
Yield-aware Multi-Objective Optimization of a MEMS 
Accelerometer System Using QMC-Based Methodologies 

 
Murat PAK1., Francisco V. FERNANDEZ2., Gunhan DUNDAR1. 

1. Department of Electrical and Electronics Engineering, Bogazici University, Istanbul, Turkey. 
E-Mails: murat.pak@boun.edu.tr, dundar@boun.edu.tr 

2. IMSE, CSIC and University of Sevilla, Spain. 
E-Mail: pacov@imse-cnm.csic.es 

 

 
 

 
Abstract – This paper proposes a novel yield-aware optimization 

methodology that can be used for mixed-domain synthesis of robust micro-
electro-mechanical systems (MEMS). The robust Pareto front optimization of 
a MEMS accelerometer system, which includes a capacitive MEMS sensor 
and an analog read-out circuitry, is realized by co-optimization of the mixed-
domain system where the sensor performances are evaluated using highly 
accurate analytical models and the circuit level simulations are carried out by 
an electrical simulator. Two different approaches for yield-aware 
optimization have been implemented in the synthesis loop. The Quasi Monte 
Carlo (QMC) technique has been used to embed the variation effects into the 
optimization loop. The results for both two- and three-dimensional yield-
aware optimization are quite promising for robust MEMS accelerometer 
synthesis. 

 
 

I .INTRODUCTION 
 
Due to physical heterogeneity, the design of MEMS, where the 

mechanical sensor and the electrical circuitry are co-designed, is 
a complex process where trial and error approaches are still widely 
used. This implies long design times and increased cost, which can 
be overcome by implementing automated optimization-based 
design methodologies. Besides shortening the design times and 
enabling optimal designs, these methodologies can also be used to 
enhance the yield of the synthesized designs.  

 
Process variations play an important role in the robustness of 

mixed-domain MEMS and should be taken into account to avoid 
re-spins in the fabrication. In this paper, the yield-aware design of 
a MEMS accelerometer system is obtained by the co-optimization 
of the MEMS sensor and the read-out circuitry. For analog 
circuitry, it is a well-known fact that process variations have 
deteriorated along with the feature sizes scaling down; hence, the 
random physical variations originating from the manufacturing 
process have a much bigger impact on yield. The device geometry 
for the sensor is relatively large; however, even small variations 
on certain device parameters, such as the capacitive gap between 
the accelerometer electrodes, have a huge impact on the device 
performance. For that reason, considering these variations during 
the design process has become a must in order to guarantee robust 
system designs. 
 

For the synthesis of MEMS sensors, several optimization-
based approaches have been developed. In some of them, the 
sensor performances are evaluated by using special purpose 
MEMS simulators [1, 2] which are dedicated to MEMS design and 

modeling, while in others, accurate analytical models are used to 
speed up the optimization process [3, 4, 5].  
 

Multi-domain optimization of the MEMS has also been 
reported [6, 7, 8]. In [6], mixed-domain circuit simulations are 
used to obtain the system performance for the MEMS. However, 
the synthesis only focuses on the MEMS sensor instead of the 
overall system. In the approach in [7], the sensor and the circuit 
are jointly simulated using behavioral models for system level 
design. Hence, the co-optimization for the MEMS is done using a 
high-level architectural description, rather than using device-level 
design parameters. A top-down methodology which is based on 
optimizing the sensor first and then the circuitry is developed in 
[8]. This type of methodology has several drawbacks, such as non-
optimal partitioning of the specifications between sensor and 
circuitry, that cause suboptimal system designs [9].  

 
In [8-9], even though the co-optimization of the mixed-domain 

MEMS has been carried out, process variations have not been 
taken into account. The mixed-domain MEMS co-optimization 
together with yield optimization has been addressed in [10]. A 
VerilogA circuit-level model of the capacitive MEMS 
accelerometer is used to enable fast evaluation and ease 
integration into the electrical simulator. This work starts from an 
initial nominal design and tunes this design for its yield 
optimization. For that, it makes use of yield analysis and the 
worst-case distance method, especially suited for high-yield 
values and a small number of parameters. 

