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Abstract
Explainable artificial intelligence (XAI) is es-
sential for enabling clinical users to get in-
formed decision support from AI and comply
with evidence-based medical practice. Applying
XAI in clinical settings requires proper evalua-
tion criteria to ensure the explanation technique
is both technically sound and clinically useful,
but specific support is lacking to achieve this
goal. To bridge the research gap, we propose
the Clinical XAI Guidelines that consist of five
criteria a clinical XAI needs to be optimized for.
The guidelines recommend choosing an explana-
tion form based on Guideline 1 (G1) Understand-
ability and G2 Clinical relevance. For the cho-
sen explanation form, its specific XAI technique
should be optimized for G3 Truthfulness, G4
Informative plausibility, and G5 Computational
efficiency. Following the guidelines, we con-
ducted a systematic evaluation on a novel prob-
lem of multi-modal medical image explanation
with two clinical tasks, and proposed new eval-
uation metrics accordingly. Sixteen commonly-
used heatmap XAI techniques were evaluated
and found to be insufficient for clinical use due
to their failure in G3 and G4. Our evaluation
demonstrated the use of Clinical XAI Guidelines
to support the design and evaluation of clinically
viable XAI.

1. Introduction
Suppose an artificial intelligence (AI) developer Alex is
developing a clinical AI system, and she wants to select
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an explainable AI (XAI) technique to make the AI model
interpretable and transparent to clinical users. As there
are numerous AI explainability techniques available, Alex
may ask: How can I choose an AI explainability technique
that is optimal for my target clinical task? She may look
up literature on XAI evaluation (Sokol and Flach, 2020;
Mohseni et al., 2021; Vilone and Longo, 2021; Došilović
et al., 2018; Gilpin et al., 2018) hoping it will guide her se-
lection on XAI techniques. The literature suggests various
selection criteria and computational- or human-level eval-
uation methods. But since Alex is building an AI system
which will assist doctors in clinically important decisions,
she may ask, Is it clinically viable to use these evaluation
metrics? Will they help to meet doctors’ clinical require-
ments for AI explanation? How to prioritize multiple eval-
uation objectives for clinical XAI systems?

Alex’s questions are prevalent when applying or propos-
ing explainable AI techniques for clinical use. As a fast-
advancing technology, AI has transformative potential in
many medical fields (Zhang et al., 2019; Fujisawa et al.,
2018; Mohan et al., 2020). Nonetheless, there are outstand-
ing barriers to the widespread translation of AI from bench
to bedside (He et al., 2019), such as data collection and
harmonization (Nan et al., 2022), data privacy (Topaloglu
et al., 2021), bias and fairness in data and model (Chen
et al., 2021; Rajpurkar et al., 2022), domain adaptation and
generalization (Futoma et al., 2020), and model explain-
ability (Jin et al., 2020; Rajpurkar et al., 2022; Kelly et al.,
2019). In this work, we focus on the problem of AI model
explainability, interpretability, or transparency. The model
explainability issue is caused by the black-box nature of
the state-of-the-art AI technologies, i.e., deep neural net-
works (DNN): the decision process of AI models is not
completely and intuitively comprehensible even to its hu-
man creators, due to its millions of parameters, complex
feature representations in high-dimensional space, multi-
ple layers of decision processing, and non-linear mappings
from input space to output prediction.

AI developers, like Alex, resort to XAI techniques to ex-
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Figure 1. The Clinical Explainable AI Guidelines. Explainable AI algorithms should meet the five criteria in the guideline to be suitable
for clinical use. The evaluation results on 16 heatmap methods regarding the guidelines criteria are shown at the bottom.

plain AI decisions in human-understandable forms (Doshi-
Velez and Kim, 2017), and enable clinical users to make
informed decisions with AI assistance that comply with
evidence-based medical practice* (Sackett et al., 1996).
The notion of XAI and its corresponding techniques
were originally proposed in the machine learning commu-
nity (Barredo Arrieta et al., 2020; Guidotti et al., 2018;
Zhang and Zhu, 2018), and were then applied and de-
veloped in the medical image analysis (MIA) commu-
nity (Yang et al., 2022; Singh et al., 2020b), for example
in brain (Pereira et al., 2018), retinal (De Fauw et al.,
2018), cardiac (Bello et al., 2019), chest (Ye et al., 2022),
and skin imaging tasks (Kawahara et al., 2019). They uti-
lize different explanation forms and algorithms that aim to
generate clinical end-user-friendly explanations (Jin et al.,
2021a), such as explaining using features (heatmap (Bien
et al., 2018), concept (Kim et al., 2018)), examples (sim-
ilar (Cai et al., 2019b), typical (Chen et al., 2019), and
counterfactual examples (Bigolin Lanfredi et al., 2019)),
and rules (decision tree (Wu et al., 2019)). Indeed, re-
search has shown that explanations have the potential to
help clinical users to verify AI’s decisions (Ribeiro et al.,
2016), resolve disagreements with AI during decision dis-
crepancy (Cai et al., 2019c), calibrate their trust in AI as-
sistance (Bussone et al., 2015; Zhang et al., 2020), identify
potential biases (Caruana et al., 2015), facilitate biomedi-
cal discoveries (Woo et al., 2017), meet ethical and legal
requirements (Amann et al., 2020; Lagioia, 2020), and ulti-
mately facilitate doctor-AI communication and collabora-

*“Evidence-based medicine is the conscientious, explicit, ju-
dicious, and reasonable use of modern, best evidence in mak-
ing decisions about the care of individual patients.” (Masic et al.,
2008)

tion to leverage the strengths of both (Wang et al., 2021;
Topol, 2019; Carter and Nielsen, 2017).

Applying XAI in clinical settings requires proper evalu-
ation to ensure the explanation technique is both techni-
cally sound and clinically useful. Although existing works
on XAI evaluation proposed many real-world evaluation
objectives and metrics (Sokol and Flach, 2020; Mohseni
et al., 2021; Vilone and Longo, 2021; Došilović et al., 2018;
Jacovi and Goldberg, 2020; Alvarez-Melis and Jaakkola,
2018; Hase and Bansal, 2020; Doshi-Velez and Kim, 2017;
Gilpin et al., 2018) (summarized in Supplementary Mate-
rial S2 Table 1), there is not a canonical criterion on the
goodness of explanation, and it is unknown which evalu-
ation objectives are suitable for clinical applications. For
the very limited emerging XAI evaluation works on medi-
cal image tasks, such as on retinal (Singh et al., 2020a), en-
doscopic (de Souza et al., 2021), and chest X-Ray (Saporta
et al., 2021; Arun et al., 2021) imaging tasks, the evalu-
ation mainly focused on one criterion, which is how well
the explanation agrees with clinical prior knowledge, with-
out justification for the selection of such criterion and its
clinical applicability. This evaluation criterion may be con-
founded by factors outside XAI methods themselves, such
as model training and spurious patterns in the data, as de-
tailed in §2.2. Furthermore, there are no clear guidelines
on which evaluation objectives should be applied and pri-
oritized to correspond to clinical requirements for AI ex-
planation.

To answer Alex’s questions and provide concrete support
for the design and evaluation of clinical XAI, we propose
the Clinical XAI Guidelines, which were developed with
dual clinical and technical perspectives. The guidelines
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consist of five evaluation criteria: The form of explana-
tion is selected based on Guideline 1 (G1) Understand-
ability and G2 Clinical relevance. The specific explana-
tion technique for the selected form is chosen based on G3
Truthfulness, G4 Informative plausibility, and operational
considerations on G5 Computational efficiency. Follow-
ing the guidelines, we conducted a systematic evaluation
of 16 commonly-used feature attribution map (heatmap)
techniques on two multi-modal medical image tasks. We
also formulated a novel and clinically pervasive problem
of multi-modal medical image explanation, which is a
generalized form of single-modal medical image explana-
tion. We proposed the XAI evaluation metrics for this
novel problem accordingly. The evaluation showed exist-
ing heatmap methods met G1, and partially met G2. But
they did not meet G3 and G4, which suggests they are in-
adequate for clinical use.

Our key contributions are:

1. We propose the Clinical XAI Guidelines grounded in
both clinical and technical perspectives. The guide-
lines support the selection and design of clinically vi-
able XAI techniques for medical imaging tasks.

2. We conduct a systematic evaluation of multiple fea-
ture attribution map XAI algorithms on two medical
imaging tasks to give a wholistic evaluation of their
adherence to the guidelines.

3. Departing from the de-facto single modality explana-
tion, we propose the clinically important but techni-
cally ignored problem of multi-modal medical image
explanation and propose a novel metric: modality-
specific feature importance (MSFI) to quantify and
automate physicians’ assessment of explanation plau-
sibility.

Roadmap The manuscript is organized as follows: we
first present the clinical XAI guidelines in §2, with its key
points highlighted in Table 1 and Fig. 1. We then present
the systematic evaluation of 16 existing heatmap explana-
tion methods based on the guidelines, with evaluation setup
(§3), evaluation methods (§4), results (§5), and discussions
(§6).

2. Clinical Explainable AI Guidelines
By leveraging collective expertise in AI, clinical medicine,
and human factor analysis, we developed the Clinical XAI
Guidelines based on a thorough physician user study, our
pilot XAI evaluation experiments (Jin et al., 2022; 2021b),
and literature review (Supplementary Material S2 Table 1).
The physician user study was conducted with 30 neuro-
surgeons on a glioma grading XAI prototype (Fig 2). We

collected physicians’ quantitative ratings on the heatmap
explanation, and qualitative comments on the XAI system
from the interview sessions and open-ended questionnaire.
The qualitative data were used as the guidelines support
from clinical aspect. The detailed user study findings and
method are in Supplementary Material S1, and its related
supporting sections were referred to in the paper starting
with ‘U’.

Next, we present the Clinical XAI Guidelines, which is a
checklist of five evaluation objectives to optimize a clinical
XAI technique. They are categorized into three considera-
tions: clinical usability, evaluation, and operation. For each
objective in the guidelines, we list its key references from
our user study or literature. The methods of assessment are
also described to help identify if the objective is met. The
guidelines and their key points are summarized in Table 1.
The full version of the guidelines is in the Appendix.

2.1. Clinical usability considerations

Guideline 1: Understandability.

The format and context of an explanation should be easily
understandable by its clinical users. Users do not need to
have technical knowledge in machine learning, AI, or pro-
gramming to interpret the explanation.

Guideline 2: Clinical relevance.

The way physicians use explanations is to inspect the AI-
based evidence provided by the explanation, and incorpo-
rate such evidence in their clinical reasoning process for
downstream tasks, such as assessing the validity of AI
decision, making a final decision on the case, improving
their problem-solving skills, or making scientific discover-
ies (U2. Clinical utility of explainable AI; U1. Clinical
utility of AI). To make XAI clinically useful, the explana-
tion information should be relevant to physicians’ clinical
decision-making pattern, and can support their clinical rea-
soning process.

