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Abstract

Despite achieving promising results in a breadth of medical image segmentation tasks, deep neural networks
(DNNs) require large training datasets with pixel-wise annotations. Obtaining these curated datasets is
a cumbersome process which limits the applicability of DNNs in scenarios where annotated images are
scarce. Mixed supervision is an appealing alternative for mitigating this obstacle. In this setting, only a
small fraction of the data contains complete pixel-wise annotations and other images have a weaker form of
supervision, e.g., only a handful of pixels are labeled. In this work, we propose a dual-branch architecture,
where the upper branch (teacher) receives strong annotations, while the bottom one (student) is driven by
limited supervision and guided by the upper branch. Combined with a standard cross-entropy loss over the
labeled pixels, our novel formulation integrates two important terms: (i) a Shannon entropy loss defined over
the less-supervised images, which encourages confident student predictions in the bottom branch; and (ii)
a Kullback-Leibler (KL) divergence term, which transfers the knowledge (i.e., predictions) of the strongly
supervised branch to the less-supervised branch and guides the entropy (student-confidence) term to avoid
trivial solutions. We show that the synergy between the entropy and KL divergence yields substantial
improvements in performance. We also discuss an interesting link between Shannon-entropy minimization
and standard pseudo-mask generation, and argue that the former should be preferred over the latter for
leveraging information from unlabeled pixels. We evaluate the effectiveness of the proposed formulation
through a series of quantitative and qualitative experiments using two publicly available datasets. Results
demonstrate that our method significantly outperforms other strategies for semantic segmentation within a
mixed-supervision framework, as well as recent semi-supervised approaches. Moreover, in line with recent
observations in classification, we show that the branch trained with reduced supervision and guided by the top
branch largely outperforms the latter. Our code is publicly available: https://github.com/by-liu/ConfKD.
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1. Introduction

The advent of deep learning has led to the emer-
gence of high-performance models which currently

∗Corresponding author: bingyuan.Liu@etsmtl.ca
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dominate the medical image segmentation litera-
ture (Litjens et al., 2017; Dolz et al., 2018; Ron-
neberger et al., 2015). The availability of large train-
ing datasets with high-quality segmentation ground-
truth has been a key factor for these advances. Never-
theless, obtaining such annotations is a cumbersome
process prone to observer variability, which is further
magnified when volumetric data is involved. To alle-
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viate the need for large labeled datasets, weakly su-
pervised learning has recently emerged as an appeal-
ing alternative. In this scenario, one has access to a
large amount of weakly labeled data that can come
in the form of bounding boxes (Kervadec et al., 2020;
Rajchl et al., 2016), scribbles (Lin et al., 2016), image
tags (Lee et al., 2019) or anatomical priors (Kervadec
et al., 2019b; Peng et al., 2020b). However, even
though numerous attempts have been made to train
segmentation models from weak supervision, most of
them still fall behind their supervised counterparts,
limiting their applicability in real-world settings.

Another promising learning scenario is mixed su-
pervision, where only a small fraction of data is
densely annotated and a larger dataset contains less-
supervised images. In this setting, which helps keep-
ing the annotation budget under control, strongly-
labeled data – where all pixels are annotated – can
be combined with images presenting weaker forms of
supervision. Prior literature (Lee et al., 2019; Ra-
jchl et al., 2016) has focused mainly on leveraging
weak annotations to generate accurate initial pixel-
wise annotations, or pseudo-masks, which are then
combined with strong types of supervision to aug-
ment the training dataset. The resulting dataset is
employed to train a segmentation network, mimick-
ing fully supervised training. Nevertheless, we argue
that treating both equally in a single branch may re-
sult in limited improvements, as the less-supervised
data is underused. Other approaches resort to multi-
task learning (Mlynarski et al., 2019; Shah et al.,
2018; Wang et al., 2019), where the mainstream task
(i.e., segmentation) is assisted by auxiliary objectives
that are typically integrated in the form of localiza-
tion or classification losses. While multi-task learning
might enhance the common representation for both
tasks in the feature space, this strategy has some
drawbacks. First, the learning of relevant features is
driven by commonalities between the multiple tasks,
which may generate suboptimal representations for
the mainstream task. Secondly, having distinct task-
objectives ignores the direct interaction between the
multi-stream outputs, for example, explicitly enforc-
ing consistency between the predictions of multiple
branches. As we show in our experiments, consider-

ing such interaction significantly improves the results.
Motivated by these observations, we propose a

novel formulation for learning with mixed supervi-
sion in medical image segmentation. Particularly, our
dual-branch network imposes a separate processing of
the strong and weak annotations, which prevents di-
rect interference of different supervision cues. This is
supported by the recent findings in (Luo and Yang,
2020), who demonstrated empirically that bundling
different forms of supervision together to train a seg-
mentation network is problematic, and argued that
joint treatment of different supervision under-exploits
less supervised samples, introducing limited improve-
ment. In particular, authors pointed out two key
issues related to equal treatment of different levels
of supervision: sample imbalance (commonly much
more less-supervised samples than fully supervised
ones) and supervision inconsistency (less-supervised
samples provide lower quality annotations). The for-
mer introduces a high risk of overfitting towards less
supervised data, whereas the later induces inconsis-
tencies in the supervisory signals. Authors validated
these hypothesis in their experiments, and showed
that by decoupling branches receiving different types
of labels the supervision inconsistency and biases
from class imbalance can be eliminated.

As the uncertainty of predictions for unlabeled
pixels can be high, the proposed model includes a
loss term based Shannon entropy that enforces high-
confidence predictions over the whole image. More-
over, in contrast to prior works in mixed-supervision
(Mlynarski et al., 2019; Shah et al., 2018; Wang
et al., 2019), which have overlooked the co-operation
between multiple branches by considering indepen-
dent multi-task objectives, we introduce a Kullback-
Leibler (KL) divergence term. The benefits of the
latter are two-fold. First, it transfers the predic-
tions generated by the strongly supervised branch
(teacher) to the less-supervised branch (student).
Second, it guides the entropy (student-confidence)
term to avoid trivial solutions. Interestingly, we
show that the synergy between the entropy and
KL term yields substantial improvements in perfor-
mances. Furthermore, we discuss an interesting link
between Shannon-entropy minimization and pseudo-
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mask generation, and argue that the former should
be preferred over the latter for leveraging informa-
tion from unlabeled pixels. We report comprehensive
experiments and comparisons with other strategies
for learning with mixed supervision, which show the
effectiveness of our novel formulation. An interest-
ing finding is that the branch receiving weaker super-
vision considerably outperforms the strongly super-
vised branch. This phenomenon, where the student
surpasses the teacher’s performance, is in line
with recent observations in the context of image clas-
sification (Furlanello et al., 2018; Yim et al., 2017).

A preliminary conference version of this work has
appeared at IPMI’21 (Dolz et al., 2021). Neverthe-
less, this journal version provides a substantial ex-
tension. First, we further discuss the current litera-
ture in semi-supervised segmentation, which is closely
related to the proposed methodology. Furthermore,
we have performed several additional experiments to
demonstrate the robustness and usability of our ap-
proach. In particular, new main experiments include:
1) benchmark against well-known and recent semi-
supervised segmentation methods, 2) evaluation of
our model in the publicly available Left Atrium (LA)
segmentation challenge, 3) assessing the impact of
several components in the methodology and 4) study-
ing the impact of alternative divergence functionals
as consistency terms in our formulation. In addition
to the theoretical insights regarding the preference
of directly minimizing the entropy of the predictions
over using pseudo-labels given in the conference ver-
sion, we provide empirical evidence that employing
pseudo-labels has indeed a strong pushing effect on
uncertain predictions at the beginning of the train-
ing.