 
This paper presents a novel multi-objective yield-aware 

optimization methodology that realizes the co-optimization of the 
MEMS sensor and the read-out circuitry for both optimal and 
robust mixed-domain system performance. Unlike the approach in 
[10], it is not intended for yield optimization of an initial design, 
but for global design of hundreds of robust solutions, exhibiting 
the best trade-offs between different performances and with a 
reduced impact of process variations. The feasibility of the 
proposed approach is demonstrated by two- and three-dimensional 
optimizations of a capacitive MEMS accelerometer system.  

 
The paper is organized as follows. Section 2 introduces the 

MEMS to be optimized, reviews different techniques for mixed-
domain optimization as well as the yield-aware optimization and 
proposes the approach followed for the robust synthesis of the 
capacitive MEMS accelerometer. Section 3 describes the selection 



 

of the optimization parameters, design variables and the objectives 
to be optimized. Section 4 shows the results for two- and three-
dimensional yield-aware optimization of the MEMS 
accelerometer. Finally, Section 5 concludes the paper. 

 
 
II. PROPOSED MULTI-OBJECTIVE YIELD-AWARE 

OPTIMIZATION TECHNIQUE FOR THE MEMS 
ACCELEROMETER SYSTEM 

 
The accelerometer system used for the demonstration of the 

mixed-domain yield-aware optimization includes a capacitive 
sensor which was analytically modeled in [4] and a read-out 
circuitry based on a transimpedance amplifier [10]. Due to the 
different domains in the system, the MEMS sensor performance 
evaluations and the electrical simulations of the read-out circuitry 
are carried out separately. Optimizing the sensor and the circuit 
separately creates problems related to the composition of these 
individually optimized modules [9]. Moreover, the partitioning of 
the specifications (e.g., the partitioning of the system noise 
constraint which is contributed by the sensor and the amplifier 
during separate optimizations) is another problem. To address all 
these problems, a methodology based on the co-optimization of 
the system is developed. The technique is based on the co-
optimization of the sensor and the read-out circuitry.  

 
     The optimization includes two different phases. The first phase 
is the nominal optimization of the MEMS accelerometer while the 
second one is the yield-aware optimization which the robustness 
of the pre-optimized solutions are improved. Regardless of the 
optimization phase, at the begining of any iteration in the 
optimization loop, the sensor performance is evaluated using 
highly accurate analytical models in order to obtain the sensor 
performances. The sensor used is a capacitive MEMS sensor 
where the changes at the capacitance values generate the electrical 
signals to read-out the acceleration level. The capacitance values 
of the sensor are also evaluated using the analytical models and 
these capacitances create the capacitive interface circuit of the 
MEMS sensor. This capacitive interface circuit is integrated into 
the netlist of the read-out circuitry, together with the feedback 
components used in the read-out circuitry, in order to generate a 
system netlist. After that, system level electrical simulations are 
performed in order to get the MEMS performance such as the 
measurement range, system noise, total system cost, phase shift 
delta (phase difference of the system output from 90º) and the 
power consumption. This performance evaluation flow is shown 
in Figure 1. 
 
     As shown in Figure 2, at the beginning of the optimization, the 
algorithm runs for several iterations without including the yield 
concept, in order to create  nominally optimized solutions before 
enhancing the yield. Once the nominal optimization is finished, all 
objectives are multiplied by a factor which we call the “transition 

coefficient”. For the optimization, an evolutionary optimization 
algorithm, namely MOEA/D [11] is used. The MOEA/D 
algorithm replaces existing solutions by newly generated ones 
only in case there is an improvement in the performance 
objectives. By using the “transition coefficient” technique in our 
methodology, the replacement of solutions, which have slightly 
worse performance than the existing ones but with improved 
robustness, is promoted. After the update of the objective values 
using the transition coefficients, one of the yield-aware 
optimization methodologies reported below are run for several 
iterations to generate yield-aware PFs. 
 

 
 

Figure 1. Evaluation flow used for MEMS accelerometer system synthesis [9] 

 
 

 
 

Figure 2. Two-step yield-aware optimization methodology implemented 
 
A dynamic stopping criterion for the nominal optimization, 

which is based on the hypervolume technique known as Lebesgue 
measure [12], has been used. In order to empirically determine the 
optimal transition coefficients, a statistical study based on the 
trade-off between the optimization efficiency and the replacement 
probability of the robust solutions has been carried out.  



