is composed of slices extracted
from diseased volumes, the A (healthy) and P (diseased)
domains differ not only in the absence vs presence of tumors
but also in the distribution of axial positions from which slices
are extracted. To reduce this bias, we sampled healthy slices
during training according to a 20-bin histogram of the axial
positions of diseased slices. In each epoch, the number of
healthy slices sampled with replacement was equal to the total
number of diseased slices sampled without replacement.

We trained the proposed model and baselines with reference
annotations available for 1% of the training data. As shown
in Table II, the proposed model achieves a (.74 Dice score,
significantly outperforming the segmentation baseline (0.66)
and the semi-supervised autoencoding (0.66) and mean teacher
(0.69) baselines. Figure 7 shows how much of the gap is
covered by each method between segmentation using 1% of
the data vs using 100% of the data; viewed in this way, the
proposed method covers 58% =+ 2% of the gap, as compared to
22% =+ 7% or 0% =+ 0% by the mean teacher and autoencoding
baselines, respectively. The autoencoding method shows a
lack of improvement over fully supervised segmentation. The
overall lower Dice scores for liver as compared to brain may
be due to fewer training cases and less information in CT than
in MRI scans. Image translation and segmentation examples
are shown in Fig. 6, right, where the unsupervised removal of
tumors is evident.

F. Ablations

Annotation efficiency. We tested the proposed method with
reference tumor annotations provided for increasing fractions
of the brain and liver training sets, as compared with the fully
supervised segmentation baseline (Fig. 8). This demonstrates
that the proposed method performs robustly with few labeled
examples (1%) and scales well with the proportion of unan-
notated data.

0.9 0.8
g 08 g 07
a a
0.7 T T T T 1 0.6 T T T T 1
0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%
(a) Brain (b) Liver

Fig. 8: Dice score when using reference annotations for
various fractions (%) of the data during training for (a) brain
tumor dataset and (b) liver tumor dataset. Points: individual
runs; lines: average across three runs. Orange, diamonds (top):
proposed; blue, squares (bottom) supervised segmentation.

Normalization. In Table IIla, we compare the choice of
different normalization layers in the encoder and the decoder
of the proposed method, evaluated on the brain data. Using
instance normalization in the encoder and layer normalization
in the decoder (as proposed) or instance normalization in both
yielded the best results.

Absence to presence translation. As in prior work in
image-to-image translation [20], [22], we perform translation

both from the presence domain to the absence domain (P — A)
and vice versa (A — P). We conjecture that training P — A is
sufficient; however, additionally training A — P makes more
efficient use of the available data and should yield a better
performing model. We confirm this in Table IIIb. We note that
when translation objectives are removed, performance(0.75 £
0.02 Dice) on brain data is on par with the autoencoding
and mean teacher baselines (probably because there are still
reconstruction objectives).

TABLE lll: Ablation experiments on (a) the normalization
layers used in the encoder and the decoder of the proposed
model (“IN”: instance norm, “LN”: layer norm, “BN” batch
norm [51]; ( encoder : decoder )) and (b) the directions of
image-to-image translation, whether bidirectional between the
presence (P) and absence (A) domains, or unidirectional only
from P to A. Reporting tumour segmentation Dice score in
brain: mean (standard deviation).

Normalization Dice Translation Dice
IN: LN 0.83 (0.01) P—A A—P 0.83(0.01)
IN:IN 0.83 (0.01) P—> A 0.79 (0.02)
LN : LN 0.78 (0.02) no translation 0.75 (0.02)
BN : BN 0.80 (0.03)

(a) (b)

Batch size. We found that the proposed method is not
sensitive to batch size, after testing batch sizes of 5, 10, 15,
20, 25, and 30 on the validation subset of the brain tumor
dataset.

Compressed skip connection. We evaluated the com-
pressed skip connections proposed in Section III-C. In Fig-
ure 9, we evaluate the performance of the proposed segmenta-
tion method, as well as every baseline method, on every task
for different types of long skip connections: concatenation
(“Concat”), summation (“Sum”), and no skips (“No skip”).
Performance is evaluated relative the performance achieved
with the proposed compressed skip connections. All models
without skip connections perform poorly. The proposed com-
pressed skip connections allow all baseline methods that we
compare against to perform better on the brain data than do
summation or concatenation type skip connections. For this
data, when providing annotations for only 1% of the volumes,
the conventional skip connections produce highly variable
results across training runs. For liver and synthetic data,
models with compressed skip connections perform similarly to
those with ‘sum’ and ‘concat’ skip connections for all models
(proposed and baselines), with results typically falling within
the standard deviation. We thus conclude that the proposed
skip connections are the most consistent at producing quality
results with low variance.

Dual-use residual decoder. Finally, we compare in Table II
the use of a shared translation/segmentation decoder (‘“Pro-
posed”) to models with a separate segmentation decoder (“sep
dec”) for every task. The separate decoder performs on par
with the shared decoder on the simple and large variants of
the synthetic task and may slightly outperform the latter on the
hard variant. However, a separate decoder underperforms on
the brain and liver tumour segmentation tasks. Thus sharing
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15% 15%

0%
T
‘FEF ik k
-20% 5% H g 0% =
-40%  concat 5% I -15% I
W sum I I I
-60% noskip _jgep -30% T

P MT AE Seg P MT AE Seg

(b) Liver

P MT AE Seg

(a) Brain (c) Synthetic hard

Fig. 9: The relative performance of the proposed model (“P”),
mean teacher baseline (“MT”), autoencoding baseline (“AE”),
and supervised segmentation baseline (“Seg”) for different
long skip connection types (‘“‘concat”, blue; “sum”, orange;
“no skip”, yellow), as compared to the proposed compressed
skip connection. Using annotations for 1% of the data.

decoders for segmentation and residual translation can be
very beneficial (brain and liver data) but may not always be
optimal.

V. EXTENSIONS AND APPLICATIONS

Although we present work on two domains, P and A, the
proposed method can be easily extended to any greater number
of domains. For example, if different types of pathology are
known to be present in a medical image dataset, a domain-
specific code (with a corresponding residual decoder) could
be encoded for each pathology in addition to a neutral code
with all pathologies absent. Most interestingly, our image-
to-image translation approach would allow any number of
pathologies to be present in an image at a time, unlike for
example the StarGAN multi-domain image-to-image transla-
tion architecture [52]. This can be particularly useful for high-
resolution histopathology imaging or x-ray multi-pathology
segmentation.

Finally, we note that there are data outside of image seg-
mentation that can be split into P and A domains. For example,
in image registration problems where the dense deformation
fields can be expressed based on the presence of tumors or
morphological changes in the target images.

VI. CONCLUSION

We propose a semi-supervised segmentation method that
makes use of image-to-image translation in order to leverage
unsegmented training data with cases presenting the object (P)
of interest and cases in which it is absent (A). We argue that
this objective is similar to segmentation because they both
require disentangling the target object from the background.
Indeed, we validate our method on brain tumor segmentation
in MR images, liver tumor segmentation in CT images, as well
as synthetic segmentation tasks, where we achieve significant
improvements over supervised and semi-supervised baselines.
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