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Abstract

Technologically important nanomaterials come in all shapes and sizes. They can range from 

small molecules to complex composites and mixtures. Depending upon the spatial dimensions of 

the system and properties under investigation computer modeling of such materials can range from 

equilibrium and nonequilibrium Quantum Mechanics, to force-field-based Molecular Mechanics

and kinetic Monte Carlo, to Mesoscale simulation of evolving morphology, to Finite-Element 

computation of physical properties. This brief review illustrates some of the above modeling 

techniques through a number of recent applications with carbon nanotubes: nano 

electromechanical sensors (NEMS), chemical sensors, metal-nanotube contacts, and polymer-

nanotube composites.
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1. Introduction

More than fifteen years after its initial discovery, carbon nanotubes (CNTs) [1] continue to be 

one of the hottest research areas in all of science and engineering. The interest is driven by the 

possibility of several commercial applications [2-6], including: Field Emission-based Flat Panel 

displays, transistors, quantum dots, hydrogen storage devices, structural reinforcement agents, 

chemical and electromechanical sensors, nanoscale manipulators, probes, and tweezers. At the 

same time, the highly regular atomic structure of carbon nanotubes and the large degree of 

structural purity makes it accessible to accurate computer modeling using a variety of theoretical 

techniques. In fact, ever since the discovery of CNTs it has provided a fertile ground for 

theoretical simulations and analysis. The prediction of the dependence of CNT’s electronic 

structure on its chirality [7-9] came within a year of the initial experimental discovery [1]. Since 

then there have been a huge number of theoretical investigations [10-18] of growth mechanisms, 

structure and energetics of topological defects, mechanical and electrical response to various kinds 

physical perturbation, field-emission from tips of metallic CNTs, electronic effects of doping and 

gas adsorption, chemical reactivity, interaction with polymers, capillary effects, CNT-metal 

contacts, H- and Li-storage, thermal conductivity, encapsulation of organic as well as inorganic 

material, optical properties, as well as novel quantum effects. Computational approaches used in 

the above work include solving diffusion equations, QM simulations (DFT, tight-binding, and 

semi-empirical methods), classical molecular dynamics, kinetic Monte Carlo, Genetic algorithms, 

and Green’s-function-based electronic transport theory. This paper illustrates several of the above 

theoretical techniques through a few recent modeling studies of CNTs. In the following, we 

provide a brief overview of the theoretical techniques, which is followed by separate sections 

detailing each application example.

2. Theoretical Techniques: A brief overview

2.1. Density Functional Theory (DFT)
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In principle, all chemical information of any nanostructure can be obtained if one could solve 

the Schrödinger wave equation for all relevant electrons of the system. Ideally, all one should 

require as an input are the positions and element identity of all atoms describing the nanostructure. 

Such computational methods are called ab initio or First-Principles methods [19]. The Schrödinger 

equation of an interacting system of electrons cannot be solved analytically, and involves a 

number of physically motivated approximations and clever numerical tricks. The most well 

accepted formalisms can be broadly classified into two types: those based on the Hartree-Fock 

method [20], and those based on the Density Functional Theory (DFT) [21]. Due to better scaling 

with the number of electrons, DFT is quickly becoming the First-Principles technique of choice in 

technologically important problems. DFT is based on a theorem due to Hohenberg and Kohn [22], 

which states that all ground state properties are functions of the total electronic charge density ρ(r).  

The total energy of an electron gas can be formalistically written as a sum of the kinetic, potential 

(electrostatic), exchange and correlation energies. A practical implementation of this formalism 

into computer programs was made possible by the local density approximation (LDA) of Kohn 

and Sham [23], which recast the many-electron problem into a problem of single electrons moving 

in an average field of the other electrons and ions. The basic formalism has stood the test of time, 

although important subsequent developments on gradient corrections to the LDA and the 

exchange-correlation functional have increased the accuracy of DFT significantly. There are 

several different DFT codes available commercially, differing primarily in the choice of the basis 

functions in which the electronic wave functions are expanded, and the scheme of integration. For 

the work reported here, we used the DFT code DMol3 [24]. In the present work all electrons in the 

system were considered explicitly, and the electronic wave functions were expanded in a double-

numeric polarized (DNP) basis set. The calculations employed a “medium” integration grid, and a 

gradient-corrected exchange-correlation functional due to Perdew, Burke, and Ernzerhof [25]. 

2.2. Classical Molecular Mechanics
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Some of the applications discussed here, especially electromechanical sensing and polymer-

CNT composites involve long nanotube structures with several hundred to a few thousand atoms. 

First-principles DFT calculations on systems of such size is prohibitively expensive. An explicit 

treatment of electrons is also unnecessary in situations where no chemical bonds are made or 

broken during the process of interest.  In such cases one uses classical molecular mechanics (MM) 

employing interatomic interactions or force fields, which are parameterized analytical functions of 

the atomic positions only [26]. For the polymer-CNT composite system, we used a class II force 

field COMPASS [27], developed primarily for condensed organic systems.  For NEMS 

applications, on the other hand, a metallic AFM tip was modeled by a needle made up of Li atoms. 

Interactions in such a system were described by the Universal force field (UFF) [28], which is 

rules-based and has a broader coverage of the periodic table. In order to explore possible chemical 

rebonding in a localized region one often cuts a small model out of the original structure, and 

relaxes it with a quantum mechanical (QM) method of choice. Such a hybrid QM/MM method 

using DMol3/UFF was employed in the NEMS application, as discussed below in section 4.1.