2. Related work

Mixed-supervised segmentation An appealing
alternative to training CNNs with large labeled
datasets is to combine a reduced number of fully-
labeled images with a larger set of images with re-
duced annotations. These annotations can come in
the form of bounding boxes, scribbles or image tags,

for example1. A large body of the literature in
this learning paradigm addresses the problem from a
multi-task objective perspective (Hong et al., 2015;
Bhalgat et al., 2018; Shah et al., 2018; Mlynarski
et al., 2019; Wang et al., 2019), which might hin-
der their capabilities to fully leverage joint infor-
mation for the mainstream objective. Furthermore,
these methods typically require carefully-designed
task-specific architectures, which also integrate task-
dependent auxiliary losses, limiting the applicability
to a wider range of annotations. For example, the
architecture designed in (Shah et al., 2018) requires,
among others, landmark annotations, which might
be difficult to obtain in many applications. More re-
cently, Luo et al. (Luo and Yang, 2020) promoted
the use of a dual-branch architecture to deal sepa-
rately with strongly and weakly labeled data. Par-
ticularly, while the strongly supervised branch is gov-
erned by available fully annotated masks, the weakly
supervised branch receives supervision from a proxy
ground-truth generator, which requires some extra
information, such as class labels. While we advocate
the use of independent branches to process naturally
different kinds of supervision, we believe that this
alone is insufficient, and may lead to suboptimal re-
sults. Thus, our work differs from (Luo and Yang,
2020) in several aspects. First, we make a better use
of the labeled images by enforcing consistent segmen-
tations between the strongly and weakly supervised
branches on these images. Furthermore, we enforce
confident predictions at the weakly supervised branch
by minimizing the Shannon entropy of the softmax
predictions.

Semi-supervised segmentation in medical im-
ages Semi-supervised learning is closely related to
the proposed methodology. In this scenario, a small
number of labeled images are leveraged with a much
larger set of unlabeled images. In recent years,
a breadth of semi-supervised approaches have been
proposed for medical image segmentation, includ-

1Note that this type of supervision differs from semi-
supervised methods, which leverage a small set of labeled im-
ages and a much larger set of unlabeled images.
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ing techniques based on adversarial learning (Zhang
et al., 2017), self-training (Bai et al., 2017), mani-
fold learning (Baur et al., 2017), co-training (Peng
et al., 2020a; Zhou et al., 2019), temporal ensem-
bling (Perone and Cohen-Adad, 2018), data augmen-
tation (Chaitanya et al., 2019), consistency regular-
ization (Bortsova et al., 2019) and mutual informa-
tion maximization (Peng et al., 2021). The common
element of these approaches is adding an unsuper-
vised loss computed on unlabeled images, which reg-
ularizes the learning. In contrast, our model exploits
images that can be fully or partly annotated, process-
ing each type in a separate branch of the proposed
network.

Distilling knowledge in semantic segmenta-
tion Transferring knowledge from one model to
another has recently gained attention in segmenta-
tion tasks. For example, the teacher-student strat-
egy has been employed in model compression (Bar
et al., 2019), to distil knowledge from multi-modal to
mono-modal segmentation networks (Hu et al., 2020),
or in domain adaptation (Xu et al., 2019). Semi-
supervised segmentation has also benefited from
teacher-student architectures (Cui et al., 2019; Sedai
et al., 2019). In these approaches, however, the seg-
mentation loss evaluating the consistency between
the teacher and student models is computed on the
unannotated data. A common practice, for example,
is to add additive Gaussian noise to the unlabeled im-
ages, and enforce similar predictions for the original
and noised images. This contrasts with our method,
which enforces consistency only on the strongly la-
beled data, thereby requiring less additional images
to close the gap with full supervision.

3. Methodology

We first define the set of training images as
D = {(Xn,Yn)}n, where Xi ∈ RΩi represents
the i th image and Yi ∈ {0, 1}Ωi×C its corre-
sponding ground-truth segmentation mask. Ωi de-
notes the spatial image domain and C the num-
ber of segmentation classes (or regions). We
assume the dataset has two subsets: Ds =

{(X1,Y1), ..., (Xm,Ym)}, which contains complete
pixel-level annotations of the associated C categories,
and Dw = {(Xm+1,Ym+1), ..., (Xn,Yn)}, whose la-
bels can take the form of semi- or weakly-supervised
annotations (e.g., scribbles, points, bounding boxes
or image-tags). Furthermore, for each image Xi in
D = Ds ∪ Dw, Pi ∈ [0, 1]Ωi×C denotes the soft-
max probability outputs of the network, i.e., the
matrix containing a simplex column vector pli =(
pl,1i , . . . , p

l,C
i

)T
∈ [0, 1]C for each pixel l ∈ Ωi. Note

that we omit the parameters of the network here to
simplify notation.

3.1. Multi-branch architecture

The proposed architecture is composed of multiple
branches, each dedicated to a specific type of super-
vision (see Fig. 1). It can be divided in two com-
ponents: a shared feature extractor and independent
but identical decoding networks (one per type of su-
pervision), which differ in the type of annotations re-
ceived. It is worth mentioning that the initialisation
of the weights in the decoders and the different gradi-
ents received by each branch ensure that the parame-
ters from both decoders will not have the same values
during training. Even though the proposed multi-
branch architecture has similarities with the recent
work in (Luo and Yang, 2020), there are significant
differences, particularly in the loss functions, which
leads to different optimization scenarios.

3.2. Supervised learning

The top-branch is trained under the fully-
supervised paradigm, where a set of training images
containing pixel-level annotations for all the pixels is
given, i.e., Ds. The problem amounts to minimizing
with respect to the network parameters a standard
full-supervision loss, which typically takes the form
of a cross-entropy:

Ls = −
m∑
i=1

∑
l∈Ωi

(yli)
T log

(
pli
)
top

(1)

where vector yli =
(
yl,1i , . . . , yl,Ci

)
∈ {0, 1}C de-

scribes the ground-truth annotation for pixel l ∈ Ωi.
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Less supervised branch
(few labeled pixels)

Strongly supervised branch Available 
annotationsFully

Labeled images

Partially Labeled 
images (few pixels)

Figure 1: Overview of the proposed method. Training: Both fully and partial labeled images are fed to the network. The top
branch generates predictions for fully labeled images, whereas the bottom branch generates the outputs for partially labeled
images. Furthermore, the bottom branch also generates segmentations for the fully labeled images, which are guided by the
KL term between the two branches. Inference: Once the model is trained, we can remove the strongly supervised branch
(Top), and get the final segmentation result from the bottom stream. The gradients for each loss term are highlighted in the
figure. Note that, similarly to UNet-like architectures, the proposed model has skip connections between the encoder and the

decoders.

Here, notation (·)top refers to the softmax outputs
of the top branch of the network. Note that all the
losses are normalized by the cardinality of the train-
ing dataset, which has been omitted to simplify the
notation.

3.3. Not so-supervised branch

We consider the scenario where only the labels for
a handful of pixels are known, i.e., scribbles or points.
Particularly, we use the dataset Dw whose pixel-level
labels are partially provided. Furthermore, for each
image on the labeled training set, Ds, we generate
partially supervised labels (more details in the ex-
periments’ section), which are added to augment the
dataset Dw. Then, for the partially-labeled set of pix-
els, denoted as Ωpartial

i for each image i ∈ {1, . . . n},
we can resort to the following partial-supervision loss,
which takes the form of a cross-entropy on the frac-
tion of labeled pixels:

Lw = −
n∑

i=m+1

∑
l∈Ωpartial

i

(yli)
T log

(
pli
)
bottom

(2)

where notation (·)bottom refers to the softmax outputs
of the bottom branch of the network.