For diagnostic/predictive tasks on medical images, a physi-
cian’s image interpretation process includes two general
steps: 1) feature extraction: physicians first perform pattern
recognition to localize key features and identify pathol-
ogy of these features; 2) reasoning on the extracted fea-
tures: physicians perform medical reasoning and construct
diagnostic hypotheses (differential diagnosis) based on the
image feature evidence. A clinically relevant explana-
tion should provide information corresponding to the above
process, so that physicians can incorporate the explanation
information into their medical image interpretation process
(U3. Clinical requirements of explainable AI).
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Consideration Clinical XAI Guidelines Ways of Assessment Key References

Clinical
Usability

G1: Understandability
Explanations should be easily
understandable by clinical users
without requiring technical
knowledge.

Sketch explanation forms and
show them to clinical users.

(Jin et al., 2021a), (Sokol and
Flach, 2020); U3.3. Making AI
transparent by providing
information on performance,
training dataset, and decision
confidence.

G2: Clinical relevance
Explanation should be relevant to
physicians’ clinical
decision-making pattern, and can
support their clinical reasoning
process.

Talk to or sketch prototypes
with clinical users, to inspect if
the explanation corresponds to
their clinical reasoning process.

U2.2. Resolving disagreement;
U3. Clinical requirements of
explainable AI.

Evaluation
G3: Truthfulness
Explanations should truthfully
reflect the AI model decision
process. This is the prerequisite for
G4.

Cumulative feature
removal/addition test (Yin
et al., 2021; Yeh et al., 2019;
Hooker et al., 2019; Samek
et al., 2017; Lundberg et al.,
2020; Alvarez-Melis and
Jaakkola, 2018); Synthetic
dataset with known
discriminative features as the
ground truth (Doshi-Velez and
Kim, 2017; Kim et al., 2018;
Gilpin et al., 2018).

(Jacovi and Goldberg, 2020;
Sokol and Flach, 2020; Critch
and Krueger, 2020); U2.3.
Verifying AI decision, and
calibrating trust.

G4: Informative plausibility
Users’ judgment on explanation
plausibility may inform users about
AI decision quality, including
potential flaws or biases.

Statistical test on the
correlation between AI decision
quality measure and
explanation plausibility
measure (Adebayo et al., 2022;
Saporta et al., 2021).

(Jacovi and Goldberg, 2020),
(Doshi-Velez and Kim, 2018);
U2. Clinical utility of
explainable AI; U5. Clinical
assessment of explainable AI.

Operation
G5: Computational efficiency
The speed to generate an
explanation should be within
clinical users’ tolerable waiting
time on the given task.

Understand how time sensitive
the clinical task is, and record
the speed and computational
resources needed to generate an
explanation.

(Sokol and Flach, 2020);
U1.2.1. Decision support for
time-sensitive cases, and hard
cases.

Table 1. The Clinical Explainable AI Guidelines for the design and evaluation of clinical explainable AI. Ways of assessment provide
existing evaluation methods as references to assess if a guideline criterion is met. We list key references that supported the development
of the guidelines.
G - Guidelines, U - Physician user study findings (in Supplementary Material S1)
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2.2. Evaluation considerations

Guideline 3: Truthfulness.

An explanation should truthfully reflect the model deci-
sion process. This is the fundamental requirement for a
clinically oriented explanation, and an explanation method
should fulfill the truthfulness requirement first prior to G4:
Informative plausibility.

Counterexample:

One of the main clinical utilities of explanation is that clin-
ical users intuitively assess the plausibility of explanations
(G4) to decide whether to take or reject the AI suggestion,
and calibrate their trust in AI’s current prediction on the
case, or the AI model in general accordingly (U2.3). Users
do so with an implicit assumption that explanations are the
true representation of the model decision process. Violat-
ing truthfulness can lead to two significant consequences
during physicians’ use of explanation:

1. Clinical users may mistakenly reject AI’s correct sugges-
tion merely for the poor performance of the XAI method,
which shows an unreasonable explanation.

2. If an XAI method is proposed or selected based on ex-
planation plausibility objective only, rather than help clini-
cal users to verify the decision quality, the explanation can
be optimized to deceive clinical users with its seemingly
plausible explanation, despite the wrong prediction from
AI (Critch and Krueger, 2020).

Assessment method:

The most common way to assess explanation truthfulness
for feature attribution XAI methods in the literature is to
gradually add or remove features from the most to the least
important ones according to an explanation, and measure
the model performance change (Yin et al., 2021; Yeh et al.,
2019; Hooker et al., 2019; Samek et al., 2017; Lundberg
et al., 2020; Alvarez-Melis and Jaakkola, 2018; DeYoung
et al., 2020). Another way is to construct synthetic evalu-
ation datasets in which the ground-truth knowledge on the
model decision process from input features to prediction is
known and controlled (Doshi-Velez and Kim, 2017; Kim
et al., 2018; Gilpin et al., 2018).

Guideline 4: Informative plausibility.

The ultimate use of an explanation is to be interpreted and
assessed by clinical users. Physicians intuitively use the as-
sessment of explanation plausibility or reasonableness (i.e.:
how reasonable the explanation is based on its agreement
with human prior knowledge on the task) as a way to eval-
uate AI decision quality. This then allows multiple clin-
ical utilities with XAI, including verifying AI’s decisions
(U2.3), calibrating trust in AI (U2.3), ensuring the safe use
of AI, resolving disagreement with AI (U2.2), identifying

potential biases, and making medical discoveries (U2.4).
Informative plausibility assesses whether an XAI method
can achieve its utility in helping users identify potential AI
decision flaws and/or biases, i.e.: a plausible explanation
for a right decision, and an implausible explanation for a
wrong decision of AI. G3 Truthfulness is the gatekeeper of
G4 Informative plausibility to guarantee that the explana-
tion truthfully represents the AI decision process.

Assessment method:

To test whether explanation plausibility is informative to
help users identify AI decision errors and biases, AI design-
ers can assess the correlation between AI decision qual-
ity measures (such as model performance, calibrated pre-
diction uncertainty, prediction correctness, and quantifica-
tion of biased patterns) and plausibility measures (Adebayo
et al., 2022; Saporta et al., 2021).

Since human assessment of explanation plausibility is usu-
ally subjective and susceptible to biases (U5.2. Bias and
limitation of physicians’ quantitative rating), AI designers
may consider quantifying the plausibility measure by ab-
stracting the human assessment criteria into computational
metrics for a given task. The quantification of human as-
sessment is not meant to directly select or optimize XAI
methods for clinical use. Rather, XAI methods should be
optimized for their truthfulness measures (G3). Quantify-
ing plausibility is a means to validate the explanation’s in-
formativeness, i.e.: the effectiveness of XAI methods in
their subsequent clinical utility to reveal AI decision flaws
and/or biases, but not an XAI evaluation end goal in itself.
Quantifying plausibility can make such an informativeness
validation process automatic, reproducible, standardizable,
and computationally efficient. Similarly, the human anno-
tation of important features according to physicians’ prior
knowledge, which is used to quantify plausibility, cannot
be regarded as the “ground truth” of explanation, because
explanations (given that they fulfill G3 Truthfulness) are
still acceptable even if they are not aligned with human
prior knowledge, but reveal the model decision quality or
help humans identify new patterns and make biomedical
discoveries.

2.3. Operational consideration

Guideline 5: Computational efficiency

Since many AI-assisted clinical tasks are time-sensitive de-
cisions (U1.2.1. Decision support for time-sensitive cases,
and hard cases), the selection or proposal of clinical XAI
techniques needs to consider the computational time and
resources. The wait time for an explanation should not be
a bottleneck for the clinical task workflow.
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3. Evaluation problem setup
In the previous section, we presented the Clinical XAI
Guidelines. Next, we apply the guidelines to a spe-
cific problem on multi-modal medical image explanation.
Multi-modal medical images, such as multi-parametric
MRI, have indispensable diagnostic value in clinical set-
tings. Nevertheless, their related explanation problem has
not yet been explored in the technical community. We con-
duct a systematic evaluation on 16 commonly-used XAI
methods to inspect whether their explanations on multi-
modal medical images can fulfill the five objectives out-
lined in the Clinical XAI Guidelines and can be applied
clinically.

3.1. Multi-modal medical imaging: clinical
interpretation, learning, and explanation

Our evaluation focuses on the novel problem of multi-
modal medical image explanation. Multi-modal medical
image explanation can be regarded as a generalized form of
single-modal medical image explanation. We present the
clinical image interpretation process of multi-modal im-
age, the clinical requirements for multi-modal image expla-
nation, and different model learning paradigms on multi-
modal medical image data.

3.1.1. MULTI-MODAL MEDICAL IMAGES AND THEIR
CLINICAL INTERPRETATION

Multi-modal medical images consist of multiple image
modalities or channels, where each modality captures a
unique signal of the same underlying cells, tissues, le-
sions, or organs (Martı́-Bonmatı́ et al., 2010). Multi-modal
images widely exist in the biomedical domain. For ex-
ample, different pulse sequences of magnetic resonance
imaging (MRI) technique — T1 weighted, T2 weighted,
or fluid-attenuated inversion recovery (FLAIR) modalities;
dual-modality imaging of positron emission tomography-
computed tomography (PET-CT) (Beyer et al., 2002); CT
images viewed at different levels and windows to observe
different anatomical structures such as bones, lungs, and
other soft tissues (Harris et al., 1993); multi-modal en-
doscopy imaging (Ray, 2017); photographic, dermoscopic,
and hyper-spectral images of a skin lesion (Kawahara et al.,
2019; Zherebtsov et al., 2019); multiple stained micro-
scopic or histopathological images (Long et al., 2020; Song
et al., 2013).

To interpret multi-modal images, doctors compare and
combine modality-specific information to make diagnoses
and differential diagnoses. For instance, in a radiology
report on MRI, radiologists usually observe and describe
anatomical structures in T1 modality, and pathological
changes in T2 modality (Cochard and Netter, 2012; Bitar
et al., 2006); doctors can infer the composition of a lesion

(such as fat, hemorrhage, protein, fluid) by combining its
signals from different MRI modalities (Patel et al., 2016).
In addition, some imaging modalities are particularly cru-
cial for the diagnosis and management of certain diseases,
such as a contrast-enhanced modality of CT or MRI for
a suspected tumor case, and diffusion-weighted imaging
(DWI) modality MRI for a suspected stroke case (Lansberg
et al., 2000).

3.1.2. CLINICAL REQUIREMENTS FOR MULTI-MODAL
MEDICAL IMAGE EXPLANATION

We summarize our findings on the clinical requirements for
multi-modal medical image explanation based on our user
study with neurosurgeons (U4 in Supplementary Material
S1) on a glioma grading task with multi-modal brain MRI.

To assess the plausibility of multi-modal explanation,
physicians require the explanation to 1) prioritize the im-
portant image modality for the model’s decision, and such
prioritization may or may not necessarily need to be in
concordance with physicians’ prior knowledge on modal-
ity prioritization; and 2) capture the modality-specific fea-
tures. Such features may or may not be completely consis-
tent with doctors’ prior knowledge, but should at least be a
subset and not deviate too much from clinical knowledge.