2.3. Electronic Transport modeling – non-equilibrium Green’s function

Electromechanical and chemical sensors typically operate by changing electrical conductance 

of the active device when subjected to a mechanical perturbation or upon the absorption of a 

chemical species. Mesoscopic electron transport through molecular wires is best described by an 

energy-dependent transmission function T(E), which strongly depends on the (discrete) electronic 

levels of the molecular wire (in our case, a nanotube), the levels in the (usually metallic) leads or 

electrodes, and broadening of the electronic levels in the wire due to chemical coupling to the 

electrodes [29-33]. Such physics is most conveniently described under the formalism of non-

equilibrium Green’s function (NEGF). The starting point is the Green’s function of an isolated

system at an energy E, which is defined by the equation:

k
i

jkR
ijij GHSE δ=−⋅ ,)( (2.1)
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where δi
k is the Kronecker delta, and Sij = <i|j> and Hij = <i|H|j> are the overlap and 

Hamiltonian matrix elements between electronic states i and j respectively. However, we are 

interested in systems in which a nanoscale region is coupled with two semi-infinite electrodes at 

the two ends (the so called two-probe system). In such a system, the coupling to the electrodes 

(mathematically expressed in terms of the so-called self-energy matrices Σ) modifies equation 

(2.1) to the form:

k
i

jkR
ijRijLijij GHSE δ=Σ−Σ−−⋅ ,

,, )( , (2.2)

where ΣL,R are the retarded  self-energies of the left and the right  semi-infinite contacts. The 

transmission at each energy is then found [29-33] from the equation: 

 T E G GR ij
L jk

A kl
R li( ) ,,

,
,

,= Γ Γ (2.3)

where ΓL,R =i(ΣR
L,R -ΣA

L,R ) are the couplings to the left and right leads and the superscripts R and A

represent retarded and advanced, respectively. Finally, the total conductance of the tube is 

computed using Landauer-Büttiker formula [29-33]:
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∂
∂

, (2.4)

where fo(E) is the Fermi-Dirac function. The electronic states in the system, and more specifically 

the various matrix elements can be obtained either from first-principles or semi-empirical (e.g., 

tight-binding) quantum mechanical treatments. Also, if the interest is to investigate changes to the 

intrinsic electrical conductance of the nanotube, a common trick is to define “ideal” semi-infinite 

contacts based on defect-free unstrained pieces of the pristine nanotube. Such a procedure 

bypasses the necessity to model explicit metallic contacts, which is likely to involve additional 

chemical complexities on the top of extra computational burden. 

2.4. Mesoscale modeling – dissipative particle dynamics (DPD)



6

Many interesting problems in soft matter occur at length and time-scales sandwiched between 

the atomistic scale and the macroscopic continuum. Examples include polymer adsorption, 

polymer-surfactant interaction, microphase separation of block copolymers, formation and 

coalescence of droplets in emulsion, transport through living cells, and formation of polymer 

networks, to name just a few. Such systems can involve spatial inhomogeneities over length-scales 

ranging between 1-1000 nm, and exhibit dynamical phenomena over time-scales of 1 ms or 

greater. Problems at such length and time-scales cannot be directly addressed by traditional 

atomic-level molecular dynamics, or by conventional finite-element approaches that usually deal 

with phenomena at longer length scales. Rather, one needs to take recourse to computational 

techniques at the intermediate scale, called the mesoscale. Almost every day colloid and polymer 

scientists find examples of novel mesoscale morphologies and explore possible applications 

ranging from traditional high-impact polymer materials, high-performance elastomers, advanced 

drug-delivery capsules and biochips, artificial skin and smart gels, contact lens, to polymer 

displays. Over the last few years several different approaches have been developed to address 

problems at the mesoscale, which could be broadly classified as either particle-based or density-

based. In order to study polymer-nanotube composites, we have made use of a particle-based 

method called Dissipative Particle Dynamics (DPD) [34].

In DPD, one represents a group of atoms (typically entire functional groups) by a single bead, 

thereby substantially reducing the number of particles to be simulated. The positions and velocities 

of the spherical beads are propagated by standard integrators as in regular MD methods and 

thermally equilibrated through a Langevin thermostat. But rather than interact through Lennard-

Jones forces the beads feel a simple soft pair-wise conservative potential which embodies the 

essential chemistry of the system. This force is short range and has a simple analytic form 

resulting in fast computation per time-step. More importantly it provides an effective time-step of 

several picoseconds, 3-4 orders of magnitude larger than typical time-steps employed in a MD 

simulation.
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In the basic DPD formalism, the force if
r

on bead i contains three parts, each of which is 

pairwise additive:

∑ ++=
j

R
ij

D
ij

c
iji fff'f )(

rrrr
. (2.5)

The chemistry of mixing and segregation is governed by the term fij
c, which is modeled as a soft 

repulsion between beads i and j. It is a function of the relative separation between the beads and 

act along the line joining the two beads, thus being conservative (i.e. momentum conserving).

Groot and co-workers [34-36] have established a relation between the interaction parameters 

describing the fij
c term and the Flory-Huggins χ-parameter [37, 38] for beads i and j. Basically, the 

repulsion is proportional to an interaction parameter aij , and it is the excess interaction 

)( AAAB aaa −=∆ that determines whether components A and B will mix or segregate. The 

other two terms f D and f R are dissipative and random forces respectively, which in tandem act as a 

thermostat and result in fast equilibration to the Gibbs-Boltzmann canonical ensemble [39]. 

In the basic Groot-Warren theory, all the three interaction terms described above have the 

same finite range Rc, which sets the basic length-scale of the system, and is defined as the side of a 

cube containing an average number of ρ beads. Therefore Rc = ( ρ Vb)1/3, where Vb is the volume 

of a bead. One can think of ρ as a dimensionless bead-density, related to the average bead-

density ρ = 1/ Vb by the equation ρ =ρRc
3. Even in a heterogeneous system consisting of several 

different species, the basic assumption is that all bead-types (each representing a single species) 

are of the same volume Vb. This assumption is necessary in order to conform to the Flory-Huggins 

χ-parameter theory. 

In addition to the three forces described above, polymeric systems also require extra spring-

like interactions to describe covalent “bonding” between consecutive beads in a polymeric chain.