 

 
A.  Capacitive MEMS accelerometer system to be optimized 

 
The capacitive MEMS accelerometer is a combination of the 

MEMS sensor and the read-out circuitry. The MEMS sensor 
topology has one moving electrode and two fixed electrodes 
where two different gaps at the top and bottom sides create a 
differential capacitance pair with respect to the acceleration 
direction. These capacitance changes create a voltage signal [9]. 
The device topology for the MEMS capacitive accelerometer 
sensor is given in Figure 3. 

 

 
 

Figure 3. The MEMS capacitive accelerometer sensor 

 
One single MEMS sensor simulation with the MEMS module 

of the Comsol software [13] takes around 10 minutes. Therefore, 
running MEMS device simulations in an iterative loop is not an 
efficient solution for a system-level optimization loop. In a typical 
evolutionary optimization which is run with a population size N 
along G iterations, the number of device simulations needed will 
be N.G, which does not lead to a practical overall simulation time. 
Moreover, considering yield estimation with MC-based 
simulations, the use of fast, yet accurate analytical models is 
enforced [9, 14-16]. 

 
For the sensor topology used, highly accurate analytical 

models have been defined in [9] where the average model error is 
only 1.3%. The sensor performance is evaluated using these 
highly accurate analytical models in order to obtain the sensor 
performances, as well as the capacitance values of the sensor, at 
the begining of each iteration of the optimization loop. These 
capacitance values create the capacitive interface of the MEMS 
sensor and this capacitive interface circuit is integrated into the 
netlist of the read-out circuitry, to generate a system netlist which 
is evaluated using electrical simulations. 

 
Figure 4 shows the equivalent electrical circuit of the sensor 

which is used as a sensor interface for circuit-level simulations. 
The sensor equivalent circuit consists of two capacitances that are 

calculated via the sensor analytical model, as well as the sensor 
noise at the circuit’s input node.  

 
A conventional transimpedance amplifier (TIA)-based 

capacitance-to-voltage (C/V) topology, with a resistance and 
capacitance feedback has been selected for the analog read-out 
circuitry. In Figure 5, the system design with the MEMS sensor 
and the amplifier is given. Any change at the capacitance of the 
MEMS sensor creates a current which is converted into a voltage 
value at the output of the amplifier. 

 

 
 

Figure 4. The equivalent circuit used for the MEMS accelerometer sensor [9] 

 
 

 
Figure 5. MEMS accelerometer with the TIA-based C/V converter [9] 

 

 
B.  Co-optimization approach for the accelerometer system 

 
The co-optimization of the MEMS sensor and the read-out 

circuitry is performed such that, the sensor performance is 
evaluated at each iteration of the optimization loop initially, and, 
then, the capacitive interface generated is used for system level 
electrical simulations of the MEMS accelerometer system. After 
the optimization, a yield-aware PF of the MEMS accelerometer is 



 

generated so that the user can select any design point from the PF, 
which is guaranteed to have a high yield. 

 
The co-optimization technique implemented requires 

evaluations at both, the circuit and the sensor level. Sensor 
performance is evaluated using the accurate analytical models 
while circuit level simulations are performed for the interface and 
the read-out circuitry. The evaluation flow of the methodology 
was illustrated in Figure 1. 
 

As shown in Figure 1, in a single iteration, the sensor design 
variables are initially used to evaluate the sensor analytical model. 
The performance outputs such as noise and area are extracted from 
these evaluations, as well as the capacitance values which are used 
to obtain the capacitive interface of the MEMS sensor. This 
interface circuit is integrated into the netlist of the read-out 
circuitry in order to simulate the system level performance 
outputs, in the same optimization loop. The design variables used 
during the electrical simulations are introduced at this level as 
well. After the evaluation of the system level performance values, 
the optimization algorithm uses these outputs together with the 
design variables providing these performances, in order to 
improve the system performance in the following iteration. Figure 
6 shows the flow diagram of a single iteration of the implemented 
optimization methodology for the mixed-domain MEMS 
accelerometer. 

 

 
 

 

Figure 6. Evaluation of a single iteration in MEMS accelerometer synthesis using 
the proposed methodology 

 
The system level outputs, i.e., the measurement range, system 

noise, total system cost, phase delta, and the power consumption, 
are obtained from the circuit level simulations. These system level 
performances can be used as objectives or constraints.  