3.4. Distilling strong knowledge

In addition to the specific supervision available
at each branch, we transfer the knowledge from the
teacher (top branch) to the student (bottom branch).
This is done by forcing the softmax distributions from
the bottom branch to mimic the probability predic-
tions generated by the top branch for the fully labeled
images in Ds. This knowledge-distillation regular-
izer takes the form of a Kullback-Leibler divergence
(DKL) between both distributions:

Lkd =

m∑
i=1

∑
l∈Ωi

DKL

((
pli
)
top
‖
(
pli
)
bottom

)
(3)

where DKL(p‖q) = pT log p
q , with T denoting the

transpose operator.
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3.5. Shannon-Entropy minimization

Finally, we encourage high confidence in the stu-
dent softmax predictions for the partially labeled im-
ages by minimizing the Shannon entropy of the pre-
dictions on the bottom branch:

Lent =

n∑
i=m+1

∑
l∈Ωi

H
(
pli
)

(4)

where H (p) = −pT logp is the Shannon entropy of
distribution p.

Entropy minimization is widely used in semi-
supervised learning (SSL) and transductive classifica-
tion (Grandvalet and Bengio, 2005; Berthelot et al.,
2019; Dhillon et al., 2019; Boudiaf et al., 2020) to
encourage confident predictions at unlabeled data
points. Fig. 2a plots the entropy in the case of
a two-class distribution (p, 1 − p), showing how the
minimum is reached at the vertices of the simplex,
i.e., when p = 0 or p = 1. However, surprisingly,
in segmentation, entropy is not commonly used, ex-
cept a few recent works in the different contexts of
SSL and domain adaptation (Peng et al., 2020c; Bate-
son et al., 2020; Vu et al., 2019). As we will see in
our experiments, we found that the synergy between
the entropy term for confident students, Lent, and
the student-teacher knowledge transfer term, Lkd,
yields substantial increases in performances. Fur-
thermore, in the following, we discuss an interesting
link between pseudo-mask generation, common in the
segmentation literature, and entropy minimization,
showing that the former could be viewed as a proxy
for minimizing the latter. We further provide insights
as to why entropy minimization should be preferred
for leveraging information from the set of unlabeled
pixels.

3.6. Link between entropy and pseudo-mask supervi-
sion

In the weakly- and semi-supervised segmentation
literature, a very dominant technique to leverage
information from unlabeled pixels is to generate
pseudo-masks and use these as supervision in a cross-
entropy training, in an alternating way (Lin et al.,

0.0 0.2 0.4 0.6 0.8 1.0
p

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Entropy
Min-Entropy

(a) Shannon entropy (blue) and min-entropy (red) for a two-class
distribution (p, 1− p), with p ∈ [0, 1].

0.0 0.2 0.4 0.6 0.8 1.0
p

0.4

0.2

0.0

0.2

0.4

() o k

Entropy
Min-Entropy

(b) Derivatives of both the entropy and Min-Entropy with respect
to the input logit of class k.

2016; Khoreva et al., 2017; Papandreou et al., 2015).
This self-supervision principle is also well known in
classification (Lee, 2013). Given pixel-wise predic-
tions pli = (pl,1i , . . . , p

l,C
i ), pseudo-masks ql,ki are gen-

erated as follows: ql,ki = 1 if pl,ki = maxc p
l,c
i and

0 otherwise. By plugging these pseudo-labels in a
cross-entropy loss, it is easy to see that this corre-
sponds to minimizing the min-entropy, Hmin(pli) =

− log(maxc p
l,c
i ), which is a lower bound on the Shan-

non entropy; see the red curve in Figure 2a. Fig.
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2a and 2b provide a good insight as to why en-
tropy should be preferred over min-entropy (pseudo-
masks) as a training loss for unlabeled data points,
and our experiments confirm this. With entropy,
the gradients of low-confidence predictions at the
middle of the simplex are small and, therefore,
dominated by the other terms at the beginning of
training. However, with min-entropy, the inaccu-
racies resulting from uncertain predictions are rein-
forced (pushed towards the simplex vertices), yielding
early/unrecoverable errors in the predictions, which
might mislead training. This is a well-known limita-
tion of self-supervision in the SSL literature (Chapelle
et al., 2009).

3.7. Joint objective

Our final loss function takes the following form:

Lt = Ls + λwLw + λkdLkd + λentLent (5)

where λw, λkd and λent balance the importance of
each term.

4. Experimental setting

Benchmark dataset To evaluate the proposed
model, we employ two public segmentation bench-
marks. First, we focus on the task of left ventric-
ular (LV) endocardium segmentation on cine MRI
images. Particularly, we used the training set from
the publicly available data of the 2017 ACDC Chal-
lenge (Bernard et al., 2018), which consists of 100 cine
magnetic resonance (MR) exams covering several well
defined pathologies: dilated cardiomyopathy, hyper-
trophic cardiomyopathy, myocardial infarction with
altered left ventricular ejection fraction and abnor-
mal right ventricle. Following prior literature, e.g.,
(Peng et al., 2020a; Wang et al., 2021), slices con-
tained in each 3D-MRI scan were considered as 2D
images, whose spatial resolution was 256×256. We
split this dataset into 80 exams for training, 5 for
validation and the remaining 15 for testing. Then, to
demonstrate the broad applicability of our method,

we use images from the Left Atrium (LA) segmen-
tation challenge2, which has been widely used in the
context of semi-supervised segmentation. It includes
100 gadolinium-enhanced magnetic resonance imag-
ing (GE-MRI) scans, with aligned LA segmentation
masks. These 3D GE-MRI scans have isotropic res-
olution of 0.625 × 0.625 × 0.625mm3. Following the
setting of (Yu et al., 2019), all the scans are cropped
centering at the heart region for better comparison
of the segmentation performance and normalized as
zero mean and unit variance. Contrary to the ACDC
dataset, the inputs of the network in this setting was
3D volumetric data. In our experiments, we ran-
domly divided them into 80 for training, 5 for val-
idation and the remaining 15 for testing.

Generating partially labeled images The train-
ing exams are divided into a small set of fully labeled
images, Ds, and a larger set of images with reduced
supervision, Dw, where only a handful of pixels are la-
beled. Concretely, we employ the same partial labels
as in (Kervadec et al., 2019a,b), which are obtained
by eroding iteratively the full pixel-wise masks with
a kernel of size 10 × 10, until the smallest possible
contour is obtained. To evaluate how increasing the
amount of both fully and partially labeled affects the
performance, we evaluated the proposed models in
three settings, referred to as Set-3, Set-5, and Set-10.
In these settings, the number of fully labeled images
is 3, 5 and 10, respectively, while the number of im-
ages with partial labels is ×5 times the number of
labeled images.

Evaluation metrics For evaluation purposes we
employ two well-known metrics in medical image
segmentation: the Dice similarity score (DSC) and
the modified Hausdorff-Distance (MHD). Particu-
larly, the MHD represents the 95th percentile of the
symmetric HD between the binary objects in two im-
ages.

Baseline methods To demonstrate the efficiency of
the proposed model, we compared it to several base-
lines. First, we include full-supervised baselines that

2http://atriaseg2018.cardiacatlas.org/
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Table 1: Results on ACDC (Left-ventricle) on the testing set for the top and bottom branches (when applicable). Results are
averaged over three runs. Best results for non-fully supervised methods are highlighted in bold.