Hookean spring potentials have traditionally been used [34]:

2

2
1

ij
B

ij rkE = , (2.6)
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where the energy is dependent only on the separation of the beads ijr (expressed in reduced units, 

i.e., ijr = rij/Rc) and leads to a force ij
B

ij rkF = , where kB is the force constant. This scheme has 

been shown to successfully reproduce the end-point distribution and exhibit the correct scaling 

laws for chains as short as L=10, although a microscopic theory mapping the detail of the polymer 

to the DPD strings has not so far been developed. For kB it appears sufficient to use a value that

does not allow excessive stretching of the bond; kB = 4.0 has often been used and was used here 

for bonds in all polymer chains in the polymer-nanotube composite models. It should be noted that 

although the minimum bond energy is achieved for rij=0, overlapping of the beads is prevented by 

the soft repulsive bead-bead interaction, which works against this. There are no 1-2 or 1-3 

exclusions from the soft repulsive interaction for bonded DPD beads. 

In an extension to our previous work [40], and in order to represent the bending rigidity 

inherent to carbon nanotubes, we also added an angle dependent potential. This term is represented 

by a standard cosine bond angle expression as follows [41]:

)cos1(
2
1

ijkijk kE θθ += . (2.7)

Once the mesoscale morphologies are obtained by DPD, one could compute important 

physical properties of the nanocomposites by representing the morphology on a numerical grid, 

and perform finite element calculations [42-44]. For each of the grid elements such an approach 

specifies the fraction of each phase contained in that particular position, and uses proper 

combination rules to compute specific properties. Technical details can be found in Gusev et al. 

[42]. For CNT-polymer composites the properties of most interest are electrical and thermal 

conductivities.

3. Carbon nanotube (CNT) basics

A CNT can be geometrically thought of as a graphite sheet rolled into a seamless cylinder. A 

necessary condition for the cylinder to be seamless is that upon rolling, a graphite lattice point (n1, 



9

n2) coincides with the origin (0, 0). Thus, if a1 and a2 are the two lattice vectors of graphite, the 

CNT circumference is equal to the length of the vector (n1a1 + n2a2), while the CNT chiral angle θ

is defined as the angle between vectors (n1a1 + n2a2) and a1. With the choice of lattice vectors as in 

Fig. 1(a), the chiral angle and diameter of a CNT are given respectively by the formulas: 

θ = tan-1[ 3 n2/ (2n1 + n2)],     and (3.1)

π/)( 2
221

2
1 nnnnad ++= , (3.2)

where a = |a1| = |a2| ~ 2.45 Å is the lattice constant of graphite. The CNT diameter and chirality, 

and therefore its atomic geometry is completely specified by the two integers (n1, n2), which are 

referred to as the chiral indices of the CNT. Due to the symmetry of the graphite lattice, a 

nanotube of any arbitrary chirality can be defined in the range n1 ≥ n2 ≥ 0 and n1 > 0, which 

implies that the chiral angle θ for all CNTs lies between 0 and 30°. CNTs with the extreme chiral 

angles of 0 and 30° have special names: a CNT with θ = 0 (i.e. n2 = 0) is called zigzag, while a 

CNT with θ = 30° (n1 = n2) is called armchair. The names armchair and zigzag simply reflect the 

shape of the open edges of these CNTs (Figs. 1(b, c)). CNTs with any other chiral angles (i.e., 0 < 

θ < 30°) are called chiral. 

Armchair and zigzag CNTs possess small periodic repeat lengths along the nanotube axis, the 

repeat-length being only a (~ 2.45 Å) for armchair tubes and 3 a (~ 4.24 Å) for zigzag tubes. 

Chiral CNTs on the other hand can possess very long periodic repeat lengths depending on the 

ratio of its chiral indices. Thus, electronic structure calculations, especially those employing first-

principles Quantum Mechanics (QM) with periodic boundary conditions, are rarely performed on 

chiral tubes. However, this does not turn out to be a serious limitation. Since a CNT is just a 

rolled-up graphite sheet, one can obtain a good approximation to the CNT electronic structure 

simply by applying an appropriate boundary condition to the electronic structure of a graphite 

sheet, with a small perturbation due to the finite cylindrical curvature of the CNT surface. The 

boundary condition for a CNT with chiral indices (n1, n2) corresponds to the coincidence of the 

(n1, n2) lattice point of graphite with the origin (0, 0). It has been known for some time that a 
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single sheet of graphite (also known as graphene) is neither a semiconductor nor a metal, but a 

semi-metal [45] (i.e., a zero-bandgap semiconductor). This peculiarity implies that the electronic 

states of graphene are very sensitive to additional boundary conditions that a CNT mandates. 

Taking into account small effects due to curvature, such boundary conditions lead to the important 

result [7-9, 46-48] that all armchair tubes are metallic; CNTs with n1 – n2 = 3n (n = any positive 

integer), which includes the (3n, 0) zigzag tubes as a special class, are quasi-metallic (small 

bandgap ~ 10 meV or less, arising from curvature effects); and CNTs with n1 – n2 ≠ 3n are 

semiconducting, with a bandgap decreasing as 1/d as a function of tube diameter d (thereby 

converging to the zero bandgap of graphite in the limit d → ∞). Experimental measurements are 

often not able make the distinction between metallic and quasi-metallic tubes because of the 

presence of contact resistance and thermal effects. Thus for simplicity, experimentalists often 

classify CNTs as either metallic or semiconducting, and we follow the same convention here.

Chirality-dependent electrical conductance of CNTs is only one of its many fascinating 

properties [2-6, 13-17]:

• Single- or multi-walled CNTs are exceptionally strong, could possess a Young’s modulus as 

high as 1.2 Terapascal, six times the modulus of steel

• CNTs have very high thermal conductivity, as high as 6x103 W/(m.K) for isolated tubes [49].

• CNTs are elastic to the highest degree, and do not display plasticity behavior even under large 

deformation including stretching, bending, or twisting [13].

• Metallic CNT are 1-dimensional quantum conductors where electrons travel ballistically: there 

is no heat dissipation along the length of the CNT. All dissipation occurs at the contacts.

• CNTs can have huge aspect ratio (i.e., length to diameter ratio), as large as 105 or even more. 

Field-emission of electrons can, therefore, be induced from the tip of long metallic CNTs in the 

presence of moderate electric fields.