 
 

C. Yield estimation techniques and selection of QMC-based 
methodology 
 
      Several methodologies are used to embed the variation effects 
into the optimization loop by realizing the statistical analysis of 

the system performance. The common ones are MC simulations, 
MC with some efficiency enhancements, sensitivity-based 
techniques and design of experiment (DOE) based methodologies.  
 
     Due to high accuracy in yield estimation, MC simulations have 
become the standard technique for statistical analysis and the yield 
estimation of the integrated circuits. Typically, pseudorandom 
number generators are used to generate the MC sample sequences. 
Even though it is highly accurate, a typical yield estimation using 
MC may involve thousands of electrical simulations, decreasing 
the efficiency drastically. The most popular strategy to overcome 
this problem is to improve the sample generator mechanism. Low-
discrepancy sequences (LDS) are known as a high performance 
class of sampling. These sequences are deterministic and have no 
random component. The points in the sequence are generated to 
satisfy a uniform coverage among the sampling space. MC 
simulations which are using these deterministic sequences instead 
of the pseudorandom sequences are called Quasi-Monte Carlo 
(QMC) [17]. In this work, a QMC-based methodology has been 
implemented to accurately estimate the yield of the mixed-domain 
MEMS. More details on the sample size selection of QMC is given 
in Section 3. The deterministic sequence used is a Sobol set 
sequence [18]. The Sobol set is used for the initialization of the 
QMC samples of all different parameters (both sensor and circuit) 
with variability information included. 
 
 
D.  CW and IBY techniques 

The goal of this paper is synthesizing robust PFs where the 
yield of each design point on the front is optimized. In order to 
enhance the yield, the performance variations of the design points 
need to be improved. The methodology implemented in the paper 
focuses on decreasing the width of the variation space of the 
solutions on the final PF. In this paper, two different techniques 
have been implemented and compared. The illustration of these 
two different techniques using the variation space of a single 
solution is given in Figure 7. The single black star in the figure 
represents the performances of a given solution for nominal 
technology process parameters; while the blue circles represent 
the performances of the same solution for a number of samples of 
the technological process variations. The cloud width (CW) 
technique is based on the calculation of the Euclidean distances of 
the performances for all variation samples from the nominal point 
and finding the maximum distance among all samples for the two 
limit cases. The IBY (individual-based yield) on the other hand, is 
based on defining an acceptance region for the nominal solutions 
by allowing a certain amount of performance variation. The yield 
is calculated by checking the percentage of the variation samples 
covered by this acceptance region. The solution is penalized if the 
pre-defined yield constraint is not satisfied. Both techniques have 
been implemented as constraints in the optimization loop.  



 

 
 

Figure 7. Demonstration of the two yield-aware optimization techniques 

     In the two-dimensional front given in Figure 7, the CW is 
shown as the total distance between the lower left corner solution 
and the nominal solution and the distance between the upper right 
corner and the nominal solution.  

     If 𝑁 is the number of variation samples for each solution point, 
𝑗 is the index for the related sample point, 𝑝 is the population size, 
𝑖 is the index for the design point on the PF, 𝑚 is the number of 
objectives and finally 𝑘 is the index for the objective, the CW of 
each single solution point on the PF is calculated as: 

For all 1 ൑ 𝑖 ൑ 𝑝 
 

𝑥௟௜௠ଵ,௜ ൌ  ଵஸ௝ஸே
  ௠௔௫ ቊට∑ ൫𝑥௜,௝ െ 𝑥௜

௡௢௠൯
ଶ௠

௞ୀଵ ቋ, if ൫𝑥௜,௝ െ 𝑥௜
௡௢௠൯ ൐ 0       (1) 

 

𝑥௟௜௠ଶ,௜ ൌ  ଵஸ௝ஸே
  ௠௔௫ ቊට∑ ൫𝑥௜,௝ െ 𝑥௜

௡௢௠൯
ଶ௠

௞ୀଵ ቋ, if ൫𝑥௜,௝ െ 𝑥௜
௡௢௠൯ ൏ 0       (2) 

 
𝐶𝑊௜ ൌ 𝑥௟௜௠ଵ,௜ ൅ 𝑥௟௜௠ଶ,௜                        (3) 

 
     To avoid the dominance of any objective value in the Euclidean 
distance calculation, CW is calculated by using the normalized 
performance values, with respect to the nominal solution points. 
Hence, rather than the actual values of objectives, which can be 
very different from each other, the variation percentages of each 
single objective will determine the calculated Euclidean distances. 
 