3.1.3. MULTI-MODALITY LEARNING

There are three major paradigms to build convolutional
neural network (CNN) models that learn from multi-modal
medical images by fusing multi-modal features at the input-
level, feature-level, or decision-level (Xu, 2019). Our eval-
uation covered two fusion settings at the input-level (the
brain tumor grading task) and feature-level (the knee lesion
identification task). For multi-modal fusion at the input-
level, the multi-modal images are stacked as input chan-
nels to feed a CNN. The modality-specific information is
fused by summing up the weighted modality values in the
first convolutional layer. For multi-modal image fusion at
the feature-level, each imaging modality is fed to its CNN
branch individually to extract features first, and the image
features are aggregated at a deeper layer.

3.2. Clinical task, data, and model

We include two clinical tasks in our evaluation on multi-
modal medical image explanation: glioma grading on brain
MRI, and knee lesion identification on knee MRI. Next, we
describe the clinical task, medical imaging dataset, and the
training of CNN models prepared for the evaluation.

3.2.1. GLIOMA GRADING TASK

Clinical task As a type of primary brain tumors, gliomas
are one of the most devastating cancers. Grading gliomas
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based on MRI provides physicians with indispensable in-
formation on a patient’s treatment plan and prognosis.
We focus on the task to classify gliomas into lower-grade
(LGG) or high-grade gliomas (HGG).

Data We used the publicly available BraTS 2020
dataset (Bakas et al., 2017) and a BraTS-based synthetic
dataset (described in §4.3.3). Both are multi-modal 3D
(BraTS) or 2D (synthetic) MRIs that consist of four modal-
ities of T1, T1C (contrast enhancement), T2, and FLAIR.
The BraTS dataset contains physician-annotated glioma lo-
calization masks that were used in the plausibility quantifi-
cation.

Model For the BraTS dataset, we trained a VGG-like (Si-
monyan and Zisserman, 2015) 3D CNN with six convo-
lutional layers. It receives multi-modal 3D MRIs X ∈
R4×240×240×155 of MRI modality, width, height, and depth
respectively. We split the data into a training, valida-
tion, and test set with a 65%, 15%, 20% split ratio. We
trained five models using the same train/validation dataset
and training scheme with different random seeds for model
parameter initialization. We used a weighted sampler to
handle the imbalanced data. The models were trained with
a learning rate = 0.0005, and batch size = 4. And train-
ing epoch was selected based on the accuracy on validation
data. The average accuracy on the test set for the five mod-
els is 89.46 ± 1.99%.

For the synthetic glioma dataset, we fine-tuned a pre-
trained DenseNet121 model (Huang et al., 2017) that
receives 2D multi-modal MRI input slices of X ∈
R4×256×256 that represents MRI modality, width, and
height. We used the same training strategies as described
above. The model achieves 95.70± 0.06% accuracy on the
test set.

3.2.2. KNEE LESION IDENTIFICATION TASK

Clinical task MRI is the workhorse in diagnosing knee
disorders with high accuracies (Rosas and Smet, 2009). We
focus on the task of identifying meniscus tear vs. intact
based on knee MRI.

Data We used the publicly available knee MRI dataset
MRNet (Bien et al., 2018). It consists of three modalities
showing the knee structure from the coronal, sagittal, and
axial view. The coronal view can be T1 weighted, or T2
weighted with fat saturation. The sagittal view is proton
density (PD) weighted, or T2 weighted with fat saturation.
Finally, the axial view is PD weighted with fat saturation.

We use bounding boxes of the meniscus as the representa-
tion of human prior knowledge in the explanation plausibil-
ity quantification. They were annotated by the first author

who holds an M.D. degree based on knee MRI lesion inter-
pretation principles (Rosas and Smet, 2009). The bounding
boxes are not exact annotations that localize the specific
tear lesion, but only outline the anatomical location of the
lateral and medial meniscus as a whole. This is meant to
be closer to the practical real-world XAI evaluation sce-
nario where only the least amount of annotation effort and
domain expertise are required.

Model We used the same model architecture and training
paradigm from the third place of MRNet challenge (Bien
et al., 2018), which fused multi-modal information at the
feature level. We trained five models by only varying their
random seeds for parameter initialization. The model per-
formance area under the curve (AUC) on the validation set
is 0.8395±0.0107, which is equivalent to the reported ones
in (Bien et al., 2018). The test AUC, however, is lower:
0.7934± 0.0162.

3.3. Post-hoc feature attribution explanation methods

We chose feature attribution explanation methods based on
user study assessment on G1 Understandability (detailed in
Section §4.1). For feature attribution map methods, we fo-
cus on methods that are post-hoc. This group of methods
is a type of proxy models that probe the model parameters
and/or input-output pairs of an already deployed or trained
black-box model. In contrast, the ante-hoc heatmap meth-
ods – such as attention mechanism – are predictive models
with explanations baked into the training process. We leave
out the ante-hoc methods because such explanations are en-
tangled in its specialized model architecture, which would
introduce confounders in the evaluation. We include 16
post-hoc XAI algorithms in our evaluation, which belong
to two categories:

• Gradient-based: Gradient (Simonyan et al., 2014),
Guided BackProp (Springenberg et al., 2015), Grad-
CAM (Selvaraju et al., 2017), Guided GradCAM (Sel-
varaju et al., 2017), DeepLift (Shrikumar et al.,
2017a), Input×Gradient (Shrikumar et al., 2017b), In-
tegrated Gradients (Sundararajan et al., 2017), Gra-
dient Shap (Lundberg and Lee, 2017), Deconvolu-
tion (Zeiler and Fergus, 2014), Smooth Grad (Smilkov
et al., 2017)

• Perturbation-based: Occlusion (Zeiler and Fergus,
2014; Zintgraf et al., 2017), Feature Ablation, Shap-
ley Value Sampling (Castro et al., 2009), Kernel
Shap (Lundberg and Lee, 2017), Feature Permuta-
tion (Fisher et al., 2019), Lime (Ribeiro et al., 2016)

A detailed review of these algorithms and heatmap post-
processing method are in Supplementary Material S2.
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4. Evaluation method
We present the systematic evaluation to inspect whether the
commonly-used heatmap methods can be applied clinically
to explain model decisions on multi-modal medical images.
The evaluation follows the clinical XAI guidelines (§2) to
ensure the evaluation results can be an indicator for their
suitableness in clinical settings.

4.1. Evaluating G1: Understandability

We applied the end-user XAI prototyping method (Jin
et al., 2021a) and asked our clinical collaborator to com-
ment and select understandable explanation forms. Based
on the neurosurgeon’s feedback and XAI technique avail-
ability, we targeted the explanation form of feature attribu-
tion map (namely, heatmap).

4.2. Evaluating G2: Clinical relevance

To further identify the clinical relevance of heatmap ex-
planation in the clinical usage scenario, we built an XAI
prototype (Fig. 2) and conducted a user study with neuro-
surgeons. The user study method and findings are detailed
in Supplementary Material S1.

4.3. Evaluating G3: Truthfulness

For the truthfulness assessment, we conducted cumulative
feature removal and modality importance (MI) evaluation
for the two clinical tasks, and proposed two novel metrics
∆AUPC and MI correlation respectively. We also con-
ducted a synthetic data experiment on the glioma grading
task.

4.3.1. CUMULATIVE FEATURE REMOVAL

To test if the heatmap highlighted regions are true impor-
tant features to the model’s decision, we cumulatively re-
moved the input image features from the most to the least
important ones according to the feature importance rank-
ing quantile of an XAI algorithmH. The removed features
are replaced with a constant value (0 for glioma task, and
modality mean for knee task). We then plotted a feature
perturbation curve (PC) (Fig. 3) that shows the relation-
ship of the cumulative feature removal to the model per-
formance metric (accuracy for the glioma task, and AUC
for the knee task). The area under PC (AUPC(H)) can be
used to quantify the degree of performance deterioration
during cumulative feature removal process: an XAI method
H that indicates a more accurate feature importance rank-
ing will lead to a faster performance deterioration, thus has
a smaller AUPC. We proposed a new metric ∆AUPC (dif-
ference of the area under the feature perturbation curve) de-
fined as: ∆AUPC(H) = AUPC(Hb) − AUPC(H), where
AUPC(H) and AUPC(Hb) are the area under the feature

Figure 2. XAI prototype for the user study evaluation on G2 Clin-
ical relevance. The low-fidelity XAI prototype is embedded in
a survey: AI provides its prediction and heatmap explanation on
a brain MRI, and the physician makes a decision assisted by AI
suggestion and its explanation. In the embedded image, each col-
umn is an MRI modality. The first row shows the original MRI,
the second row shows the heatmap explanation, and the third row
shows the heatmap overlaid on MRI. Both MRI and heatmap are
3D images, and were presented as a video in the survey. The sur-
vey also collects physicians’ ratings of the heatmap explanation.

perturbation curve of an XAI methodH and its correspond-
ing baseline Hb. ∆AUPC slightly modifies the above cu-
mulative feature removal method in literature (Yin et al.,
2021; Yeh et al., 2019; Hooker et al., 2019; Samek et al.,
2017; Lundberg et al., 2020; Alvarez-Melis and Jaakkola,
2018) by introducing a random baseline AUPC(Hb) for fair
comparison among different XAI methods. For an XAI
method H, its corresponding random baseline Hb is gen-
erated by a random permutation of H. For different XAI
methods H, the absolute numbers of highlighted image
pixels/voxels are different, thus the performance deterio-
ration measure may be confounded by the number of high-
lighted image regions. ∆AUPC overcomes this to quan-
tify the relative performance deterioration by comparing
AUPC(H) with the AUPC of its corresponding random
baseline Hb. An XAI algorithm with a larger ∆AUPC in-
dicates it can better identify important features for model
prediction compared with its random baseline.
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Figure 3. Feature perturbation curves for the cumulative feature
removal experiment. Feature perturbation curves in solid line are
the model performance deterioration for an XAI method H, and
curves in dashed line are the XAI method counterpart baselines
Hb of random feature removal. The random baseline experiment
was repeated 15 times, thus the dashed line also has its 95% con-
fidence interval indicated as translucent error band. We show
plots of the XAI method that has the highest (blue) and lowest
∆AUPC score (red curve) from a model for both clinical tasks.
AUPC(Hb) and AUPC(H) which are used in the calculation of
∆AUPC are also indicated on the plot for each XAI method:
∆AUPC = AUPC(Hb) − AUPC(H). Numbers reported in the
subtraction are rounded to two decimal places.

4.3.2. MODALITY IMPORTANCE

For multi-modal medical image explanation, we want to
assess how truthfully a heatmap reflects the modality im-
portance information used in the model decision process.
This corresponds to the clinical requirements of modality
prioritization (U4.2. The role and prioritization of multiple
modalities). We first calculate the ground truth modality
importance score using Shapley value method, then calcu-
late the correlation between modality-wise sum of heatmap
value and the ground truth as the modality importance cor-
relation (MI correlation).

To determine the ground-truth modality importance, we
use Shapley value from cooperative game theory (Shap-
ley, 1951), due to its desirable properties such as efficiency,
symmetry, linearity, and marginalism. In a set ofM modal-
ities, Shapley value treats each modality m as a player in
a cooperative game play. It is the unique solution to fairly
distribute the total contributions (in our case, the model per-
formance) to each individual modality m.