• Depending on its chiral indices, metallic CNTs can undergo metal-to-semiconductor transition 

under small tensile or torsional strain.
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• With a magnetic field parallel to its axis, A CNT can exhibit the Aharonov-Bohm effect.

• Atoms/molecules can be enclosed inside a CNT.

• A CNT can be doped both p-type and (to a lesser degree) n-type.

Before moving onto applications, it should be noted that CNTs come in two forms, i.e., one 

consisting of a single cylindrical layer (single-walled nanotubes, or SWNTs) and one comprising 

several concentric layers (multi-walled nanotubes, or MWNTs). The inter-layer interaction within 

MWNTs is primarily van der Waals type, and nearly all interesting properties are dominated by 

the individual layers. Therefore, for this paper, we confine all discussions on CNTs to SWNTs.

4. Application examples

4.1. Electromechanical sensors

Interest in the application of carbon nanotubes as electromechanical sensors got a significant 

boost from the pioneering experiment of Tombler et al [50], in which the middle part of a segment 

of a metallic nanotube suspended over a trench was pushed with an AFM tip. Beyond a 

deformation angle of ~ 10° the electrical conductance of the tube dropped by more than two orders 

of magnitude. The effect was found to be completely reversible, i.e., through repeated cycles of 

AFM-deformation and tip removal, the electrical conductance displayed a cyclical variation with 

constant amplitude.

The drop in conductance in the AFM-deformed tube was much higher than the 

computationally predicted values for tubes bent under mechanical duress. Such calculations, using 

both tight-binding [51] and semi-empirical Extended-Hückel type approaches [52] concluded that 

even under large bending angles the reduction in electrical conductance was less than an order of 

magnitude. For AFM-deformed nanotubes, in contrast, O(N) tight-binding calculations [53] show 

that beyond a critical deformation several C-atoms close to the AFM tip become sp3-coordinated. 

The sp3 coordination ties up delocalized π-electrons into localized σ-states. This would naturally 

explain the large drop in electrical conductivity, as verified by explicit transport calculations.
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Realizing that an AFM-deformed tube also undergoes tensile stretching (see Fig. 2), and a 

stretched tube belonging to certain chirality class can undergo significant changes in electrical 

conductance upon stretching, we carried out independent calculations to check the above sp3

coordination idea. The smallest models of CNTs necessary in such simulations typically involve a 

few thousand atoms, which makes First-Principles Quantum Mechanics simulations unfeasible. 

Therefore, as described below, we carried out a combination of first-principles DFT and classical 

molecular mechanics to investigate structural changes in a CNT under AFM-deformation. Bond 

reconstruction, if any, is likely to occur only in the highly deformed, non-straight part of the tube 

close to the AFM-tip. For such atoms, we used a DFT-based quantum mechanical description 

(~150 atoms including AFM-tip atoms), while the long and essentially straight part away from the 

middle was described accurately using the Universal force field (UFF) [28]. 

Because of known differences in electronic response of zigzag and armchair tubes to 

mechanical deformation, we studied a (12, 0) zigzag and a (6, 6) armchair tube, each consisting of 

2400 atoms. The AFM tip was modeled by a 6-layer deep 15-atom Li-needle normal to the (100) 

direction, terminating in an atomically sharp tip (see Fig. 3(a)). To simulate AFM-tip-deformation, 

the Li-needle was initially aimed at the center of a hexagon on the bottom-side of the middle part 

of the tube. The Li-needle tip was then displaced by an amount δ toward the tube along the needle-

axis, resulting in a deformation angle θ = tan-1(2 δ /L), L being the unstretched length of the tube. 

At each end of the tube, a contact region was defined by a unit cell plus one atomic ring (a total of 

36 and 60 atoms for the armchair and the zigzag tube respectively). The whole tube was then 

relaxed by UFF keeping the needle atoms and the end contact regions of the tube fixed. The 

contact region atoms were fixed in order to simulate an ideal undeformed semi-infinite carbon 

nanotube lead, and to ensure that all possible contact modes are coupled to the deformed part of 

the tube. Following the UFF relaxation, a cluster of 132 C-atoms for the (6, 6) tube, and a cluster 

of 144 C-atoms for the (12, 0) tube were cut out from the middle of the tubes. These clusters (plus 

the AFM-tip atoms), referred to below as the QM clusters, were further relaxed with the DFT-code 

DMol3 [24], with the end atoms of the cluster plus the Li-tip atoms fixed at their respective 

classical positions.
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Fig. 3(b) displays the tip-deformed QM-cluster for the (6, 6) tubes at the highest deformation 

angle of 25º considered in these simulations. Even under such large deformations, there is no 

indication of sp3 bonding (the same is true for a (12, 0) tube), and the structure was very similar to 

what was previously observed for a (5, 5) tube [54]. The absence of sp3 coordination is inferred 

based on an analysis of nearest-neighbor distances of the atoms with the highest displacements, 

i.e., the ones closest to the Li-tip. Although for each of these atoms the three nearest neighbor C-C 

bonds are stretched to between 1.45-1.75 Å, the distance of the fourth neighbor, required to induce 

sp3 coordination is greater than 2.2 Å for all tubes in our simulations. The electronic charge 

density in the region between a C-atom and its fourth nearest neighbor is negligibly small, and 

none of the C-C-C angles between bonded atoms in the vicinity of the tip deviates by more than a 

few degrees from 120°, suggesting that the C-atoms near the AFM-tip essentially remain sp2-

coordinated.

Following structural relaxation of the CNTs as described above, we computed the 

transmission and conductance through the deformed CNT using a NEGF formalism, as alluded to 

in section 2.3. The electrons were described using a nearest-neighbor sp3-tight-binding 

Hamiltonian in a non-orthogonal basis. The parameterization scheme explicitly accounts for 

effects of strain in the system through a bond-length-dependence of the Hamiltonian and the 

overlap matrices Hij and Sij, as in Ref [55]. 