     The IBY technique is based on defining an acceptance region 
for the nominal solutions by allowing a certain amount of 
performance variation. The yield value for each design point on 
the PF is calculated by checking the percentage of the variation 
samples covered by this acceptance region and penalize the 
solution by adding an extremely high value (considering the 
optimization has been formulated as minimization problem) if the 
pre-defined yield constraint is not satisfied. 
 

     If 𝑝 is the population size, 𝑖 is the index for the design point on 
the PF, 𝑚 is the number of objectives, 𝑘 is the index for the 
objective, 𝑑௞ is the user-input for variation percentage allowed for 
the 𝑘 

௧௛ objective, 𝑁 is the number of variation samples for each 
solution point, and finally 𝑗 is the index for the related sample 
point, the yield value for each design point on the PF is calculated 
as: 
 
For all 1 ൑ 𝑖 ൑ 𝑝 of each 1 ൑ 𝑗 ൑ 𝑁, for all maximization 
objectives: 
 

𝑌௜,௝  ൌ ൜
1, 𝑖𝑓 𝑥௞,௜,௝ ൏ ሺ1 െ 𝑑௞ሻ ∗ 𝑥௞,௜

௡௢௠

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                    (4) 

 
For all minimization objectives: 

 
𝑌௜,௝  ൌ ൜

1, 𝑖𝑓 𝑥௞,௜,௝ ൏ ሺ1 ൅ 𝑑௞ሻ ∗ 𝑥௞,௜
௡௢௠

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                    (5) 

 
And the yield for each solution is calculated as: 
 

𝑌௜ ൌ
∑ ௒೔,ೕ

ಿ
ೕసభ

ே
                    (6) 

 
 
E. The optimization flow 

A more detailed description of the robust multi-objective 
optimization of the MEMS accelerometer system is as follows. 
First, a nominal optimization is run for a number of iterations, 
which is determined by the stopping criterion given in Section 3, 
and this nominal optimization allows the solutions on the PF to be 
improved until a certain point and also makes sure the solutions 
are not stalled in order to allow replacement of improved solutions 
during the yield-aware optimization phase. In order to implement 
that, a dynamic stopping criterion based on a hypervolume 
technique called Lebesgue measure [12] has been developed. The 
applied technique stops the nominal optimization once the 
increase (improvement) of the Lebesgue Measure (LM) value at a 
certain iteration is not higher than a certain value. At the end of 
the nominal optimization phase, all objectives are multiplied by a 
certain factor, named the transition coefficient, in order to increase 
the replacement probability when performance variations are 
introduced.  

As pointed out above, the replacement can only take place 
when both improvement on the nominal solution (due to the 
working mechanisms of MOEA/D) and the improvement on the 
robustness of that solution (due to the CW and IBY constraints 
defined) are satisfied together. The transition coefficient, just like 
the stopping criterion for the nominal optimization, has been 
empirically determined. It should be noted that the selection of the 
transition coefficient creates a trade-off between the convergence 
speed of the algorithm and the quality of the final PF. If the 



 

number is set too low, the replacements will occur quickly; 
however, the quality of the solutions might be poor. On the other 
hand, setting this number too high decreases the probability of the 
replacements and slows down the entire optimization process, 
even though the replaced solutions have good quality. That occurs 
due to the working principle of MOEA/D, which replaces a 
solution only if there is an improvement. In order to empirically 
determine the optimal transition coefficient as well as the stopping 
criterion for the nominal optimization, several statistical checks 
based on these two parameters have also been studied. 

After the nominal optimization, CW or IBY based yield-aware 
optimization phase takes place. Once a solution is improved and 
it also has a good robustness (e.g., a satisfied CW constraint), it is 
replaced by the solution from the previous generation. MOEA/D 
runs for several iterations to generate improved solutions 
satisfying the yield-aware constraints, in order to obtain a PF with 
robust MEMS accelerometer design points.  