We define the modality Shapley value ϕm to be the ground
truth modality importance score for a modality m. It is
calculated as:

ϕm(v)=
∑

c⊆M\{m}

|c|!(M − |c| − 1)!

M !
(v(c ∪ {m})− v(c)),

(1)

where v is the modality-specific performance metric (ac-

curacy for the glioma task, and AUC for the knee task),
and M\{m} denotes all modality subsets M not includ-
ing modality m. We constructed a modality subset c by
setting all values in a modality to 0 for modalities that were
not included in the subset.

To measure the agreement of heatmaps’ modality impor-
tance value with the ground truth modality Shapley value,
for each heatmap, we define the estimated MI as the
modality-wise sum of all positive values in the heatmap.
MI correlation measures the MI ranking agreement be-
tween the ground-truth ϕ and the estimated MI, calculated
using Kendall’s Tau-b ranking correlation.

4.3.3. SYNTHETIC DATA EXPERIMENT

The idea of constructing synthetic data to validate the truth-
fulness of an XAI method is that, we have the full control
of the ground truth features that the model learned for its
prediction, therefore, the ground truth features are also the
ground truth for model decision rationale we want the ex-
planation to capture. We can then assess the agreement be-
tween the explanation and the ground truth features using
the same plausibility measure as detailed in §4.4.1.

For multi-modal medical image tasks, according to the
multi-modal medical image interpretation pattern identified
in our user study (U4), we categorize the ground truth ex-
planation information into: 1. the relative importance of
each modality to the prediction (i.e.: modality importance
in §4.3.2); and 2. localization of the modality-specific fea-
tures. We constructed a synthetic multi-modal brain MRI
dataset on the glioma grading task with the two ground
truth information corresponding to the prediction label.

Specifically, to control the ground truth of feature localiza-
tion, we use a GAN-based (generative adversarial network)
tumor synthesis model developed by (Kim et al., 2021) to
generate two types of tumors and their segmentation masks,
mimicking lower- and high-grade gliomas by varying their
shapes (round vs. irregular (ho Cho et al., 2018)).

To control the ground truth of modality importance, in-
spired by (Kim et al., 2018), we set tumor features on T1C
modality to have 100% alignment with the ground-truth la-
bel, and on FLAIR to have a probability of 70% alignment,
i.e., the tumor features on FLAIR correspond to the cor-
rect label with 70% probability. The remaining modalities
have 0 modality importance value, as they are designed to
not contain class discriminative features. The model may
learn to pay attention to either the less noisy T1C modality,
or the more noisy FLAIR modality, or both. To determine
their relative importance as the ground truth modality im-
portance, we test the well-trained model on two test sets:

• TIC dataset: The dataset shows tumors only (without
brain background) on all modalities. And the tumor shape
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has 100% alignment with the ground-truth class label on
T1C modality, and 0% alignment on FLAIR. Its test accu-
racy is denoted as AccT1C.

• FLAIR dataset: It has the same settings, but only dif-
fers in that the tumor shape has 100% alignment with the
ground-truth class label on FLAIR modality, and 0% align-
ment on T1C. Its test accuracy is denoted as AccFLAIR.

The test performance AccT1C and AccFLAIR indicate the de-
gree of model reliance on that modality to make predic-
tions. We use them as the ground truth modality impor-
tance. On the test set, AccT1C = 0.99, AccFLAIR = 0. In
this way, we constructed a model with known ground truth
of modality importance of 1 for T1C, and 0 for the remain-
ing modalities. We then calculate the plausibility metric as
the measure of truthfulness for the synthetic data.

4.4. Evaluating G4: Informative plausibility

Given an XAI method that meets G3: Truthfulness, to fur-
ther validate whether clinical users can use their own as-
sessment on explanation plausibility to judge decision qual-
ity and identify potential errors and biases, next we assess
whether the human plausibility assessment is informative.
We do so in two steps: 1) proposing a novel plausibility
metric – modality-specific feature importance (MSFI) –
on multi-modal explanation task that bypasses physicians’
manual assessment; and 2) testing the correlation between
plausibility metric and decision quality metric.

4.4.1. QUANTIFYING PLAUSIBILITY

To quantify how reasonable the explanation is to human
judgment and facilitate subsequent validation of using such
plausibility information for AI decision verification, we
used an existing metric feature portion (FP), and pro-
posed a novel metric modality-specific feature importance
(MSFI) designed for multi-modal medical image explana-
tion based on its clinical requirements (§3.1.2). Both met-
rics quantify the agreement of heatmap highlighted regions
with human prior knowledge.

FP assesses, among the highlighted regions in the heatmap,
how many of them agree with human prior knowledge. It
is calculated as:

FP =

∑
i 1(Li > 0)� Si∑

i S
i

(2)

where S is a heatmap, with i denoting the spatial location.
L is the human-annotated feature masks, with Li > 0 out-
lining the spatial location of the feature. 1 is the indicator
function that selects the heatmap values inside the feature
mask.

To abstract the clinical requirements for multi-modal medi-
cal image explanation (U4. Multi-modal medical image in-

terpretation and clinical requirements for its explanation),
we propose a novel plausibility metric MSFI for multi-
modal explanation (Fig. 4). It combines the assessment of
feature localization with modality prioritization, by multi-
plying FP with modality importance value modality-wise.
Specifically, MSFI is the portion of heatmap values Sm in-
side the feature localization mask Lm for each modalitym,
weighted by MI ϕm which is normalized to [0, 1] to have a
comparable range with FP.

M̂SFI =
∑
m

ϕm

∑
i 1(Li

m > 0)� Si
m∑

i S
i
m

, (3)

MSFI =
M̂SFI∑
m ϕm

, (4)

where M̂SFI is unnormalized, and MSFI is the normalized
metric in [0, 1]. A higher MSFI score indicates a heatmap
is more agreeable with clinical prior knowledge regard-
ing capturing the important modalities and their localized
features. MSFI can be regarded as a general form of FP
that generalizes the feature portion calculation from single-
modality to multi-modality images.

Instead of asking physicians to manually assess plausibility
for a few explanations (the questionnaire in Fig. 2 demon-
strates such process), whose rating may be susceptible to
cognitive biases (U5.2. Bias and limitation of physicians’
quantitative rating), quantifying plausibility bypasses hu-
mans’ manual assessment, standardizes and automates the
assessment process, and can assess multiple XAI methods
using one set of annotated data.

In addition, although plausibility quantification requires
annotations to represent human prior knowledge, the hu-
man prior knowledge annotation may not necessarily need
to be as exact as feature segmentation masks, because
MSFI and FP only penalize for regions outside the annota-
tion mask† L. Therefore, the annotation can be in the form
of segmentation masks, bounding boxes, or landmarks. In
our evaluation, we used tumor segmentation masks for the
glioma task, and bounding boxes for the knee task. The
annotations may not even need to be annotated by humans.
It can be generated by training an AI model on a few an-
notated data points, or using trained models on feature seg-
mentation/localization tasks.

†In comparison, we did not use the intersection over union
(IoU) metric commonly used in computer vision, because com-
pared to MSFI or FP that penalizes only for false positives, IoU
also penalizes for false negatives, which require the annotations
to be exact.
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Figure 4. Illustration of the novel modality importance correlation and MSFI metrics on multi-modal medical image explanation.

4.4.2. TESTING FOR PLAUSIBILITY INFORMATIVENESS

The indispensable step after plausibility quantification is to
validate the clinical utility of using explanations to verify
AI decision quality. We measure AI decision quality by us-
ing 1) the soft output probability, and 2) the hard threshold-
ing model prediction correctness on the two classification
tasks. We then test the correlation between prediction prob-
ability and plausibility, and test for identically distributed
plausibility for different prediction correctness groups. Un-
less otherwise stated, we use a significance level α = 0.05
for two-sided statistical test.

4.5. Evaluating G5: Computational efficiency

We recorded the computational time to generate each
heatmap on a computer with 1 GTX Quadro 24 GB GPU
and 8 CPU cores, and on a computing cluster with similar
hardware configurations.

5. Evaluation result
We report evaluation results on whether the commonly-
used 16 heatmap methods are clinically feasible by ful-
filling the guidelines on the two clinical tasks with multi-
modal medical images. All results were reported on the test
dataset.

5.1. Evaluating G1 Understandability and G2 Clinical
relevance

In our user study, although physicians did not express dif-
ficulty in understanding the meaning of heatmap as im-
portant regions for AI prediction (G1: Understandability
is met), the heatmap explanation is not completely clini-
cally relevant, as physicians were perplexed by the high-

lighted areas regardless of whether these areas align with
their prior knowledge or not. This may be due to heatmap
explanation only performing half of the clinical image in-
terpretation step of feature localization, it lacks pathologi-
cal description of important features, let alone to perform
reasoning on these features (U3.1. Limitations of existing
heatmap explanation). Therefore, the heatmap explanation
only partially fulfills G2 Clinical relevance.

5.2. Evaluating G3: Truthfulness

The evaluation results on G3 Truthfulness of all three eval-
uation experiments are shown in Table 2. The ∆AUPC
metric on cumulative feature removal experiment is a
global metric that runs on the whole test set, and we re-
ported the metric mean ± standard deviation (std) of five
models on the same test set, and used it to compare the
XAI method performances; whereas the other evaluation
metrics are local and run on individual data point, and we
reported their mean± std of five models by aggregating all
test data points, and conducted Friedman and post-hoc Ne-
menyi test to identify the top ranking XAI methods. Using
Kendall’s Tau-b ranking correlation, we also tested the per-
formance ranking (using the mean of a metric) correlation
between the glioma and knee tasks, to see if the perfor-
mance on one task can be generalized to another task.