Our results indicate that the conductance remains essentially constant for the (6, 6) armchair 

tube up to deformation as large as 25°. However, for the (12, 0) tube the conductance drops by a 

factor of ~ 0.3 at 15o, two orders of magnitude at 20o, and 4 orders of magnitude at θ=25°. Since 

sp3 coordination could be ruled out, the only logical explanation of the observed behavior could be 

due to stretching. We verified that by computing conductance changes due to pure tensile 

stretching and comparing the results with that of AFM-deformed tubes (Fig. 4). It should also be 

noted that the (12, 0) tube displays only a 70% drop in electrical conductance at θ = 150, while the 

tube in ref. [50] underwent more than two orders of magnitude drop. This can be explained by the 

fact that the (12, 0) tube has a diameter of only ~ 1 nm, while the experimental tube was of 
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diameter ~ 3 nm. A (36, 0) CNT, with diameter similar to the experimental tube, indeed displays a 

much higher drop in electrical conductance (Fig. 4).

In order to explain the differences in conductance drops of the armchair (6, 6) and the zigzag 

(12, 0) tubes as a function of strain, we turn to the literature where a considerable amount of 

theoretical work already exists [56-61]. An important result [60] is that the rate of change of 

bandgap as a function of strain depends on the CNT chiral angle θ, more precisely as proportional 

to cos(3θ). Thus, stretched armchair tubes (θ = 30º) do not open any bandgap, and always remain 

metallic. On the other hand, a metallic (3n, 0) zigzag tube (θ = 0) can open a bandgap of ~100 

meV when stretched by only 1%. This bandgap increases linearly with strain, thus transforming 

the CNT into a semiconductor at a strain of only a few percent. In general, all metallic tubes with 

n1 – n2 = 3n (n > 0) will undergo the above metal-to-semiconductor transition, the effect being the 

most pronounced in metallic zigzag tubes. An experiment as in ref. [50] is, thus, expected to show 

a decrease in conductance upon AFM-deformation for all nanotubes except the armchair tubes. 

Researchers are also beginning to explore electrical response of squashed CNTs [62-64], where 

sp3 coordination is a possibility.

In addition to the above results for metallic CNTs, theory also predicts that [60] for 

semiconducting tubes (n1 – n2 ≠ 3n), the bandgap can either increase (for n1 – n2 = 3n -2) or 

decrease (for n1 – n2 = 3n -1) with strain. These results have recently prompted more detailed 

experiments on a set of metallic and semiconducting CNTs deformed with an AFM-tip [65], as 

well as on CNTs under experimental tensile stretch [66]. Commercial applications from such work 

could lead to novel pressure sensors, transducers, amplifiers, and logic devices [67].

4.2. Metal-CNT contact

Measured conductance through a nanodevice depends strongly on the contact resistance of the 

metal electrodes, and CNT-based electronic devices are no exception. Besides, CNTs interacting 

with metal nanoparticles are gaining considerable interest as sensing materials, catalysts, in the 
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synthesis of metallic nanowires, as well as in nanoelectronics applications as Field-Effect-

Transistor (FET) devices. A systematic study of electron-beam-evaporation-coating of suspended 

CNT with various metals reveals that the nature of the coating can vary significantly depending 

upon the metal [68]. Thus, Ti, Ni and Pd form continuous and quasi-continuous coating, while Au, 

Al and Fe form only discrete particles on the CNT surface. In fact, Pd is a unique metal in that it 

consistently yields ohmic contacts to metallic nanotubes [69], and zero or even negative Schottky 

barrier at junctions [70] with semiconducting CNTs for FET applications. The Schottky barrier 

(for p-channel conductance) could, in principle, be made even lower if a higher work function 

metal, e.g., Pt is used. Unfortunately, Pt appears to form non-ohmic contacts to both metallic and 

semiconducting CNTs with lower p-channel conductance than Pd-contacted junctions.  

The computed interaction energy of a single metal atom on a CNT [71] follows the trend 

Eb(Ti) >> Eb(Pt) > Eb(Pd) > Eb(Au). These trends would suggest that Ti sticks the best to the CNT

and Au the worst, in good agreement with experiment. However, it does not explain why Pt 

consistently makes worse contacts than Pd, and why Ti, in spite of its good wetting of a CNT 

surface, yields Ohmic contacts only rarely [69]. A detailed investigation of the metal-CNT contact 

at full atomistic detail is a significant undertaking, and is likely beyond the realm of today’s first-

principles Quantum Mechanics codes. Nevertheless, as a first attempt, it is instructive to look into 

the interactions of CNTs with metallic entities beyond single atoms.

To this end, we carried out binding energy calculations of metallic monolayers, multilayers, 

and 13-atom clusters with a sheet of graphite, which is a representative of wide-diameter CNTs. In 

addition, the interaction of a semiconducting (8, 0) tube with flat metallic surfaces was also 

studied. Three metals were considered for concreteness – Au, Pt, and Pd. Calculations were 

performed with the DFT code DMol3 [24]. Details are given in ref. [72]. We only summarize the 

main results below:

i)  For isolated Au, Pd, and Pt atoms on a sheet of graphene, the respective binding energies are 

0.30, 0.94 and 1.65 eV respectively, i.e., in the same order as previous computed values on a (8, 0) 
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CNT [71]. The binding sites are also quite similar, although the binding energies to graphene are ~ 

40% smaller than to the CNT, whose finite curvature imparts higher reactivity.

ii) For monolayer or multilayer of metal atoms on graphene, most of the metal binding arises 

from metal-metal interaction rather than metal-graphene interaction. This is due to high cohesive 

energies of the metals in the bulk crystalline state. If only the metal-graphene part of the 

interaction is considered, the binding for Pt falls rapidly with layer thickness, and is less than that 

of Pd for 3-layer films, perhaps indicating possible instability of Pt films beyond a certain 

thickness. This is likely due to much higher cohesive energy of Pt as compared to Pd. For Au, 

isolated atoms as well as films interact very weakly with graphene, in agreement with 

experimentally observed poor wetting properties.

iii) 13-atom Pd clusters bind more strongly to the graphene surface than a 13-atom Pt cluster. 