Top Bottom Ensemble

Setting Model FS PS DSC HD-95 DSC HD-95 DSC HD-95

Set-3 Single Branch

Lower bound X – 54.66 80.05 – – – –
Single X X 57.42 78.80 – – – –
Single + Ent X X 43.01 83.98 – – – –
Upper Bound (Set-3) X – 87.17 5.34 – – – –

Dual Branch
Decoupled (Luo and Yang, 2020) X X 56.61 74.95 5.01 120.06 – –
Ours (KL) X X 68.25 63.15 71.49 63.51 – –
Ours (KL+Ent) X X 78.38 46.73 86.94 8.84 86.35 11.97

Set-5 Single Branch

Lower bound X – 69.71 51.75 – – – –
Single X X 70.73 51.34 – – – –
Single + Ent X X 74.92 55.24 – – – –
Upper Bound (Set-5) X – 87.69 4.93 – – – –

Dual Branch
Decoupled (Luo and Yang, 2020) X X 70.96 54.42 4.29 127.68 – –
Ours (KL) X X 80.64 23.25 79.06 34.83 – –
Ours (KL+Ent) X X 85.57 20.68 88.77 5.40 88.54 5.49

Set-10 Single Branch

Lower bound X – 78.28 44.16 – – – –
Single X X 78.17 42.99 – – – –
Single + Ent X X 80.63 37.75 – – – –
Upper Bound (Set-10) X – 91.18 3.71 – – – –

Dual Branch
Decoupled (Luo and Yang, 2020) X X 77.53 32.23 4.58 125.36 – –
Ours (KL) X X 88.29 12.47 88.68 11.93 – –
Ours (KL+Ent) X X 86.53 5.64 90.92 1.39 90.75 1.55

All images Single Branch Upper bound X – 93.31 3.46 – –
FS and PS indicate fully or partially supervised images.

will act as lower and upper bounds. The lower bound
employs only a small set of fully labeled images (ei-
ther 3, 5 or 10, depending on the setting), whereas
the upper bound considers all the available training
images. The fully labeled images used to train the
lower bound baselines are exactly the same images
employed in the other models. Then, we consider a
single-branch network, referred to as Single, which re-
ceives both fully and partial labeled images without
making distinction between them. In order to have
a fair comparison with the proposed method, we also
include a version of the Single model where the en-
tropy of the predictions is minimized during training,
i.e., Single+Ent. To assess the impact of decoupling
the branches without further supervision, similar to
(Luo and Yang, 2020), we modify the baseline net-
work by integrating two independent decoders, while
the encoder remains the same. This model, which we
refer to as Decoupled, is governed by different types of
supervision at each branch and is equivalent to our
model without the proposed KL and entropy min-

imization terms. Then, our first model, which we
refer to as KL, integrates the KL divergence term
presented in Eq. (3), whereas KL+Ent corresponds
to the whole proposed model, which couples the two
important terms in Eq. (3) and Eq. (4) in the formu-
lation. Last, to evaluate the benefits of the proposed
method compared to a equivalent fully supervised
model when the same amount of images are avail-
able, we include the results when the Single model
is trained with all the images on each setting, and
their corresponding pixel-level mask. We refer to this
model as to the Upper Bound (Set-N), where N in-
dicates the setting.

Implementation details On the LV segmentation
task, we employed UNet (Ronneberger et al., 2015) as
backbone architecture for the single branch models,
whereas VNet (Milletari et al., 2016) was utilized in
the LA segmentation task. The reason behind these
choices is that segmentation was performed in a 2D
manner in ACDC, whereas we employ volumetric in-
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puts for the LA dataset, following the literature. Re-
garding the dual-branch architectures, we modified
the decoding path of the standard UNet and VNet to
accommodate two separate branches. Note that the
encoders remain the same for both single and dual-
branch architectures. All the networks on the LV
segmenation task are trained during 500 epochs by
using Adam optimizer, with a batch size equal to 24
(i.e., 8 labeled and 16 partially labeled images), and
the learning rate was initialized to 1× 10−4. We em-
pirically set the values of λw, λkd and λent to 0.001,
50 and 1, respectively. For the LA segmentation task,
we followed the setting in (Yu et al., 2019) by train-
ing the network with SGD optimizer and batch size
equal to 12 (i.e., 4 labeled and 8 partially labeled
images),. We found that our formulation provided
the best results when the input distributions to the
KL term in eq. (3) were very smooth, which was
achieved by applying softmax over the softmax pre-
dictions. All the hyperparameters, for all the base-
lines and models, were fixed by using the independent
validation set. In particular, we first found the best
value for λw (0.001) for the Single model, which was
then fixed to find the other hyperparameters of the
proposed model. Then, the optimal λkd weight of the
KL term was found (Detailed results can be found in
Supplemental Materials, section Appendix A). Last,
with λw and λkd fixed, we found the best value of
λent, whose value is the same in both the proposed
model and the baseline Single+Ent. Furthermore, we
perform 3 runs for each model and report the aver-
age values. The code was implemented in PyTorch
and all the experiments were performed in a server
equipped with a NVIDIA Titan RTX GPU.

4.1. Results

Main results. Table 1 reports the quantitative eval-
uation of the proposed method compared to the dif-
ferent baselines on the ACDC dataset.

The first thing we observe is that, across all the
settings, simply adding partial annotations to the
training set does not considerably improve the seg-
mentation performance, i.e., Single model. Further-
more, integrating the entropy minimization term in
this baseline results in a performance degradation in

the less-supervised setting (i.e., Set-3), whereas the
performance typically increases in the other two set-
tings. Indeed, the lower performance observed in the
setting Set-3 might be due to the entropy minimiza-
tion term pushing towards trivial solutions. This is
particularly important on this setting: as the number
of fully-labeled images is low the information derived
from these images might not be enough to serve as a
strong prior to avoid these trivial solutions.

On the other hand, by integrating the guidance
from the upper branch, the network is capable of
leveraging additional partially-labeled images more
efficiently through the bottom branch. Furthermore,
if we couple the KL divergence term with an ob-
jective based on minimizing the entropy of the pre-
dictions on the partial labeled images, the segmen-
tation performance substantially increases. Particu-
larly, the gain obtained by the complete model is con-
sistent across the several settings, improving the DSC
by 6-12% compared to the KL model, and reducing
the MHD by nearly 30%. Compared to the base-
line dual-branch model, i.e., Decoupled, our approach
brings improvements of 10-20% in terms of DSC and
reduces the MHD values by 30-40%. Last, the re-
sults obtained by the proposed model in each setting
are on par with their individual upperbound counter-
parts (i.e., those trained with the same images as our
model), particularly in terms of DSC. Furthermore,
as the number of labeled images increases, the gap in
the HD metric is decreased between the two models,
with our model outperforming the upper bound in
the Set-10 setting.

These results demonstrate the strong capabilities
of the proposed model to leverage fully and partially
labeled images during training. It is noteworthy to
mention that findings on these results, where the
student excels the teacher, align with recent ob-
servations in classification (Furlanello et al., 2018;
Yim et al., 2017). Note that the top branch is also
improved in our formulation. This can be explained
from the fact that even though the supervision the
teacher (top) receives remains unchanged, changes in
the student (bottom) also affect the encoder, which
is shared among both. Thus, the integration of the
proposed objective also results in an improvement on
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the latent representation of the model.
The predictions from top and bottom streams can

be seen as independent model outputs. In this sce-
nario, ensemble learning has often demonstrated to
be an efficient solution to boost the performance of
single models (Dolz et al., 2020). Nevertheless, as
only two different predictions are available, and there
exists a significant gap in performance between both,
combining both outputs hampers the performance
compared to the bottom branch, particularly in lower
data regimes. This supports our choice of using only
the weakly supervised stream at inference.