For the cumulative feature removal experiment that exam-
ines the fine-grained feature-level explanation truthfulness
of XAI methods to the model decision process, the per-
formances of the examined XAI methods on glioma and
knee tasks differ a lot: on the glioma task, Guided Back-
Prop, Guided GradCAM, Lime, Shapley Value Sampling,
and Smooth Grad were the top-ranked algorithms with an
average ∆AUPC around 0.5, and their performances were
relatively stable across different models. Whereas on the
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Cumulative feature removal Modality importance correlation Synthetic data
experiment

∆AUPC [-1, 1] MI correlation [-1, 1] MSFI [0, 1]

Glioma Knee Glioma Knee Synthetic
glioma

Deconvolution 0.38±0.14 -0.04±0.04 0.46±0.28 -0.47±0.51 0.04±0.02
DeepLift 0.16±0.10 NaN 0.60±0.33 NaN 0.22±0.23
Feature Ablation 0.34±0.11 -0.02±0.04 0.60±0.43 0.05±0.64 0.19±0.23
Feature Permutation -0.03±0.08 NaN NaN NaN 0.08±0.07
GradCAM 0.22±0.16 NaN NaN NaN 0.02±0.02
Gradient 0.09±0.02 -0.05±0.02 0.49±0.41 -0.52±0.51 0.19±0.13
Gradient Shap 0.18±0.12 -0.02±0.03 0.64±0.31 -0.29±0.54 0.22±0.19
Guided BackProp 0.53±0.09 -0.04±0.03 0.57±0.21 -0.44±0.53 ∗0.49±0.21
Guided GradCAM 0.53±0.09 NaN 0.56±0.23 NaN 0.42±0.29
Input×Gradient 0.16±0.11 -0.05±0.03 0.64±0.29 -0.35±0.55 0.23±0.14
Integrated Gradients 0.18±0.12 -0.04±0.02 0.63±0.31 0.24±0.64 0.22±0.19
Kernel Shap 0.31±0.10 0.00±0.03 NaN ∗0.33±0.58 0.08±0.08
Lime 0.51±0.08 0.00±0.04 0.57±0.42 ∗0.35±0.58 0.05±0.07
Occlusion 0.21±0.08 -0.01±0.02 0.58±0.45 -0.32±0.54 0.22±0.25
Shapley Value Sampling 0.51±0.10 0.00±0.04 0.59±0.37 ∗0.35±0.50 0.10±0.10
Smooth Grad 0.48±0.08 -0.05±0.03 ∗0.72±0.24 -0.43±0.57 0.03±0.02

Table 2. Evaluation results on Guideline 3 - Truthfulness. The table shows mean ± std for each XAI algorithm on three evaluation
metrics: ∆AUPC, MI correlation, and MSFI on the synthetic data. Metrics have their range indicated. For all metrics, a higher value
is better. Top three results on a metric are in bold, with a ∗ indicating the XAI algorithm performed significantly better than others.
“NaN” in the glioma task is because the heatmap is not modality-specific and the correlation is not computable. “NaN” in the knee task
is because the XAI method was not included in the evaluation. XAI methods are in alphabetic order.
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knee task, all XAI methods performed poorly with their
∆AUPC scores around 0, which indicates the examined
XAI methods did not differ from the baseline of random
heatmaps. In addition, when comparing the glioma and
knee tasks on the XAI method rankings based on mean
∆AUPC, there was not a statistically significant correlation
using Kendall’s Tau-b (τb = 0.24, p = 0.31), indicating the
performance of XAI methods may only be specific to a task
and not generalizable.

For the MI correlation experiment that examines the
coarse-grained modality-level explanation truthfulness of
XAI methods to the model decision process, on the
glioma task, the importance ranking of heatmaps modal-
ities showed weak to moderate positive correlations with
the ground-truth modality Shapley values. Among the ex-
amined 13 XAI methods, there was a statistically signif-
icant difference of mean MI correlation using Friedman
test, χ2(12) = 223.3, p < 0.001. A post-hoc Nemenyi
test showed only Smooth Grad had a statistical signifi-
cance higher performance than the rest of XAI methods
(p < 0.01). On the knee task, the examined 12 XAI meth-
ods showed from moderate negative to weak positive corre-
lations with the ground-truth Shapley values, and there was
a statistically significant difference of mean MI correlation
using Friedman test, χ2(11) = 912.6, p < 0.001. A post-
hoc Nemenyi test showed Lime, Shapley Value Sampling,
and Kernel Shap had a statistical significance higher perfor-
mance than the rest of XAI methods (p < 0.01). Further-
more, the MI correlation performance ranking on one task
did not migrate to another, with a statistically insignificant
Kendall’s Tau-b ranking correlation test, τb = 0.13, p =
0.65.

For the synthetic data experiment on the glioma task that
examines both modality- and feature-level truthfulness of
XAI methods to the model decision process, the MSFI
scores were generally in the low range, and no XAI method
achieved an average MSFI score above 0.5. Among these,
only Guided BackProp outperformed other XAI methods
with statistical significance (p < 0.01) using a post-hoc
Nemenyi test after a significant Friedman test (χ2(15) =
1540.6, p < 0.001). Since the synthetic data evalua-
tion combined both the coarse-grained modality-level (MI
correlation) and the fine-grained feature-level explanation
truthfulness (∆AUPC), we further tested whether the XAI
method performance on the synthetic data can be used to
guide the selection of XAI on the original real-patient data
on glioma task. Kendall’s Tau-b correlation test showed
that the MSFI mean score ranking of the synthetic data
experiment had no statistically significant ranking correla-
tion with MI correlation (τb = 0.08, p = 0.77), and with
∆AUPC (τb = −0.05, p = 0.82).

In summary, on the glioma task, the only XAI methods that

outperformed others on feature-level (∆AUPC and MSFI
on synthetic data experiment) and modality-level (MI cor-
relation) explanation truthfulness evaluations are Guided
BackProp. Despite this, the performances of the top XAI
methods were around 0.5 compared to the ground truth
or out-performed the random baseline. Since there is no
benchmark, and the relative weights for individual evalua-
tion metrics are unknown, the fulfillment of G3 Truthful-
ness may be dependent on the specific task and its clinical
importance. On the knee task, all the examined XAI meth-
ods failed to meet G3 Truthfulness due to their low eval-
uation performances on both modality- and feature-level
truthfulness. In addition, the good-performing XAI method
on one clinical task did not generalize to another task.

5.3. Evaluating G4: Informative plausibility

5.3.1. QUANTIFYING PLAUSIBILITY

Physicians’ average quantitative rating on heatmap quality
had a higher Pearson’s r correlation with MSFI (r(53) =
0.59, p < 0.001) compared with FP (r(53) = 0.57,
p < 0.001). Therefore, we resorted to quantifying the
human assessment of explanation plausibility using MSFI
score, while reporting the results using FP measure in Sup-
plementary S2. In addition, physicians’ inter-rater agree-
ment on the heatmap quality assessment was low: Krip-
pendorff’s Alpha is 0.528 (cutoff value ≥ 0.667 (Krippen-
dorff, 2004)), and Fleiss’ kappa is 0.009 (with 1 for perfect
agreement and 0 for poor agreement). This indicates that
doctors’ judgment of heatmap quality could be very subjec-
tive, which aligns with qualitative findings on U5.2. Bias
and limitation of physicians’ quantitative rating.

5.3.2. TESTING FOR PLAUSIBILITY INFORMATIVENESS

Since G3 Truthfulness is the prerequisite for G4 on plau-
sibility informativeness, it is less meaningful to conduct
plausibility informativeness assessment for XAI methods
that did not fulfill G3 Truthfulness. Nevertheless, we re-
ported the full evaluation results for all XAI methods as a
reference.

To examine the correlation between plausibility measure
MSFI and model prediction probability, we computed their
non-parametric Spearman correlation (Table 3). For the
glioma task, the plausibility measure MSFI of all XAI
methods had a weak to moderate positive correlation with
the model prediction probability, and the correlations were
all statistically significant (p < 0.001). Occlusion, Feature
Ablation, and Input×Gradient were the top three highly
correlated XAI methods. For the knee task, all methods had
a negative weak correlation with model prediction proba-
bility that may or may not show statistical significance.

The above model output probability may not be well cali-
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MSFI correlation w/ pred. prob. Testing for plausibility informativeness - Glioma Testing for plausibility informativeness - Knee

Glioma Knee Stat. Sig. Right Pred. Wrong
Pred. Stat. Sig. Right Pred. Wrong

Pred.

Deconvolution 0.41 ∗ -0.08 ∗ NS 0.47
(0.44,0.49)

0.55
(0.44,0.57) NS 0.23

(0.22,0.24)
0.23

(0.22,0.24)

DeepLift 0.49 ∗ NaN ?
0.83

(0.79,0.85)
0.75

(0.55,0.81) NaN NaN NaN

FeatureAblation 0.59 ∗ -0.16 ∗ ??
0.70

(0.66,0.75)
0.48

(0.29,0.67) NS 0.16
(0.15,0.16)

0.18
(0.17,0.19)

FeaturePermutation 0.19 ∗ NaN NS 0.29
(0.22,0.35)

0.21
(0.06,0.32) NaN NaN NaN

GradCAM 0.18 ∗ NaN NS 0.04
(0.04,0.05)

0.04
(0.02,0.05) NaN NaN NaN

Gradient 0.41 ∗ -0.08 ∗ NS 0.49
(0.46,0.51)

0.50
(0.33,0.54) NS 0.24

(0.24,0.25)
0.24

(0.24,0.25)

GradientShap 0.49 ∗ -0.09 ∗ ?
0.78

(0.75,0.80)
0.70

(0.52,0.76) NS 0.23
(0.22,0.23)

0.24
(0.22,0.24)

GuidedBackProp 0.41 ∗ -0.07 NS 0.78
(0.74,0.79)

0.76
(0.57,0.82) NS 0.25

(0.25,0.26)
0.25

(0.25,0.27)

GuidedGradCAM 0.37 ∗ NaN NS 0.82
(0.80,0.85)

0.80
(0.54,0.86) NaN NaN NaN

Input×Gradient 0.57 ∗ -0.08 ∗ ?
0.77

(0.75,0.79)
0.69

(0.46,0.76) NS 0.23
(0.23,0.24)

0.24
(0.24,0.25)

IntegratedGradients 0.50 ∗ -0.08 ?
0.78

(0.75,0.82)
0.71

(0.51,0.76) NS 0.22
(0.21,0.23)

0.23
(0.22,0.23)

KernelShap 0.36 ∗ -0.13 ∗ NS 0.20
(0.16,0.23)

0.15
(0.03,0.35) NS 0.15

(0.15,0.16)
0.17

(0.16,0.18)

Lime 0.36 ∗ -0.13 ∗ NS 0.23
(0.19,0.27)

0.19
(0.12,0.25) NS 0.16

(0.16,0.17)
0.18

(0.17,0.18)

Occlusion 0.60 ∗ -0.07 ? ? ?
0.55

(0.54,0.58)
0.24

(0.14,0.44) NS 0.20
(0.19,0.21)

0.20
(0.19,0.21)

ShapleyValueSampling 0.53 ∗ -0.10 ∗ NS 0.58
(0.54,0.61)

0.38
(0.27,0.59) NS 0.17

(0.16,0.17)
0.18

(0.17,0.19)

SmoothGrad 0.36 ∗ -0.03 NS 0.39
(0.37,0.40)

0.39
(0.32,0.42) NS 0.24

(0.23,0.24)
0.24

(0.23,0.25)

Table 3. Evaluation results on Guideline 4 - Testing for plausibility informativeness. In the column: MSFI correlation with prediction
probability, the statistically significant Spearman’s correlations are marked with ∗, and bold text highlights the top three positively
correlated XAI methods. In the column: Testing for plausibility informativeness on glioma and knee task, we report the significant
level and MSFI score (median and 95% confidence interval) of right and wrong predictions. The statistical significance are from the
upper-tailed Mann–Whitney U test: ? indicates p < 0.025; ?? for p < 0.005; ? ? ? for p < 0.0005; NS for not significant. “NaN” in
the knee task is because the XAI method was not included in the evaluation. XAI methods are in alphabetic order.

brated (Guo et al., 2017), thus may not be a good indica-
tor for model decision quality. We then resorted to model
prediction correctness as the definitive indicator for deci-
sion quality. Using the non-parametric Mann-Whitney U
test (Mann and Whitney, 1947), we tested the upper-tailed
alternative hypothesis that the distribution of MSFI on the
correctly predicted data group is significantly higher than
the incorrectly predicted one. The resulting significance
level for each XAI algorithm is shown in Table 3. For some
XAI methods such as Occlusion and Feature Ablation, de-
spite they showed statistically higher MSFI scores on the
right prediction data group compared to the wrong predic-
tion one, by further inspecting their distributions (Fig. 5-
top), the ranges of correctly and incorrectly predicted data
points largely overlapped with each other. This may hin-
der the application of XAI methods for clinical users to
identify potential decision flaws based on their plausibility
judgment of the explanation, because the right and wrong
predictions could have the same range of MSFI scores. For

the knee task, all XAI methods failed to reject the null hy-
pothesis, with the right and wrong prediction data points
having similar MSFI score distributions (Fig. 5-bottom).
Similar to the evaluation on G3, in G4 evaluation, the ex-
amined XAI methods did not exhibit the same performance
pattern on the glioma and knee task.