The Pd cluster, in particular, gets significantly distorted from its ideal icosahedral geometry. Spin 

might play an important role in such binding calculations, and requires a more careful analysis. 

iv) We predict a critical cluster size of a few tens of metal atoms below which the metal should 

wet a graphene (and therefore CNT) surface uniformly, and above which non-uniform clustering is 

likely. Using a simple model we show that the critical cluster size for Pt is smaller than that for Pd, 

implying higher propensity of Pt to form a non-uniform coating unless it is deposited in the form 

of ultrafine nanoparticles.

v)  Finally, CNTs placed on flat Pt or Pd surface can form direct covalent bonds to the metal, 

which, along with the resulting deformation in tube cross-section might alter its electronic 

properties and impact performance of electronic devices based on such geometry. Interaction with 

a Au surface is weak, and the CNT cross-section remains circular. This phenomenon is illustrated 

in Fig. 5.

4.3. Chemical sensors
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Of the projected electronics-based application areas of CNTs, gas sensors appear to show a lot 

of commercial promise. Detection of gas molecules such as NO2, O2, NH3, N2, CO2, H2, CH4, CO, 

or even water is important for monitoring environmental, medical or industrial conditions. 

Recently, it was reported [73-77] that the measured electrical conductance of a semiconducting 

CNT at room temperature increases by three orders of magnitude upon exposure to 0.2 % of NO2, 

and decreases by two orders of magnitude upon exposure to 1% of NH3. Exposure to O2 also 

appears to consistently increase the electrical conductance, although the effect is not as dramatic 

as for NO2.  

Considering the fact that the CNT used in the experiment of ref. [73] was effectively p-type 

(i.e. holes were the majority carriers), the observed behavior of conductance changes can be 

rationalized through a simple charge transfer model in which NO2 molecules accept electrons from 

the CNT, thus increasing the hole population, while the NH3 molecules donate electrons, thus 

depleting the hole population and the conductance. However, such a conclusion for NH3 is 

inconsistent with theoretical results [78, 79] that NH3 molecules interact very weakly with pure 

CNTs, which would make charge transfer very difficult to explain. 

A logical resolution to the above problem would be to note that CNTs are likely to have some 

defects incorporated either thermally or during high-temperature growth conditions. Also, they are 

not in isolation, and surrounding environment (oxygen, water vapor), or the substrate, or metal 

contacts at the ends might directly or indirectly provide a mechanism of binding of the gas 

molecules. In this section, we report DMol3 results on the chemisorption of a NH3 molecule on 

structural defects on a CNT. Fig. 6 displays dissociated NH2 and H fragments chemisorbed on a 

(8, 0) CNT containing various types of defects: (a) pristine CNT; (b) a vacancy (V); (c) an 

interstitial (I); (d) a Stone-Wales (SW) defect [80]; and (e) an O2 molecule pre-dissociated into a 

SW defect (SW_O_O). Table 1 displays the reaction energetics (∆Ereac), activation barrier (∆Eact), 

and net electron transfer (∆q) from NH2 and H groups to the CNT for the five structures described 

by Fig. 6(a-e). We follow the convention that ∆Ereac < 0 for an exothermic process. The important 

results can be summarized as follows:
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i) Chemisorption to a defect-free CNT is an endothermic process with a large activation 

barrier, and therefore highly unlikely even at elevated temperatures. 

ii) At both V and I the dissociation becomes exothermic with energy gains of 2.49 and 2.26 eV 

respectively. The activation barrier for dissociation is rather low at V, and should happen readily 

at room temperature, while that at I is also possible, although at a slower rate. 

iii) At SW the dissociation is marginally exothermic, and the activation barrier is lower than 

that for a defect-free tube, although a bit high for chemisorption to happen readily at room 

temperatures. However, the presence of pre-dissociated O (SW_O_O) significantly enhances the 

stability of chemisorbed NH3 and makes the NH3 dissociation process nearly spontaneous.

iv) In all cases there is net electron transfer from the chemisorbed NH3 to the CNT. As 

compared to the defect-free tube, the amount of charge transfer to V increases almost two-and-a-

half fold, while that to SW_O_O is enhanced nearly seven-fold. It is also to be noted here that 

multiple O2 molecules could potentially dissociate on the same SW defect, thus providing 

dissociation sites for multiple NH3 molecules, leading to much higher net charge transfer to the 

SWNT.

v) Computed infrared (IR) spectrum of some of the defect structures of Fig. 6 provides proper 

interpretation of recent FTIR data [81]. See ref. [82] for more details.

Large charge transfer should qualitatively explain the observed drops in electrical conductance, 

although a quantitative comparison would require explicit electronic transport calculations. Just to 

appreciate the complexity of the problem, we have plotted the electronic density of states (DOS) 

for the defect-free tube and for the structures in Fig. 6(e) and 6(b) respectively in Figs. 7(a-c). The 

DOS plot of the defect-free pristine tube (Fig. 7a) shows a bandgap of 0.022 Hartree (=0.60 eV), 

in good agreement with previous DFT calculations [83]. Fig. 7(b) and 7(c) clearly demonstrate 

substantial modification to the DOS of Fig. 7(a), including splitting of states, introduction of new 

mid-gap states, and so on. The changes are due to a combined effect of the topological defects and 

that of the chemisorbed NH3, and a more detailed analysis is necessary to isolate the effects due to 

various factors. For the specific case of Fig. 7(c), we can see that the LUMO arises out of an 
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orbital primarily localized on the chemisorbed species at the vacancy (Fig. 7d). Such states are 

expected to significantly impact electronic conductance through the carbon nanotube.

Predicting stable chemical structures upon adsorbate dissociation and computing the electronic 

structure are only half of the puzzle. In order to truly predict the working of a sensor device, it is 

necessary to compute electronic transport and the resulting electrical conductance through the 

nanotube. To this end, we are studying transport properties of molecules chemisorbed on CNTs

using a multiscale approach involving DFT, the density functional based tight binding (DFTB) 

[84, 85] and NEGF methods. A DFT code (like DMol3) can generate optimized structures, which 

are rather limited in size with only one or two adsorbates. Using these structures as a template, we 

construct longer structures, which form the input to DFTB calculations that can handle many 

hundreds of atoms and is hence used to obtain the overlap and Hamiltonian matrices. Longer 

structures allow us to study sensor response as a function of defect dilution, an important 

consideration in the practical design and deployment of sensors. To gain further confidence in this 

multiscale approach we compared the DFTB- and DMol3-computed charge transfer between 

nanotube and adsorbates, and found quite good agreement.