Comparison with proposals. As mentioned pre-
viously, a popular paradigm in weakly and semi-
supervised segmentation is to resort to pseudo-masks
generated by a trained model, which are used to re-
train the network mimicking full supervision. To
demonstrate that our model leverages more efficiently
the available data, we train a network with an aug-
mented dataset composed by the available labeled
images and the proposals generated on the unlabeled
images by the Lower bound and KLmodels, whose re-
sults are reported in Table 2. We can observe that de-
spite typically improving the base model, minimizing
the cross-entropy over proposals does not outperform
directly minimizing the entropy on the predictions of
the partially labeled images.

Table 2: Results obtained by training on an augmented
dataset composed by fully labeled images and proposals

generated from the Lower bound and KL models on the test
set. Results on the ACDC dataset.

Proposals
(Lower bound)

Proposals
(KL)

Ours
(KL+Ent)

Setting DSC HD-95 DSC HD-95 DSC HD-95

Set-3 63.11 49.99 74.27 45.44 86.94 8.84
Set-5 73.91 45.54 81.35 20.28 88.77 5.40
Set-10 81.31 29.95 89.26 7.98 90.92 1.39

In addition to the quantitative results reported be-
low, we depict the performance evolution on the val-
idation set, for the setting Set-3, in Fig. 3. An inter-
esting observation is that, while training with pseudo-
labels converges faster, our method needs more iter-
ations to reach convergence which is achieved at a
slower pace. Nevertheless, minimizing the entropy

on the predictions results in the model outperform-
ing the pseudo-label based approach. We argue that
this behaviour can be explained from a gradient dy-
namics perspective. At the beginning of the training,
there exist low-confidence predictions which might re-
sult in inaccurate predictions (e.g., in Fig 2a we can
observe that these predictions lie within the middle of
the simplex). As we showed in Section 3.6, employ-
ing pseudo-masks in a cross-entropy loss corresponds
to minimizing the min-entropy, which quickly pushes
low-confidence predictions towards the simplex ver-
tices at the beginning of the training. On the other
hand, if we employ an entropy term, the gradients
of low-confidence predictions in the same region (i.e.,
middle of the simplex) are small compared to the
other terms at the beginning. However, as the other
terms start to be satisfied, the scale of their gradients
becomes comparable to the entropy gradients term,
and hence this term begins its regularization role.
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Figure 3: DSC evolution across the training when trained
with pseudo-labels (red) and the proposed formulation (blue)
on 3 subjects fully labeled on the ACDC validation dataset.

Several failure cases from proposals are depicted
in Fig 4. With this strategy, these errors are prop-
agated during training, which might explain the low
performance compared to our method. In addition
to lower performances, this approach requires to fully
train a first model, generate pseudo-labels and then
re-train a second model with the generated masks.
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This contrasts to our method, which is trained in an
end-to-end manner.

Figure 4: Failure cases which are employed as pseudo-labels
in the proposals-based approach (top), whose errors are

reinforced during training, and their corresponding ground
truth. Best viewed in colours.

Are errors actually propagated through the
training?. To illustrate the weaknesses of pseudo
labels based approaches, particularly in reinforcing
the errors, we perform the following experiment. We
start with an initial model, i.e., Ours (KL), generates
the pseudo labels to train the model at iteration I1,
i.e., Proposals (KL). Similarly, once the model at iter-
ation It is trained, it is used to generate the pseudo-
labels for training the next model at iteration It+1.
Furthermore, at each iteration, the model parameters
are initialized randomly (note that this is similar to
the so-called self-training strategy). We see in Figure
5 that, despite having a performance improvement in
early iterations, this improvement quickly saturates.
This degradation of results over time suggests that
the model is unable to correct noisy pseudo-labels
and accumulates these errors across iterations. As
explained recently in (Huo et al., 2021), this trapping
effect can be explained from an optimization perspec-
tive. If we use Xi to denote a training image and Yi

its corresponding ground truth, we can assume that
the predicted segmentation is Ŷi = Yi + εi, where
εi denotes the prediction error. If Xi belongs to the
fully labeled dataset Ds, Yi is known. Thus, as the
optimization objective involves minimizing |εi| onDs,
it follows a zero mean distribution. In contrast, Yi

is unknown on the weakly supervised dataset Dw,
which allows εi to follow a distribution with non-zero

mean. In this scenario, the prediction Ŷi (used later
as pseudo-label) might integrate this noise, which can
be propagated to the model in subsequent iterations.
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Figure 5: Evolution of the results from the pseudo-labels after
several iterations (on the test set of ACDC for the Setting-3).

Comparison with semi-supervised methods.
We now compare the proposed approach with a series
of state-of-the-art semi-supervised segmentation ap-
proaches including: UA-MT (Yu et al., 2019), GLMI
(Peng et al., 2021) and SSCO (Wang et al., 2021).
UA-MT is an established method to benchmark semi-
supervised segmentation approaches, whereas GLMI
and SSCO have recently demonstrated superior per-
formance over the existing literature. We carefully
tune the hyper-parameters and report the best per-
formance for each method. For each semi-supervised
method, we fixed the number of labeled and unla-
beled training examples in each mini-batch to 4 as
this yield consistent results. For UA-MT, the consis-
tency weight is set to 0.1 and increased by a Gaussian
ramp-up function during the first 100 epochs. For
GLMI (Peng et al., 2021), the three balancing weights
for controlling the relative contributions of global mu-
tual information (MI), local MI and consistency loss
are set to 1.0, 0.1 and 10.0, respectively. To eval-
uate SSCO, the light-weight architecture ENet used
in the original implementation (Wang et al., 2021) is
replaced by UNet for a fair comparison in our exper-
iments. The values for the hyper-parameters are the
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same as those reported in (Wang et al., 2021), as it
empirically worked well in our experiment. For de-
tailed parameter search for each method, please refer
to Section Appendix B in the Supplemental materi-
als. Table 3 reports the results from this study. We
can observe that, under the same conditions, our ap-
proach significantly outperforms SSL state-of-the-art
methods, particularly in the scenarios where less la-
beled images are available. For example, when only 3
scans are fully labeled, our method significantly out-
performs the recent method in (Wang et al., 2021),
with a gap of nearly 10% in terms of DSC. Even
though one can argue that our method employs more
supervision than these approaches, the cost of it is
negligible, as extra labeled pixels could mimic the
human behaviour of quickly drawing scribbles in a
volumetric scan.

Table 3: Comparison to semi-supervised segmentation
approaches on the ACDC test dataset. Results are averaged

over three runs.

Setting Model DSC HD-95

Set-3

Lower bound 54.66 80.05
UA-MT (Yu et al., 2019) * 70.62 39.06
GLMI (Peng et al., 2021) * 76.27 11.21
SSCO (Wang et al., 2021) * 77.16 10.10
Ours (KL+Ent)* 86.94 8.84

Set-5

Lower bound 69.71 51.75
UA-MT (Yu et al., 2019) * 74.71 30.36
GLMI (Peng et al., 2021) * 80.58 8.14
SSCO (Wang et al., 2021) * 81.17 8.15
Ours (KL+Ent) 88.77 5.40

Set-10

Lower bound 78.28 44.16
UA-MT (Yu et al., 2019) * 82.67 28.04
GLMI (Peng et al., 2021) * 88.43 8.04
SSCO (Wang et al., 2021) * 89.25 2.58
Ours (KL+Ent) 90.92 1.39

*Ours uses partially supervised images.