 

III. SELECTION OF THE OPTIMIZATION PARAMETERS, 
DESIGN VARIABLES AND OBJECTIVES 

 
     Several parameters for implementing the robust optimization 
of the MEMS accelerometer system need to be set. As mentioned 
in Section 2, there are several trade-offs involved in selecting 
these parameters. In the selection of the number of iterations for 
nominal optimization and the transition coefficient, the 
probability of the replacement of a solution with a robust one is 
the most important factor. Once this probability is high, during the 
yield-aware optimization phase, the algorithm allows the 
replacement of the design points which have both improved 
performance values and which satisfy the yield criterion. This 
results in a robust, diverse, and optimal PF approximation. The 
efficiency of the optimization needs to be considered as well.  
 
 
A.  Statistical study for the replacement mechanism enhancement 

 
In order to determine the optimization parameters, 20 different 

iteration counts and transition coefficient sets have been used to 
realize a two-dimensional robust optimization of the MEMS 
accelerometer. The population size for the optimization runs is set 
to 100 and the number of QMC samples is set to 50, which are two 
practical values whose selections are explained in more detail in 
the rest of the paper. The number of iterations for the yield-aware 
optimization phase was set to a fixed value: 25, in order to 
eliminate the impact of a varying parameter on the  statistical 
analysis experiments to determine the optimal transition 
coefficient. The results are shown in Table 1. 
 
 
 

Table 1. Statistical checks for optimization parameter determination 
 

Nominal 
Opt. 

iteration # 

Yield Opt. 
iteration # 

Transition 
Coef. 

Opt. Time 
(hours) 

# Robust 
Solutions 

Synthesized 

Lebesgue 
Measure 
*10^5 

0 100 NA 21.33 82 2.019 
50 50 0.92/1.08 11.25 88 2.098 
75 50 0.92/1.08 11.29 89 2.124 
95 25 0.92/1.08 5.33 96 2.167 
105 25 0.92/1.08 5.35 97 2.192 
115 25 0.92/1.08 5.36 54 2.193 
125 25 0.92/1.08 5.36 18 2.181 
95 25 0.94/1.06 5.32 97 2.18 
105 25 0.94/1.06 5.34 98 2.196 
115 25 0.94/1.06 5.37 41 2.195 
125 25 0.94/1.06 5.39 12 2.187 
95 25 0.96/1.04 5.33 98 2.189 
105 25 0.96/1.04 5.36 96 2.215 
115 25 0.96/1.04 5.36 28 2.204 
125 25 0.96/1.04 5.4 2 2.194 
95 25 0.98/1.02 5.33 60 2.184 
105 25 0.98/1.02 5.34 54 2.187 
115 25 0.98/1.02 5.36 2 2.193 
125 25 0.98/1.02 5.38 0 NA 
95 25 1.0/1.0 5.31 38 2.188 

 

 
     The LM for 1000 iterations (able to emulate infinite number of 
iterations considering no solution replacement, hence 
improvement, occured after the iteration 265 till 1000) has also 
been checked in order to identify how much the final PFs have 
converged to global optimum. This value is obtained for nominal 
optimization only by averaging three different runs and is equal to 
2.221 . 10ହ. It should be noted the closer any LM value gets to 
this value, the better the solutions. The transition coefficients are 
given as pairs. Considering the 0.94/1.06 pair for instance; the 
objectives to be minimized are multiplied by 1.06 and the 
objectives to be maximized are multiplied by 0.94. 
 
 
B. Determination of the stopping criterion for nominal and yield-
aware optimizations 

 
It can be seen in Table 1 that if the number of iterations for 

nominal optimization is set too low, the replacement of the 
solutions during the robust optimization can be easily realized; 
however, the quality of the solutions are really low, as suggested 
by the LM values. On the other hand, setting this number too high 
decreases the probability of the replacements by so-called 
“freezing” the design points. Hence, the number of the iterations 
for the nominal optimization needs to be selected carefully. The 
experiments for two-dimensional optimization show that, 105 
iterations is a good number for the nominal optimization phase, 
regardless of the selection of the transition coefficient. In order to 
adapt a dynamic stopping criterion and define a methodology 
based on these experimental checks, the Lebesgue Measure has 
been calculated at each single iteration for both two- and three-
dimensional optimizations. The stopping criterion applied is based 
on comparing the Lebesgue Measure at a certain iteration with the 



 

average of the past 20 iterations. If the improvement is less than 
0.15%, it is considered that the improvements in the LM are 
marginal and running further iterations will lower the probability 
of robust solution replacement in the yield-aware optimization 
phase. 
 