As the dimension of the overlap and Hamiltonian matrices is in thousands, we exploit the one-

dimensionality of nanotubes to reconstruct the overlap and Hamiltonian matrices in a banded form 

by including more than nearest neighbor interaction. The diagonal blocks of this banded matrix 

typically correspond to a few rings of the underlying nanotube and adsorbates associated with 

these rings. This banded matrix is the input to our Green’s function code to compute the 

transmission probability, density of states and charge density [86]. 

The change in current flowing through nanotubes due to gas adsorbtion could be due to a 

variety of reasons: doping of nanotube bulk, modulation of the Schottky barrier between metal and 

nanotube, and change in transmission due to defect-induced scattering. There have been many 

studies of the role of doping using DFT calculations on periodic systems and clusters [87-91]. The 

role of Schottky barrier modulation due to gases has also been phenomenologically studied [92, 

93]. Our focus is on the adsorbate-induced change in the transmission function T(E) and the 
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density of states (DOS), and their dependence on the spatial density of adsorbates. One important 

aspect of the calculation is modeling of contacts. We currently treat the contacts either as semi-

infinite ideal CNT leads (as described in section 4.1) or as a metal with featureless density of 

states. While such a model will not capture the exact nature of bonding between metal contact and 

nanotube atoms in experimental situations, it is sufficient for studying changes in T(E) induced by 

adsorbates.

4.4. CNT-Polymer composites

The fact that the inclusion of even small amounts of nanomaterial coupled with appropriate 

processing steps appears to significantly improve mechanical, elastic, thermal, electrical, and 

optical absorpion properties have catapulted nanocomposites to being one of the first practical 

application areas of nanotechnology. One specific class of composite materials has recently 

received a lot of attention, i.e., in which carbon nanotubes (CNTs) are dispersed within polymeric 

matrices [4-6]. Potential applications can range from structural materials, to electromagnetic and 

heat shielding, to optoelectronics. The physical properties of CNT-polymer composite material 

depend on the uniformity of CNT dispersion and the degree of parallel alignment within the 

polymeric matrix, as well as the efficacy of interfacial bonding between the two systems. Since it 

is difficult to control many of these properties experimentally, modeling and simulations could 

provide crucial insight and design guidance. 

One of the biggest challenges to CNT-based nanocomposites is that nanotubes like to form 

bundles, and they are difficult to disperse uniformly within the composite material. In a CNT-

polymer composite, one would typically break up the CNT-bundle by supersonication, and then 

hope that each individual CNT is coated by polymer (see Fig. 8(a)), which prevents re-bundling of 

the CNTs. Successful dispersion using this strategy has been demonstrated in a few cases, most 

notably the modified Poly(p-phenylene vinylene) polymer (PmPV), which is able to disperse 

CNTs of a narrow diameter range, between 1.35 and 1.55 nm [94]. For successful dispersion, one 

clearly needs strong binding between the polymer and the CNT that can overcome strong van der 
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Waals interaction between the tubes themselves. One could obtain some useful information on this 

binding through classical molecular mechanics (MM) simulations on small segments of individual 

CNTs, as we have done using the COMPASS force field [27] on structures like Fig. 8(b), where 

chiral (12, 7) and (13, 6) CNTs were studied as specific examples [95].

However, the smallest size and time-scale to describe the morphology of CNT-polymer 

nanocomposites and its dynamical evolution is currently beyond the capability of standard 

classical force field simulations, and it is necessary to take recourse to more coarse-grained 

approaches. For this we have used a particle-based mesoscale approach, in which the polymer and 

the CNT are represented as strings of beads, connected by Hookean springs, and dissipative 

particle dynamics (DPD) [34] is used to hydrodynamically equilibrate such coarse-grained 

morphology. 

The chemistry of polymer-nanotube interaction is incorporated through relating the DPD bead-

bead repulsion to the Flory-Huggins χ-parameter [37, 38], which in turn is obtained by squaring 

the difference of pure-component solubility parameters (δ) [96]. The latter is defined as the square 

root of the cohesive energy density. Reliable average values of δ for long-chain polymers can be 

estimated from simple correlation methods [97]. On the other hand, CNTs are not polymers in the 

conventional sense. Nevertheless, since CNTs tend to form close-packed bundles, a good measure 

of their cohesive energy can be obtained from the the energy cost of isolating a CNT from a 

bundle. Computing such energy with the Universal force field [28] results in δ that is essentially 

independent of the CNT chiral angle, and that decreases as inverse square-root of the CNT 

diameter, as illustrated in Fig. 9. Flory-Huggins theory predicts that components with close 

enough δ, which leads to small DPD repulsion, should mix, while components with significantly 

differing δ should segregate. Thus, it follows from Fig. 9 that PMMA polymers should mix well 

with CNTs of diameters close to 1.4 nm (e.g. (10, 10) CNTs) (see Fig. 10(a)), but not with (15, 15) 

CNTs (diameters ~ 1.9 nm), see Fig. 10(b). The CNT solubility parameter curve of Fig. 9 explains

why PmPV polymers show selective affinity to CNTs of diameters ~ 1.5 nm [94]. 
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Through DPD simulations we are exploring several important effects: (i) parallel alignment of 

the CNTs through an externally applied dynamical shear [40]; (ii) improvement in dispersion by 

functionalizing CNTs [40]; (iii) effect on the morphology through reduced dimensionality; (iv) 

critical CNT concentration for creating percolation networks; (v) employing diblock and triblock 

copolymers for creating novel self-assembled patterns. All of the above could be studied as a 

function of CNT and polymer lengths, relative compositions, shear rates, and the attached 

functional groups. As a final step, the resultant mesoscale morphologies are being represented on a 

numerical grid, and important properties like electrical and thermal conductivities are being 

computed using a finite-elements-based code [42-44]. 