Ablation study on the importance of the KL
term. The objective of this ablation study (Table
4) is to assess the effect of balancing the importance
of the KL term in our formulation. Particularly, the
KL term plays a crucial role in the proposed formula-
tion, as it guides the entropy term during training to
avoid degenerate solutions. We note that the value
of the KL term is typically 2 orders of magnitude
smaller than the entropy objective. Therefore, by
setting its weight (λKL) to 1, we demonstrate empir-

Table 4: Impact of λKL on the proposed formulation. Results
on the ACDC dataset.

Set-3 Set-5 Set-10

DSC HD-95 DSC HD-95 DSC HD-95

λK = 0.1 66.36 51.86 77.26 31.30 81.95 30.11
λK = 1 71.31 39.67 83.88 21.68 89.73 7.34
λK = 10 85.87 12.38 86.52 7.86 90.55 2.84
λK = 50 86.94 8.84 88.77 5.40 90.92 1.39
λK = 100 83.92 18.17 87.31 9.34 89.38 1.62
λK = 1000 76.20 29.99 85.59 13.93 88.90 4.46

ically its crucial role during training when coupled
with the entropy term, as in this setting the latter
strongly dominates the training. In this scenario, we
observe that the model is negatively impacted, par-
ticularly when fully-labeled images are scarce, i.e.,
Set-3, significantly outperforming the lower bound
model. This confirms our hypothesis that minimiz-
ing the entropy alone results in degenerated solutions.
Increasing the weight of the KL term typically allevi-
ates this issue. However, if much importance is given
to this objective the performance also degrades. This
is likely due to the fact that the bottom branch is
strongly encouraged to follow the behaviour of the
top branch, and the effect of the entropy term is di-
minished.

Sensitivity to λw. This ablation study quantifies
the contribution of the partially labeled cross-entropy
term in Eq. (5) by evaluating the performance across
several λw values. In this study, the number of
partially labeled images is 5 times larger than the
number of fully labeled images. Table 5 reports
these results, from which we can see that a value
of λw = 0.001 consistently brings the best perfor-
mance across all the settings. Differences are larger
in the Set-3 case, which corresponds to the lowest
amount of extra information, in terms of partial la-
bels. We believe that, as the amount of additional
supervision increases, the performance is less sensi-
tive to the weight of this term.

On the divergence terms. In addition to the
widely well-known KL-divergence, we study a series
of additional divergences for the constraining term in
Eq. (3). In particular, we first resort to the Bhat-
tacharyya distance (Bhattacharyya, 1946). For two
discrete distributions p = (pk)Kk=1 and q = (qk)Kk=1
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Table 5: Impact of λw on the proposed formulation. Results
on the ACDC dataset.

Set-3 Set-5 Set-10

DSC HD-95 DSC HD-95 DSC HD-95

λw = 1 80.55 20.35 84.09 18.78 90.26 6.99
λw = 0.1 84.09 11.46 87.09 18.03 90.17 4.84
λw = 0.01 85.40 12.05 87.39 9.87 90.14 2.70
λw = 0.001 86.94 8.84 88.77 5.40 90.92 1.39
λw = 0.0001 81.24 19.77 83.68 15.88 87.64 4.39

this term takes the following form:

DBC(p,q) = − log

K∑
k=1

(pkqk)
1
2 (6)

Furthermore, we also investigate the Tsallis’s formu-
lation of α-divergence (Cichocki and Amari, 2010;
Tsallis, 1988), which generalizes the KL:

Dα(p‖q) = −
K∑
k=1

pk logα

(
qk
pk

)

=
1

1− α

(
1−

K∑
k=1

pαk q
1−α
k

)
(7)

Table 6 reports the results generated by the dif-
ferent divergence functionals, evaluated on the Set-
3 setting. We see that there are two cases, i.e.,
Bhattacharyya distance and α-divergence with α =
2.0, that outperforms the model integrating the KL-
divergence. This suggests that our model can be fur-
ther improved by replacing the KL term by alterna-
tive divergence functions as consistency losses.

Table 6: Comparison of several divergence functions for the
third term (i.e., Lkd term in eq. 5), on the Set-3 setting.

Results on the ACDC dataset.

Setting Model DSC HD-95

Set-3

Kullback-Leibler 86.94 8.84
Bhattacharyya 86.98 5.26
α−Divergence (α = 2.0) 88.04 6.43
α−Divergence (α = 3.0) 86.89 10.24
α−Divergence (α = 5.0) 85.57 11.77

Figure 6 depicts the evolution, in terms of DSC, on
the validation set for the different divergences. De-
spite showing a similar performance, employing the
α-divergence with α=2 (green line) stands out from
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Figure 6: Comparison of different divergences in terms of
DSC in the validation set (on the Set-3 setting).

the others, with a faster convergence at the beginning
of the training.

Figure 7: Ablation experiments on the effect of increasing the
number of partially labeled images for a fix set of labeled

images (on the Set-3 setting for ACDC). The value in the x
axis represents the amount of partially labeled images with
respect the labeled images, e.g., 2.0 indicates that there are 2

times more partially labeled than fully labeled images.

Impact on the number of partially labeled im-
ages. We now evaluate the impact of training the
proposed model with a diverse amount of partially
labeled images. These results, which are depicted in
Fig 7, show that by having a ratio between labeled
and partially labeled data ranging from 3 to 5 typi-
cally brings the best performance, both in terms of
DSC and HD distance. It is important to note that
these results represent the lowest supervised scenario,
where only 3 fully labeled images are available. Nev-
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Figure 8: Qualitative results for the analyzed models under two different settings.

Figure 9: Probability maps obtained by the proposed KL
and KL+ Ent models.

ertheless, as seen in previous ablation, as the number
of fully labeled cases becomes larger, the impact of
several elements is reduced.

Qualitative results. In addition to the numerical re-
sults presented before, we also depict qualitative re-
sults in Fig. 8 and Fig. 9. Particularly, Fig. 8 depicts
the segmentation results for the models evaluated in
Table 1. We see that results obtained by models with
a single network typically under-segment the object
of interest (first row) or generate many false positives
(second row). Decoupling the decoding branches
might reduce the false positive rate, however, it also
tends to under-segment the target. Finally, we ob-

serve that both of our formulations achieve qualita-
tively better segmentation results, with the KL+Ent
model yielding segmentations similar to those gen-
erated by the upper bound model. Furthermore, in
Fig. 9, we illustrate additional qualitative results of
our models. We observe that without the entropy
term our model produces less confident predictions,
which results in more noisy segmentations.

Results on left-atrium (LA) segmentation. Be-
yond the ACDC dataset, we performed experiments
on the more challenging LA segmentation task, whose
results are reported in Table 7. These results align
with the observations in the ACDC dataset (Table
1). In particular, the proposed approach outperforms
consistently the different baselines across all the set-
tings, with a significant gap in less supervised sce-
narios. For example, in Set-3, our model brings a
gain of 15% in terms of DSC compared to the recent
work in (Luo and Yang, 2020), whereas the differ-
ence amounts to approximately 10 mm in terms of
HD. On the other hand, there is a noticeable decline
in this gap as the number of fully supervised samples
increases. Nevertheless, the differences between our
method and the best performing baseline are still re-
markable, with nearly 4% in terms of DSC. Further-
more, and similarly to the ACDC dataset, simply
adding an entropy minimization term to the Single
model does not translate into similar performances to
those observed by the proposed model. This empiri-
cally i) demonstrates that our method is not equiva-
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Figure 10: Qualitative results on LA segmentation for the analyzed models under two different settings.