The testing for plausibility informativeness on glioma task
showed that, despite the overall range of the correctly and
incorrectly predicted data points overlapping with each
other, for some XAI methods, the Mann-Whitney U test
still showed statistically higher MSFI for the correctly pre-
dicted data points than the incorrectly predicted ones. Fur-
ther analysis showed that the statistical test result was con-
founded by different MSFI distributions on the two classes
of LGG and HGG: for all XAI methods, both the predicted
and ground-truth HGG class had a significantly higher (p <
0.0005) MSFI score compared to the predicted or ground-
truth LGG class. The different distributions of MSFI on
LGG and HGG classes influenced the results on testing
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Figure 5. Evaluation results on Guideline 4 - Testing for plausibility informativeness. For each heatmap method (X-axis), the violin
and swarm plots show the plausibility quantification score distribution of MSFI for the right (blue, left) and wrong (red, right) predictions
on the glioma (top) and knee task (bottom). Each dot is a data sample in the test set, and we aggregate results from five similarly-trained
models. Y -axis is the MSFI measure, with a higher score indicating more agreeable of a heatmap with clinical prior knowledge on
modality prioritization and feature localization. The black dashed lines indicate the quartiles of each distribution.

for informative plausibility. To remove the influence of
this confounder, we then conducted testing for plausibility
informativeness conditioned on each class, and it yielded
similar results as the above unconditioned one: when con-
ditioned on HGG prediction, only Occlusion and Feature
Ablation showed significantly higher MSFI for the rightly
predicted data compared to the wrongly predicted ones,
with p = 0.003 and 0.01 respectively. None of the XAI
methods showed statistical significance when conditioned
on LGG prediction. The visualization of MSFI conditioned
on either HGG or LGG prediction, however, still showed
range overlapping for the right and wrong predictions (Sup-
plementary S2 Fig. 16). This indicates the examined XAI
methods, both the unconditioned one and the one condi-
tioned on each predicted class, failed the testing for infor-
mative plausibility. The same analysis on the knee task did
not show statistically different MSFI on right and wrong
predictions conditioned on each predicted class. The above
analysis is detailed in Supplementary S2 §4.3.2.

Based on the results on testing for plausibility informative-
ness, the examined XAI methods did not meet G4 Infor-
mative plausibility neither on the glioma nor on the knee

task.

5.4. Evaluating G5: Computational efficiency

The computational time spent in generating a heatmap is
shown in Table 4. The speed of generating a heatmap was
stable across the three datasets with different image dimen-
sions (2D and 3D) and model architectures. Some gradient-
based methods that rely solely on backpropagation can gen-
erate near real-time explanations, which enables their clin-
ical use in real-time interactive XAI systems. For some
gradient-based and all perturbation-based methods that re-
quire multiple sampling, their speed is > 10 seconds or
even longer. Methods such as Lime or Shapley Value Sam-
pling need to take 7∼30 minutes to generate a heatmap.
Depending on the specific use case and XAI method pa-
rameter settings, the long wait time may prevent their clin-
ical use.
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Computational time
seconds

Glioma Synthetic
Glioma Knee

Deconvolution 2.1±1.2 1.3±0.0 2.6±2.1
DeepLift 4.6±2.0 2.2±0.0 NaN
FeatureAblation 82±25 58±1.5 98±102
FeaturePermutation 10.1±2.1 15.2±0.4 NaN
GradCAM 0.7±0.3 0.3±0.0 NaN
Gradient 2.2±1.3 1.1±0.0 2.6±2.2
GradientShap 7.8±3.3 5.0±0.1 2.8±2.2
GuidedBackProp 2.1±1.2 0.9±0.0 2.3±1.7
GuidedGradCAM 2.8±1.5 1.2±0.0 NaN
Input×Gradient 2.1±1.2 1.1±0.0 2.6±2.2
IntegratedGradients 67±34 49±0.9 113±79
KernelShap 243±87 93±1.6 382±388
Lime 449±141 154±2.6 507±523
Occlusion 1713±21 27±3.5 672±255
ShapleyValueSampling2205±693 1595±228 1990±2021
SmoothGrad 14.4±6.8 9.5±0.1 24.1±16.7

Table 4. Evaluation results on Guideline 5 - Computational ef-
ficiency. We report the mean ± std speed in seconds to generate
a heatmap on a data point. “NaN” in the knee task is because the
XAI method was not included in the evaluation. The XAI meth-
ods are in alphabetic order.

6. Discussion
6.1. Evaluated heatmap methods failed to meet the

Clinical XAI Guidelines

We conducted a systematic evaluation on 16 commonly-
used heatmap methods following the Clinical XAI Guide-
lines. Although the heatmap explanations were easily un-
derstandable to clinical users (G1), they only partially ful-
filled G2 clinical relevance, due to the missing descriptions
of feature pathology from the heatmap, which corresponds
to the clinical image interpretation process (§5.1). The ex-
amined heatmap methods did not reliably exhibit the prop-
erty of G3 Truthfulness on multiple models in the two clin-
ical tasks. Due to the failure of G3, G4 testing for in-
formative plausibility also had poor performance. Most
heatmaps were computationally efficient regarding G5 that
can generate a heatmap within seconds, except for some
sampling-based methods such as Shapley Value Sampling,
which may take more than 20 minutes.

Next, we discuss the computational evaluation results on
G3 and G4 by referring to the literature, and discuss poten-
tial research directions and open research questions.

6.1.1. G3 TRUTHFULNESS

In G3, we evaluated whether the examined heatmaps can
correctly reveal important features for model decision pro-
cess at both the coarse-grained modality level and fine-
grained feature level. None of the examined XAI meth-
ods fulfilled G3 on both glioma and knee tasks. Our find-
ings join a number of previous literature findings on the
untruthfulness of post-hoc XAI methods in natural image
and MIA tasks (Adebayo et al., 2022; 2020; 2018; Zhou
et al., 2021), in which they used modified datasets with
known ground truth of important features to diagnose spu-
rious or biased features learned by the model. Prior liter-
ature hypothesized the reason for the untruthfulness of the
post-hoc explanation is that post-hoc methods summarize
statistics that may only reveal partial aspects of a model’s
internal state, and the actual decision process may be scat-
tered throughout the network (Chen et al., 2020). There-
fore, prior work called for inherently interpretable AI mod-
els instead in high-stakes domains (Rudin, 2019). Both
post-hoc XAI and inherently interpretable AI models re-
quire truthfulness assessment (Jacovi and Goldberg, 2020).

6.1.2. G4 INFORMATIVE PLAUSIBILITY

In G4, we tested the MSFI correlation with two indicators
for model decision quality: 1) model output probability,
and 2) model prediction correctness. For 1) model out-
put probability, on the glioma task, our assessment showed
the plausibility measure can be correlated with model pre-
diction probability, which aligns with prior literature find-
ing on XAI evaluation for chest X-ray task (Saporta et al.,
2021). For 2) testing informative plausibility using model
prediction correctness, our results showed existing post-
hoc XAI methods can hardly reveal information on model
decision correctness, on both the glioma and knee task.
This echoes with prior literature finding on a chest X-ray
task that showed no strong correspondence between model
generalization performance and heatmap plausibility mea-
sure (Viviano et al., 2021).

The above findings indicate that existing post-hoc heatmap
methods may be able to reveal information that is obvious,
or known to the model (such as the prediction label and
its probability), but not good at revealing information that
is difficult to estimate, or unknown to the model (such as
prediction correctness, quality, or reliability). The former
information on prediction probability is straightforward for
clinical users to obtain by reading the model output, with-
out the extra effort to interpret and assess its explanation;
whereas the latter information on decision quality has more
clinical significance as shown in our user study (U2. Clin-
ical utility of explainable AI), and is more relevant to the
clinical users to spend extra time interpreting the explana-
tion and assessing its plausibility.
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Generating explanations that can be informative for model
decision quality is a challenging and clinically important
problem. This problem is closely related to uncertainty es-
timation (UE) for deep learning models (Gal and Ghahra-
mani, 2016) that estimates model decision uncertainty.
Compared to providing users with a UE number, gener-
ating informative explanations for model decision quality
can provide more contextual information to help users un-
derstand why, how, and when AI works and does not work.
Despite its clinical importance, proposing and evaluating
XAI for model decision verification (G4 Informative plau-
sibility) is an underexplored problem, and there are only a
few works (Slack et al., 2021; Li et al., 2020; Patro et al.,
2019) that combine UE with XAI by bringing a probabilis-
tic Bayesian view to XAI algorithms. But these proposed
XAI methods did not incorporate plausibility measure as a
way to quantify explanation uncertainty and its correspond-
ing model decision uncertainty, and their ability to fulfill
G4 on revealing model decision quality with plausibility
measure is unknown and not assessed. Our Clinical XAI
Guidelines and evaluation propose this open and clinically
important problem to the research community.

6.2. Comparison of the guideline criteria

Both G1 Understandability and G2 Clinical relevance are
qualitative assessments with respect to clinical applicability
of the general form of an explanation, and are non-specific
to an XAI method and the content it generated. In contrast,
the other guidelines, G3 Truthfulness, G4 Informative plau-
sibility, and G5 Computational efficiency are quantitative
and computational assessments of the explanation content,
and are specific to each XAI method that generates the ex-
planation content within a specific explanation form. The
explanation form can be regarded as different modalities of
the explanation information, such as explaining using fea-
tures, examples, or rules. Whereas the explanation content
is the specific information expressed through an explana-
tion form. Moreover, although G4 Informative plausibility
and G2 Clinical relevance both focus on the aspect of hu-
man interpretation of the explanation, plausibility focuses
on the content of explanation, whereas G2 Clinical rele-
vance assesses a group of XAI methods that are represented
in the same explanation form. An explanation that has a
high score in G4 may not be clinically relevant (G2). For
example, the content of a heatmap assessed by a plausibil-
ity measure may be very indicative of model decision qual-
ity, thus it has a high score for G4. But the general form of
heatmap is not completely clinically relevant (G2), because
it only provides localization information without informa-
tion on feature pathology (as detailed in Section 5.1). Simi-
larly, an explanation that is clinically relevant (G2) may not
always correspond to a high score in G4. For example, if a
group of XAI algorithms provides information on both fea-

ture localization and pathology identification, they are con-
sidered to be clinically relevant (G2). Within this group,
different XAI algorithms may have different performances
on their G4 scores, depending on how well the explanation
plausibility correlates with AI decision quality.