5. Challenges and future outlook

Through a few application examples with carbon nanotubes we have illustrated the use of a 

variety of theoretical techniques spanning a wide spectrum of length and time-scales. As better 

synthesis and manipulation techniques for CNTs emerge, more complex and newer applications 

will be proposed, which would provide exciting opportunities for theory, modeling and 

simulations. However, several challenges, both experimental and theoretical, remain as a 

roadblock to successful commercial deployment of most technologies. As with any nanosystem, 

contact remains a critical issue. Small atomic-level changes in the structure of the contact can have 

a significant impact on the contact resistance, and very little characterization data exists on most 

experimental contacts. Besides, even though DFT-based NEGF codes are becoming faster and 

more accurate, they are still too limited in realistically representing metal-CNT contacts. In CNT-

polymer composites, even if the CNTs are well dispersed one would need to control and study the 

mechanical, electrical and thermal coupling between polymer and CNT in much more detail than 

has been afforded to date. Standard DFT or tight-binding treatments, as described here, also does 

not take into account complex many-body electron-correlation effects that may arise at low 

temperatures, or Coulomb blockade effects when electrons in CNTs get highly localized due to 

large mechanical deformation or highly resistive contacts. For some applications it may also 
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become necessary to design a truly multiscale code, i.e., one that integrates multiple codes 

developed to address different length and time scales, limited examples of which exist in the 

literature [98-100].
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Table 1. NH3 dissociation (into NH2 and H) on a (8, 0) CNT: reaction energetics (∆Ereac), activation 

barrier (∆Eact), and net electron transfer (∆q) from NH2 and H groups to the CNT. Negative values of 

(∆Ereac ) denotes an exothermic process.

Substrate Resulting bonding 
configuration on CNT surface

∆Ereac
(eV)

∆Eact
(eV)

∆q from 
NH3 (el)

CNT (defect-free) C3-NH2 + C3-H 
(Fig. 6a)

+ 0.77 2.38 0.025

V C2-NH2 + C2-H 
(Fig. 6b)

- 2.49 0.35 0.063

I NH2-C2, bridge-H 
(Fig. 6c)

- 2.26 1.13 0.036

SW1 C3, 577-NH2 + C3, 577-H
 (Fig. 6d)

-0.17 1.50 0.044

SW1_O_O C3, 577, O-NH2 + C3,577-O-H  
 (Fig. 6e)

- 2.77 0.25 0.176

C3 = Regular 3-fold coordinated sp2 carbon on a defect-free CNT; C2 = C3 atom with a missing C-
neighbor; C3, 577 = sp2 carbon at a SW1 site shared by two heptagons and a pentagon; C3, 577, O = C3, 577
atom with a bridging O separating it from one of its C neighbors
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Figure captions:

Figure 1. Carbon nanotube (CNT) basics. (a) A graphite sheet with lattice vectors a1, a2. A few lattice 

points are indicated, as is the chiral angle θ for a (3, 1) CNT. Dotted and dashed lines are drawn along 

circumferences of armchair and zigzag tubes respectively; (b) a (5, 5) armchair tube; (c) a (9, 0) zigzag

tube.

Figure 2. Schematic showing stretching of a nanotube upon AFM-deformation.

Figure 3. (a) AFM deformation of a (6, 6) tube by a Li-needle. Respective deformation angles are 

indicated. Also indicated are the QM and the MM regions. (b) QM clusters at 250 of deformation 

showing no signs of sp3 coordination. 

Figure 4. Computed electrical conductance for (12, 0) CNT – comparison between AFM-deformed and 

uniformly stretched tubes. Inset displays density of states plot for the (12, 0) tube at the largest 

deformations, showing opening of a bandgap at the Fermi energy. The figure also displays the 

conductance of a (36, 0) tube subjected to a uniform stretch.

Figure 5. (8, 0) SWNT on metal surfaces: (a) Au (100); (b) Pd (111); (c) Pt (111). On the Au surface 

the SWNT is essentially weakly physisorbed. For Pd and Pt surfaces, the metal-adjacent C-atoms 

undergo sp2 → sp3 transition, which significantly deform the CNT cross-section. Binding on Pd is 

slightly higher than on Pt.

Figure 6. NH3 dissociated at various defects on a (8, 0) CNT: (a) defect-free tube; (b) vacancy; (c) 

interstitial; (d) a Stone-Wales (SW) defect; and (e) an O2 molecule pre-dissociated at a SW defect

(SW_O_O). Dissociated NH2 and H fragments are shown in ball representation. In Fig. 6(e), the 

second O breaks an O-C bond and creates a OH group single-bonded to the other C-atom.

Figure 7. Density of States (electrons/Hartree) around Fermi energy for: (a) defect-free tube; (b) NH3

chemisorbed at SW_O_O (structure in Fig. 6(e)); and (c) chemisorbed NH3 at a vacancy (structure in 

Fig. 6(b)). (4) LUMO orbital of Fig. 7(c), showing localized state at the vacancy site. For Figs. 7(a-c), 

the energy unit (x-axis) is in Hartree.
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Figure 8. (a) Schematic showing how polymers can coat and debundle nanotubes; (b) Atomistic model 

of a PmPV polymer segment on a (12, 7) chiral nanotube relaxed using the COMPASS force field.

Figure 9. Plot of calculated solubility parameter (δ) (in units of (J/cm3)1/2) versus tube diameter for 

armchair (filled circles) and zigzag (unfilled diamonds) CNTs. The published [97] solubility values for 

poly(urethane) (PU), poly(styrene) (PS), poly(methylmethacrylate) (PMMA), poly(m-

phenylenevinylene) (PmPV), polyethylene (PE), polypropylene (PP) and poly(dimethylsiloxane) 

(PDMS) are also indicated on the plot for comparison.

Figure 10. Dispersion of nanotubes in PMMA polymer: (a) (10, 10) CNTs showing good dispersion; 

(b) (15, 15) CNTs showing poor dispersion and formation of CNT bundles.
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