Table 7: Results on the test set of LA segmentation for the top and bottom branches (when applicable). Results are averaged
over three runs. Best results highlighted in bold and second best results are underlined.

Top Bottom Ensemble

Setting Model FS PS DSC HD-95 DSC HD-95 DSC HD-95

Set-3 Single Branch

Lower bound X – 37.76 42.30 – –
Single X X 38.11 34.28 – – – –
Single + Ent X X 41.82 36.54 – – – –
Upper Bound (Set-3) X – 85.91 15.10 – – – –

Dual Branch
Decoupled (Luo and Yang, 2020) X X 57.85 42.04 18.11 61.53 – –
Ours (KL) X X 61.41 33.63 66.75 33.71 – –
Ours (KL+Ent) X X 69.94 33.05 72.09 32.33 71.29 32.16

Set-5 Single Branch

Lower bound X – 64.86 35.97 – –
Single X X 72.06 28.97 – – – –
Single + Ent X X 71.79 28.62 – – – –
Upper Bound (Set-5) X – 86.21 14.01 – – – –

Dual Branch
Decoupled (Luo and Yang, 2020) X X 75.33 29.06 17.58 61.18 – –
Ours (KL) X X 76.21 26.62 77.19 28.64 – –
Ours (KL+Ent) X X 78.10 23.64 78.50 24.39 78.45 23.34

Set-10 Single Branch

Lower bound X – 77.65 22.45 – –
Single X X 79.14 18.22 – – – –
Single + Ent X X 81.72 22.99 – – – –
Upper Bound (Set-10) X – 87.15 11.08 – – – –

Dual Branch
Decoupled (Luo and Yang, 2020) X X 79.18 20.16 18.11 61.53 – –
Ours (KL) X X 81.50 21.99 81.01 23.05 – –
Ours (KL+Ent) X X 81.79 21.13 83.05 18.93 82.36 20.08

All images Single Branch Upper bound X – 91.30 5.01 – –

lent to a model with a single architecture integrating
an entropy term and ii) supports our hypothesis that
decoupling the decoder network to avoid supervision
interference yields better segmentation results.

Qualitative evaluation is visually assessed in Fig.
10, which depicts the segmentation results across
models on the Set-3 and Set-5 settings. Similarly to
the visual examples in Fig. 8, single models generate
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inconsistent segmentations, which result in both large
under and over-segmentations. Even though decou-
pling single models in dual-stream architectures seem
to reduce the amount of false positives, it typically
comes at the price of failing to identify target regions.
In contrast, both of our models provide a substantial
improvement on the segmentation quality, with the
model integrating the KL and the entropy terms pro-
viding the closest results to the ground-truth.

Model complexity. Last, we evaluate the model
complexity, measured in number of parameters for
the different analyzed methods (Table 8). Several
methods (Peng et al., 2021) employ a single model,
whereas other approaches (Yu et al., 2019) need to
duplicate this into a teacher-student architecture. It
is important to realize that some of these models,
e.g., (Yu et al., 2019), have only half of reported pa-
rameters to be learned by gradient descent, since the
teacher parameters are updated via exponential av-
erage moving. Nevertheless, as the parameter values
need to be also stored, we have included them in our
calculation. In terms of complexity, our model lies
in between these two strategies, as despite integrat-
ing two decoupled decoders, the encoder is shared
among the two branches. On the other hand, the
closest method in terms of performance, i.e., (Wang
et al., 2019), comes at the price of significant com-
plexity increase, which may hinder its deployment in
realistic scenarios.

Table 8: Model complexity in terms of parameters during
training and inference time.

Model #Params Time (per sample) (ms)

Single Branch 31,042,434 4.9
GLMI (Peng et al., 2021) 31,042,434 4.9
Dual Branch (Ours) 41,137,220 7.1
UA-MT (Yu et al., 2019) 62,084,868 9.9
SSCO (Wang et al., 2021) 248,339,472 37.6

5. Conclusion

In this work we have presented a novel formu-
lation for semantic segmentation under the mixed-
supervised paradigm. In addition to the standard

cross-entropy loss over the labeled pixels, we integrate
two important terms in the global learning objective,
which have demonstrated to bring a significant boost
in performance. First, a Shannon entropy loss defined
over the less-supervised images encourages confident
predictions on these images. Secondly, a KL diver-
gence transfers the knowledge from the predictions
generated by the strongly supervised branch to the
less-supervised branch. As shown in the experiments,
the latter term plays a crucial role in our global learn-
ing objective, as it serves as a strong prior for the bot-
tom branch, avoiding trivial solutions resulting from
the entropy term.

Furthermore, we have discussed an interesting link
between Shannon-entropy minimization and stan-
dard pseudo-mask generation, typically used in semi
and weakly supervised semantic segmentation. Moti-
vated from a gradient dynamics perspective, we fur-
ther argue that the former should be preferred over
the latter to leverage information from unlabeled pix-
els. In particular, we show that plugging pseudo-
masks in a cross-entropy loss is equivalent to mini-
mizing the min-entropy (Fig 2a). Hence, for uncer-
tain predictions, i.e., in the middle of the simplex, the
gradient is much higher than with the entropy, push-
ing the predictions at the beginning of the training
towards the vertex. In addition, we provide empir-
ical evidence that employing pseudo-labels has this
undesired effect.

Through extensive experiments, we have rigorously
assessed the impact of the different elements of the
proposed formulation. Our experiments have further
confirmed the usefulness of our method on two pub-
licly available segmentation benchmarks. We have
also demonstrated the significant superiority of our
approach compared, not only to existing literature
in mixed-supervised segmentation, but also to well-
known recent semi-supervised methods. It is worth
mentioning that, even though our method requires
slightly more supervision, the cost of obtaining it is
negligible. Furthermore, compared to similar per-
forming methods that require training multiple mod-
els, our approach is substantially less complex in
terms of number of parameters.
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The proposed framework is straightforward to use,
does not incur in significant computational costs and
can be used with any segmentation network architec-
ture or segmentation loss. Future work will address
the integration of other types of supervision in the
bottom branch, for example in the form of image tags
or anatomical priors.
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Appendix A. Parameters search

The proposed model contains several objective
terms, each balanced with a different weighting fac-
tor. Thus, we sequentially found the best value for
each balancing term, and with this term fixed we
moved to the next term. We report below the inter-
mediate steps to find the best set of hyperparameters,
and their corresponding results.

Appendix A.1. Sensitivity of λw on the Single model.

To find the best set of hyperparemeters, we first
searched the optimal value of λw in the Single model,
which was then fixed to find the remaining hyper-
parameters. The results from the conducted exper-
iments are reported in Table A.1. We can observe
that, similarly to the model trained with the whole
learning objective, setting λw = 0.001 provided the
best results consistently across the three settings.

Table A.1: Impact of λw on the Single model. Results on the
ACDC dataset.

Set-3 Set-5 Set-10

DSC HD-95 DSC HD-95 DSC HD-95

λw = 1 22.93 125.61 64.21 64.31 69.55 53.10
λw = 0.1 45.20 92.37 63.74 52.01 75.35 50.52
λw = 0.01 55.04 78.15 65.38 52.59 76.94 48.53
λw = 0.001 57.42 78.80 70.73 51.34 78.17 42.99
λw = 0.0001 41.82 91.17 60.93 51.93 74.18 50.98

Appendix A.2. Sensitivity of λKL on the KL model.