Since G1 Understandability and G2 Clinical relevance as-
sess the explanation form, an explanation form that passed
G1 and G2 can be used to select or propose a group of
XAI algorithms that generate the same form. For example,
our user study discovered a clinically relevant explanation
form of feature attribution: an explanation should at least
present feature information on localization and pathology
description (§2.1). This may cover the explanation form
of segmentation maps labeled with different pathology (De
Fauw et al., 2018), or a heatmap coupled with patholog-
ical description. Any XAI algorithms that generate such
explanation forms are considered to fulfill G2. Some user
studies have examined or identified explanation forms on
understandability (Jin et al., 2021a; Cai et al., 2019a;b) and
clinical relevance (Jin and Hamarneh). User studies like
these may enable AI developers to bypass G1 or G2 assess-
ment by directly applying the relevant user study findings
from the literature to their individual tasks. They can also
serve as a starting point for the clinical AI development
team before communicating with clinical users to assess
G1 and G2.

Much of the literature on XAI evaluation considers the
plausibility measure as a requirement (Singh et al., 2020a;
de Souza et al., 2021; Saporta et al., 2021; Arun et al.,
2021). The Clinical XAI Guidelines do not include the
stand-alone plausibility as a clinical requirement, because
G1 Understandability and G2 Clinical relevance already
regulate an XAI to be clinically viable in its explanation
form, and the explanation content itself does not neces-
sarily need to align with human knowledge (measured by
plausibility). Instead of making an explanation plausible to
users to gain their trust with a shortcut (i.e., by bypassing
the G3 Truthfulness assessment), the Clinical XAI Guide-
lines focus on the clinical utility of user’s plausibility as-
sessment, and inspect whether users’ plausibility assess-
ment can shed light on the downstream clinical utilities
(U2. Clinical utility of explainable AI), and help users an-
swer their questions following their plausibility assessment
(G4 Informative plausibility), such as enabling users to ver-
ify model decision, to diagnose model decision flaws and
biases, or to discover new knowledge. All these utilities
do not require the explanation content to align with human
prior knowledge. In fact, we argue that it may be danger-
ous to select or optimize an XAI method solely on the basis
of its plausibility measure. As observed in our user study
and in prior literature (Critch and Krueger, 2020), a poten-
tial consequence is that the XAI method may be optimized
to deceive users and make them overtrust a wrong AI de-
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cision with its seemingly plausible explanation, rather than
help users to verify the decision quality.

6.3. Use of the Clinical XAI Guidelines

Our systematic evaluation demonstrated the use of the
guidelines in the evaluation of XAI in two clinical tasks.
Specifically, if we go back to Alex’s questions in the begin-
ning, to apply the guidelines to a clinical XAI problem for
XAI method selection or proposal, AI designers like Alex
may first talk to their target clinical users or other stake-
holders to understand their AI literacy (G1 Understandabil-
ity), their clinical reasoning process which relates to the in-
terpretation of explanation (G2 Clinical relevance). Based
on the conversation, AI designers may have a clearer idea
about which form(s) of explanation to target.

For the targeted form of explanation such as feature attri-
bution map, there may be multiple XAI algorithms that can
generate it. To design or select the optimal XAI algorithm
of the target explanation form, AI designers may choose
suitable metrics to assess and optimize XAI methods on the
G3 Truthfulness measure. AI designers may also need to
test the truthfulness metrics for an XAI algorithm on mul-
tiple trained AI models to examine the robustness of XAI
method in truly reflecting the model decision process.

For the XAI method candidates that passed the truthfulness
assessment, to validate whether the explanation is clinically
useful in alerting physicians to AI potential decision flaws,
AI developers may further test such property for the XAI
method candidates (G4 Informative plausibility). To do so,
AI designers can ask clinical users about which features or
criteria they are based on to judge the plausibility of expla-
nation, and select computational metrics and prepare data
annotations based on the plausibility quantification criteria.
Then AI developers can test the correlation between plau-
sibility and decision quality.

AI designers may also need to record the G5 Computa-
tional efficiency of the XAI method candidates to rule out
the ones that do not meet the speed and computational re-
source requirement in clinical deployment.

7. Limitations and future work
The Clinical XAI Guidelines focus on the general clinical
requirements for AI explanation. Some task-dependent re-
quirements for XAI methods, such as data privacy protec-
tion, were not included in the guidelines. They can serve
as add-on requirements in addition to the guideline criteria
for specific clinical tasks.

Our evaluation provides a demonstration of the XAI assess-
ment process to align with clinical requirements. We mod-
ified existing methods or proposed ours for the assessment

of G3 and G4, and we do not claim that they are the best
evaluation methods for the general guideline criteria. We
list the limitations for each evaluation method below:

For G3 Truthfulness: 1) Cumulative feature removal ex-
periment has a feature independence assumption, which is
violated in image data setting; and there is no consensus
on how to set feature replacement value that can keep the
same data distribution and not introduce additional infor-
mation (Frye et al., 2021; Ren et al., 2021). 2) Modal-
ity importance correlation experiment only evaluates im-
portant features from a modality as a whole, which is too
coarse for MIA settings. 3) When using synthetic or modi-
fied datasets with known ground truth of important features
to evaluate XAI methods, it is unknown how well we can
generalize the conclusion from the synthetic to real-patient
task, given the model and data distribution discrepancies
between the two.

For G4 Informative plausibility: the statistical test for in-
formative plausibility requires the number of wrongly pre-
dicted test data to reach a certain sample size for statistical
power, which may be difficult to acquire with a highly ac-
curate model and small test set. The statistical test does not
identify whether the plausibility measure of correctly and
incorrectly predicted data are well separated, and we had to
manually visualize the data distribution.

Future work may propose novel XAI evaluation meth-
ods and automated, end-to-end, standardized evaluation
pipeline corresponding to the guidelines to speed up the
clinical development of XAI techniques.

8. Conclusion
In this work, we propose the Clinical XAI Guidelines to
support the design and evaluation of clinically-oriented
XAI systems. The proposal of the guidelines was based
on dual understandings of the clinical requirements for ex-
planations from our physician user study, and technical un-
derstanding from our previous XAI evaluation studies and
XAI literature. The guidelines G1 Understandability and
G2 Clinical relevance provide clinical insights for the se-
lection of explanation forms. Guidelines G3 Truthfulness,
G4 Informative plausibility, and G5 Computational effi-
ciency incorporate the clinical requirements for explana-
tion as clear technical objectives to be optimized for.

Based on the guidelines, we conducted a systematic evalu-
ation on 16 commonly-used heatmap methods. The evalua-
tion focused on a technically-novel and clinically-pervasive
problem of multi-modal medical image explanation with
two clinical tasks of brain tumor grading and knee le-
sion identification. We proposed a novel metric, MSFI
for multi-modal medical image explanation tasks, to by-
pass physicians’ manual assessment of explanation plau-
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sibility. The evaluation results showed that the evaluated
heatmap methods failed to fulfill G3 and G4, thus were not
suitable for clinical use. The evaluation demonstrates the
use of Clinical XAI Guidelines in real-world clinical tasks
to facilitate the design and evaluation of clinically-oriented
XAI.
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Appendix

Clinical Explainable AI Guidelines (Full
Version)
In an effort to guide the design and evaluation of clini-
cal XAI to meet both clinical and technical requirements,
we present a checklist including five canonical criteria
which we believe may serve as guidelines for develop-
ing clinically-oriented XAI. The guidelines were devel-
oped with a collective effort from both clinical and tech-
nical aspects with complementary expertise in AI, human
factor analysis, and clinical practice. In addition, it was
driven and supported by the findings from our physician
user study, pilot XAI evaluation experiments (Jin et al.,
2022; 2021b), and literature. We sought feedback from two
physicians and several researchers on medical image anal-
ysis as a heuristic evaluation of the guidelines.

To acquire physicians’ requirements for clinical XAI, we

conducted a physician user study with 30 neurosurgeons
to elicit their clinical requirements by using a clinical
XAI prototype. The low-fidelity prototype is a clinical
decision-support AI system that provides suggestions from
a CNN model to differentiate lower-grade gliomas from
high-grade ones based on multi-modal MRI. For each AI
suggestion, it also shows a heatmap explanation that high-
lights the important features for model prediction. The user
study consisted of an online survey that embedded the XAI
prototype and collected physicians’ quantitative ratings of
the heatmaps, and an optional post-survey interview where
physicians comment on the clinical XAI system. Five
physicians participated in the interview, and seven physi-
cians provided comments in the survey by answering open-
ended questions. We analyzed the qualitative data collected
from interview sessions and open-ended questions in the
survey as the main support to develop the guidelines from
the clinical aspect. The detailed user study findings and
method are in Supplementary Material S1, and its related
supporting sections were referred to in the guidelines start-
ing with ‘U’.

Next, we present the Clinical XAI Guidelines, which con-
sist of five evaluation objectives to optimize a clinical XAI
technique. They are categorized into three considerations
on clinical usability, evaluation, and operation. For each
objective in the guidelines, we list its key references from
our user study or literature. We also analyze examples that
follow the objective and/or counterexamples that violate it.
Ways of assessment are also described to help identify if
the objective is met. The guidelines and their key points
are summarized in Table 1.

8.1. Clinical usability considerations

Guideline 1: Understandability.

The form and context of an explanation should be easily
understandable by its clinical users. Users do not need to
have technical knowledge in machine learning, AI, or pro-
gramming to interpret the explanation.

• Example:

Physicians find the feature attribution maps
(heatmaps) used in our user study easily under-
standable. Other explanation forms on medical
image analysis tasks such as similar examples (Cai
et al., 2019b), counterfactual examples (Bigolin Lan-
fredi et al., 2019), scoring (linear feature attri-
bution) (Kawahara et al., 2019), or rule-based
explanation, are shown in prior physician user studies
in the literature. (Jin et al., 2021a) summarized
12 end-user-friendly explanation forms that do not
require technical knowledge, including feature-based
(feature attribution, feature shape, feature inter-
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action), example-based (similar, prototypical, and
counterfactual example), rule-based explanation
(rules, decision tree), and contextual information
(input, output, performance, dataset). In addition
to the explanation that reveals the model decision
process, in our user study, physicians also required
other information that makes the AI model transpar-
ent, such as model performance, training dataset, and
prediction confidence (U3.3. Making AI transparent
by providing information on performance, training
dataset, and decision confidence). An XAI system
may use one or a combination of multiple explanation
forms that are friendly to clinical users.

• Counterexample:

A counterexample of understandability is to explain
by visualizing the learned representation of neurons
in DNN (Olah et al., 2017). Although the form of
neuron visualization as images is intuitive to look at,
interpreting the images requires users to have prior
knowledge on DNN model and neuron to understand
the context of neuron visualization.

• Assessment method:

To assess if the understandability objective is met, AI
designers can conduct a self-assessment on an XAI
technique to inspect its AI knowledge prerequisites,
conduct a pilot physician usability study using low-
fidelity prototypes, or have informal conversations
with clinical users to understand their minimal AI lit-
erary, and choose proper explanation techniques ac-
cordingly. Low-fidelity prototypes such as sketches
can be used as a quick trial-and-error tool and help
clinical users better vision an explanation in a clini-
cal context. As a reference, (Jin et al., 2021a) pro-
vides users’ understandability from 32 laypersons on
12 end-user-friendly explanation forms, and prototyp-
ing support to identify clinical user-friendly explana-
tions. This assessment is usually one-time, conducted
at the initial phase of a project.

Guideline 2: Clinical relevance.

The way physicians use explanations is to inspect the AI-
based evidence provided by the explanation, and incorpo-
rate such evidence in their clinical reasoning process for
downstream tasks, such as assessing the validity of AI
decision, making a final decision on the case, improving
their problem-solving skills, or making scientific discover-
ies (U2. Clinical utility of explainable AI; U1. Clinical
utility of AI). To make XAI clinically useful, the explana-
tion information should be relevant to physicians’ clinical
decision-making pattern, and can support their clinical rea-
soning process.

For diagnostic/predictive tasks on clinical images, physi-
cians’ image interpretation process includes two general
steps: 1) feature extraction: physicians first perform pattern
recognition to localize key features and identify pathol-
ogy of these features; 2) reasoning on the extracted fea-
tures: physicians perform medical reasoning and construct
diagnostic hypotheses (differential diagnosis) based on the
image feature evidence. A clinically relevant explana-
tion should provide information corresponding to the above
process, so that physicians can incorporate the explanation
information into their medical image interpretation process
(U3. Clinical requirements of explainable AI).

“What (explanation) we get currently, when a ra-
diologist read it, they point out the significant
features, and then they integrate those knowl-
edge, and say, to my best guess, this is a GBM.
And I have the same expectations of AI (explana-
tion).” (N3)

• Example:

In the user study, physicians visioned the ideal expla-
nations that are clinically relevant (U3.2. Desirable
explanation), such as using radiologists’ language,
a linear scoring model, or a rule-based explanation.
Those explanations are composed of clinically mean-
ingful features. And their form of text, rule, or linear
model corresponds to the second step of the reasoning
process on the extracted features in the above clinical
image interpretation process.

• Counterexample:

The heatmap explanation is not completely clinically
relevant, as physicians were perplexed by the high-
lighted areas, regardless of whether the areas align
with their prior knowledge or not. Because the
heatmap explanation only performs half of the clinical
image interpretation step 1) of feature localization, it
lacks the description of important features, let alone
to perform reasoning on these features (U3.1. Limita-
tions of existing heatmap explanation).

“Though the heatmap is drawing your eyes
to many different spots, but I feel like I didn’t
understand why my eyes were being driven
to those spots, like why were these very spe-
cific components important? And I think
that’s where all my confusion was.” (N2)

• Assessment method:

A user study with the target clinical users can be con-
ducted in a formal or informal manner, to understand
the clinical decision-making pattern or workflow for
the target task, and inspect whether the explanation
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form corresponds to such pattern, and can help physi-
cians answer their questions on the rationale of the
model decision, how do users incorporate the expla-
nation information into their decision process. The
above information can be collected via an interview
or conversation with users, a field visit and observa-
tion, or a focus group, etc. Low-fidelity prototypes
(such as sketches) (Jin et al., 2021a) of explanation
form candidates can be used to elicit more in-context
feedback from clinical users’ communication. The G2
assessment can be co-conducted with G1 assessment
at the initial phase of a project, and it is also a one-
time assessment. As a reference, our user study find-
ing (U2 and U3 in Supplementary Material S1) pro-
vides G2 assessment results for the explanation form
of heatmap.

8.2. Evaluation considerations

Guideline 3: Truthfulness.

Explanation should truthfully reflect the model decision
process. This is the fundamental requirement for a
clinically-oriented explanation, and an explanation method
should fulfill the truthfulness requirement first prior to
other evaluation requirements such as G4: Informative
plausibility in the guidelines.

• Counterexample:

One of the main clinical utilities of explanation is that
clinical users intuitively use explanation plausibility
assessment (G4) to verify AI decisions for a case to
decide whether to take or reject the AI suggestion, and
calibrate their trust in AI’s current prediction on the
case, or the AI model in general accordingly (U2.3).
Users do so with an implicit assumption that explana-
tions are the true representation of the model decision
process. Violating truthfulness can lead to two signif-
icant consequences during the human assessment on
explanation plausibility (G4):

1. Clinical users may mistakenly reject AI’s correct
suggestion merely for the poor performance of the
XAI method, which shows an unreasonable explana-
tion.

2. If an XAI method is proposed or selected based
on explanation plausibility objective only, rather than
help clinical users to verify the decision quality, the
explanation can be optimized to deceive clinical users
with its seemingly plausible explanation, despite the
wrong prediction from AI (Critch and Krueger, 2020),
as illustrated by the physician participant N1’s quote:

“If a system made its prediction based upon
these areas (outside the tumor), I would def-
initely not trust that system, but I would be

very reassured that the system is telling me
that. ...So I’m less likely to use this model,
but I’m more likely to use a model that does
a better job than this, because I am reas-
sured that when I see that better model, that
I will be able to have access to that back-
end explanation. ” (N1)

• Assessment method:

As stated in (Jacovi and Goldberg, 2020), the truthful-
ness or faithfulness objective cannot and should not
be assessed by human judgment on the explanation
quality or annotations of the human prior knowledge,
because humans do not know the model’s underlying
decision process.

The most common way to assess explanation truth-
fulness for feature attribution XAI methods in the lit-
erature is to gradually add or remove features from
the most to the least important ones according to
an explanation, and measure the model performance
change (Yin et al., 2021; Yeh et al., 2019; Hooker
et al., 2019; Samek et al., 2017; Lundberg et al., 2020;
Alvarez-Melis and Jaakkola, 2018). Another way is
to construct synthetic evaluation datasets in which the
ground truth knowledge on the model decision pro-
cess from input features to prediction is known and
controlled (Doshi-Velez and Kim, 2017; Kim et al.,
2018; Gilpin et al., 2018).

Guideline 4: Informative plausibility.

The ultimate use of an explanation is to be interpreted and
assessed by clinical users. Physicians intuitively use the as-
sessment of explanation plausibility or reasonableness (i.e.:
how reasonable the explanation is based on its agreement
with human prior knowledge on the task) as a way to evalu-
ate AI decision quality, so that to achieve multifaceted clin-
ical utilities with XAI, including verifying AI’s decisions
(U2.3), calibrating trust in AI (U2.3), ensuring the safe use
of AI, resolving disagreement with AI (U2.2), identifying
potential biases, and making medical discoveries (U2.4).
Informative plausibility aims to validate whether an XAI
method can achieve its utility in helping users to identify
potential AI decision flaws and/or biases, i.e.: a plausible
explanation for a right decision, and an implausible expla-
nation for a wrong decision of AI. G3 Truthfulness is the
gatekeeper of G4 Informative plausibility to warrant the ex-
planation truthfully represents the AI decision process.

• Example:

In our evaluation, we abstract physicians’ clinical re-
quirements for multi-modal medical image explana-
tion (U4) into the MSFI metric. It regards the most
plausible heatmap explanation as some maps that can
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both localize the important image feature on each
imaging modality, and highlight the important modal-
ities for decision. We evaluate how well MSFI met-
ric corresponds to physicians’ assessment by quantita-
tive measure to calculate the correlation between the
two, and showcase the visual examples as a qualita-
tive measure. We then inspect the subsequent utility
of the MSFI metric on verifying model decisions, by
measuring its correlation with decision correctness.

• Assessment method:

To test whether explanation plausibility is informative
to help users identify AI decision errors and biases, AI
designers can assess the correlation between AI de-
cision quality measures (such as model performance,
calibrated prediction uncertainty, prediction correct-
ness, and quantification of biased patterns) with plau-
sibility measures (Adebayo et al., 2022; Saporta et al.,
2021).

Since human assessment of explanation plausibility
is usually subjective and susceptible to biases (U5.2.
Bias and limitation of physicians’ quantitative rating),
AI designers may consider quantifying the plausibil-
ity measure by abstracting the human assessment cri-
teria into computation metrics for a given task. The
quantification of human assessment is not meant to di-
rectly select or optimize XAI methods for clinical use.
Rather, XAI methods should be optimized for their
truthfulness measures (G3). Plausibility quantifica-
tion is meant to validate the capability of XAI methods
on their subsequent clinical utility to reveal AI deci-
sion flaws and/or biases, providing their high truthful-
ness score. Quantifying plausibility can make such a
validation process automatic, reproducible, standard-
izable, and computationally efficient. Similarly, the
human annotation of important features according to
physicians’ prior knowledge, which is used to quan-
tify plausibility, cannot be regarded as the “ground
truth” of explanation, because explanations (given that
they fulfill G3 Truthfulness) are still acceptable even if
they are not aligned with human prior knowledge, but
reveal the model decision quality or help humans to
identify new patterns and make medical discoveries.

Many approaches were proposed to quantify explana-
tion plausibility measure. These measures calculate
the agreement of explanation with human prior knowl-
edge annotations for a given task (Taghanaki et al.,
2019; Bau et al., 2017; Arun et al., 2021). To evaluate
whether the quantified plausibility measure is a good
substitute for human assessment, AI designers can use
a quantitative measure by calculating the correlation
between the plausibility metric and clinical users’ as-
sessment score, or use a qualitative measure by show-

ing physicians different explanations and their plausi-
bility score, and ask them to judge.

8.3. Operational consideration

Guideline 5: Computational efficiency.

Since many AI-assisted clinical tasks are time-sensitive de-
cisions (U1.2.1. Decision support for time-sensitive cases,
and hard cases), the selection or proposal of clinical XAI
techniques needs to consider the computational time and
resources. The wait time for an explanation should not be
a bottleneck for the clinical task workflow.

• Example:

In our evaluation, some gradient-based XAI methods
that use backpropagation can generate near real-time
explanations with an upper limit of up to 10 seconds.
This also enables their clinical use in generating real-
time interactive explanations.

• Counterexample:

For XAI techniques that require sampling input-
output pairs, their computational time may be too long
for physicians to wait for an explanation. In our eval-
uation, it took about 30 minutes for Shapley Value
Sampling method to generate one heatmap on a typi-
cal desktop computer with GPU.

• Assessment method:

AI designers can record the computational time and
resources for XAI method to assess whether the re-
quirement of computational efficiency is met. AI
designers may also need to talk to clinical users to
understand whether their clinical task includes time-
sensitive decisions, and their maximum tolerable wait-
ing time for an explanation on the task. For some XAI
methods, the computational time depends on the set-
tings of some specific parameters, such as the num-
ber and size of feature masks to generate the per-
turbed samples, and the number of samples. AI de-
signers need to identify the optimal set of parameters
to balance explanation accuracy and computational ef-
ficiency.
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