Once the optimal value for λw(λw = 0.001) is
found, we optimize the λKL hyperparameter. In par-
ticular, with λw fixed, we evaluate the performance
of the KL model across different values of λKL. The
optimal value found will be used in our final model,
which also includes the entropy term into the learning
objective. We can observe that both λKL = 50 and
λKL = 100 achieve similar results in terms of DSC.
Nevertheless, when the value of λKL is fixed to 50,
the values of the HD metric decrease, suggesting that
it is a better value for the KL term. Hence, we will
fix this hyperparameter to 50 in the whole proposed
model.

Table A.2: Impact of λKL on the KL-based model. Results
on the ACDC dataset.

Set-3 Set-5 Set-10

DSC HD-95 DSC HD-95 DSC HD-95

λKL = 0.1 63.37 87.63 74.26 44.63 84.12 32.09
λKL = 1 65.70 79.77 75.21 52.29 87.74 21.10
λKL = 10 64.12 66.47 75.56 37.45 87.04 27.61
λKL = 50 71.41 61.37 81.79 24.07 89.20 9.78
λKL = 100 71.23 61.92 81.52 27.71 88.66 12.01
λKL = 1000 63.64 77.40 78.60 26.71 86.65 14.05

Appendix A.3. Single vs Double Branch models

We now perform further experiments on the impact
of the entropy weighting factor on the single model.
These results, which are reported in Table A.3, show
that the value selected for the entropy term is actu-
ally a good compromise across settings. As this value
increases, the performance is degraded due to the en-
tropy term dominating the learning and driving the
results towards trivial solutions. On the other hand,
if the balancing weight is small, it resembles to the
baseline approach. Note that, however, the results
obtained by this model (Single + Entropy) are not
comparable to the performance of the proposed for-
mulation, as suggested by the reviewer.

Table A.3: Impact of λEnt on the Single-based model that
integrates only the entropy as additional term, whose overall
learning objective is Ls + λwLw + λentH(p). Results on the

ACDC dataset.

Set-3 Set-5

DSC HD-95 DSC HD-95

λEnt = 0.0 57.42 78.80 70.73 51.34
λEnt = 0.1 51.32 84.45 69.62 48.53
λEnt = 1 43.01 83.98 74.92 55.24
λEnt = 10 38.61 100.86 62.66 54.34

Appendix B. Parameter search for semi-
supervised methods

During the validation of our model we found that
the default hyperparameters of compared methods
were not optimal in our setting. Thus, for a fair com-
parison, we searched the optimal hyperparameters on
ACDC dataset for each semi-supervised method as
well, and reported the best scores (shown in Table 3
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of the main text). Here, we include the intermediate
steps to find the best set of hyperparameters for each
method and their corresponding results. Note that
we tune the parameters under the Set-3 setting and
use the best findings for the other two settings, i.e.
Set-5 and Set-10.

Appendix B.1. UA-MT

The formulation of UA-MT (Yu et al., 2019) con-
sists of two terms, i.e., the supervised loss and the
unsupervised consistency loss for measuring the con-
sistency between the prediction of the teacher and
the student model, with a balancing consistency
weight λc controlling their relative contribution. We
searched the optimal λc and reported the correspond-
ing results in Table B.4, where we can see that
λc = 0.1 provided the best results.

Table B.4: Impact of the consistency weight (λc) on UA-MT
(Yu et al., 2019). The study is conducted on the ACDC

dataset (Set-3 setting).

DSC HD-95

λc = 0.01 67.90 42.57
λc = 0.1 70.62 38.06
λc = 1 68.14 45.01
λc = 5 67.31 54.96
λc = 10 67.45 43.06

Appendix B.2. GLMI

The formulation of GLMI (Peng et al., 2021) in-
cludes a composite loss with four terms, i.e., super-
vised loss, the mutual information loss on global fea-
ture embedding and local feature embedding, and the
consistency loss on different transformation of the
same given input. Hence, three hyper-parameters are
introduced for tuning the relative contributions of the
last three terms, i.e., λglobalMI , λlocalMI and λcons. In our
implementations, the best hyper-parameter setting
was slightly different from that suggested in (Peng
et al., 2021). The reason for this could be that we fo-
cus on the task of left ventricular (LV) endocardium
segmentation and the potential difference on the ex-
perimental environment. Specifically, we empirically
fixed λcons to 10 and report the results of different
λglobalMI and λlocalMI , as shown in Table B.5. The best

result is achieved by setting λglobalMI and λlocalMI to 1
and 0.1 respectively.

Table B.5: Impact of λglobalMI and λlocalMI on GLMI (Peng
et al., 2021). Dice score is reported for each setting and the

study is conducted on ACDC dataset (Set-3).

λlocal
MI = 0.05 λlocal

MI = 0.1 λlocal
MI = 1

λglobal
MI = 0.1 70.61 70.07 69.99
λglobal
MI = 1 74.31 76.27 72.85
λglobal
MI = 2 73.76 75.79 74.70

Appendix B.3. SSCO

In SSCO (Wang et al., 2021), two hyper-
parameters, i.e., λ1 and λ2, are introduced to balance
the relative contributions of the self-paced co-training
loss and the self-consistency loss. We tune the two
hyper-parameters based on the values reported in the
original paper (Wang et al., 2021) and found the val-
ues reported in the paper (λ1 = 0.5, λ2 = 4) provided
best scores in our implementation as well. Detailed
comparison results are shown in Table B.6

Table B.6: Impact of λ1 and λ2 on SSCO (Wang et al.,
2021). Dice score is reported for each setting, and the study

is conducted on ACDC dataset (Set-3).

λ2 = 1 λ2 = 4 λ2 = 8

λ1 = 0.1 75.08 74.80 73.38
λ1 = 0.5 74.71 77.16 75.95
λ1 = 1 74.01 75.68 74.83

Appendix C. Additional failure cases from
Pseudo-Labels

In this section we show additional failure cases ob-
tained from the Pseudo-labels approach. As shown
in Figure C.1, It is important to mention that these
pseudo-labels are used in subsequent iterations to
train the deep network, which brings a high risk of
propagating these errors through the training. These
visual results, which are supported by the quanti-
tative evaluation in the main paper, support our hy-
pothesis that minimizing entropy should be preferred
over the use of pseudo-labels, as the errors are prop-
agated through the training.
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Figure C.1: Additional failure cases (Set-3 ) which are
employed as pseudo-labels in the proposals-based approach
(top), whose errors are reinforced during training, and their

corresponding ground truth. Best viewed in colours.

Appendix D. Qualitative comparison with
the upperbound

We depict in Figures D.2 and D.3 several visual re-
sults on the Set-3 and Set-5 from our method com-
pared to the individual upperbounds. In this sce-
nario, both models are trained with the same images,
being the only difference the level of supervision pro-
vided. We can observe that despite the slight quanti-
tative differences in Table 1 of the main paper, visual
results indicate that the proposed method can achieve
very similar results to the upperbound model, some-
times generating more similar segmentations to the
ground truth.
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Figure D.2: Qualitative results on the Test dataset of Set-3 obtained by our model (middle) and the upperbound model (top)
on the same dataset. The corresponding ground truth is depicted in the (top) row.
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Figure D.3: Qualitative results on the Test dataset of Set-5 obtained by our model (middle) and the upperbound model (top)
on the same dataset. The corresponding ground truth is depicted in the (top) row.
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