Three different runs of both two- and three-dimensional 
optimization has been realized according to the termination 
criterion based on the LM. For two-dimensional optimization, the 
nominal optimization has been terminated at iterations 104, 105, 
and 108, respectively, fitting perfectly with the empirically 
determined 105 value in Table 1. For three-dimensional 
optimization, the nominal optimization has stopped at iterations 
294, 288, and 289. The LM values obtained at each iteration are 
given in Figure 8 and Figure 9 for two- and three-dimensional 
optimizations, respectively. The iteration at which the stopping 
criterion was satisfied is also shown in the figures. 

 

 
 

Figure 8. LM through the iterations for two-dimensional optimization 
 
 

 
 

Figure 9. LM through the iterations for three-dimensional optimization 

The yield-aware optimization phase runs until two stopping 
criteria are satisfied. The first one considers the number of 
solutions in the Pareto Front that are replaced by robust ones. As 
discussed in Section 2, after the nominal optimization, the yield-
aware optimization starts, where the yield-aware Pareto Front is 
generated by replacing the non-robust solutions with the robust 

ones. Typically, after 20 to 22 iterations (slightly varying for 
different methodologies and also different runs of the same 
methodology), the number of solutions on the robust Pareto Front 
can achieve 95% of the initially set population sizes, meaning the 
majority of the solutions have been replaced with robust ones. 
This percentage has been set as the first stopping criterion. 

The second stopping criterion is based on the improvement of 
the nominal design points. The transition coefficient technique 
increases the probability of the replacement of the solutions by 
robust ones; on the other hand, it also allows the replacement of 
solutions with slightly worse performance. During the yield-aware 
optimization, the Pareto Front not only improves in terms of the 
number of robust solutions, but also keeps improving the nominal 
performances. The LM metric is evaluated after each iteration to 
check if the starting point value (LM obtained after the last 
iteration of the nominal optimization) has been reached. 
Typically, between 23 and 26 yield-aware iterations, this second 
stopping criterion is also  met. Once both criteria are satisfied, the 
yield-aware optimization phase is stopped to output the final 
yield-aware PF. 

C.    Determination of the transition coefficient 
 
     Once the nominal optimization is finished, all objectives are 
multiplied by the transition coefficient in order to increase the 
replacement probability of the robust solutions during the yield-
aware optimization. As described in Section 2, if the transition 
coefficient number is set too close to 1, which means keeping the 
original objective values, the probability of replacement will be 
too low. On the other hand, if the transition coefficient is much 
smaller than 1, the probability of replacement will drastically 
increase; however, the quality of the solutions will not be good. 
Hence, a very high number of iterations at the yield-aware 
optimization phase will be needed to obtain an optimal PF. As 
Table 1 suggests, after applying the stopping criterion which 
correspond to 105 nominal iterations, the selection of the 
transition coefficients as 0.96/1.04 is the optimal case. Using these 
values, not only 96 different robust solutions on the PF could be 
achieved (thanks to high replacement probability), but also a quite 
high LM (2.215 . 10ହ). 

 
 
D.  QMC sample size selection 
 
     The selection of the QMC sample size determines the accuracy 
of the yield estimation. Very low sample sizes will not be able to 
capture enough variation space, causing an inaccurate yield 
estimation. A very high sample size, on the other hand, will 
linearly increase the number of simulations; hence, the overall 
optimization time will not be practical anymore. An ideal way of 
selecting the QMC sample size is decreasing the sample size as 
much as possible, but also guaranteeing that the sampling leads to 



 

a good approximation of the probability distribution function. For 
that purpose, several QMC sample sizes have been compared by 
checking the variability information reflected on the different 
objectives. A probability plot technique called quantile-quantile 
plot, also known as QQ-Plot, which is a graphical method for 
comparing two probability distributions by plotting their quantiles 
against each other, has been used [19].  

One example for the QQ-Plot for different QMC sample sizes 
has been given in Figure 10, which shows the variability behavior 
of the total measurement range of the MEMS accelerometer 
system. The x axis is showing the standard normal quantiles, 
known as sigma or standard deviation in normal distribution, 
while the y axis is the original simulated values for one design 
point with process variations. The red line shows the quantiles of 
an ideal normal distribution function.  

    QQ-Plots have been obtained for QMC sample sizes of 25, 35, 
50, 75, 100 and 1000. An acceptable QMC sample size means a 
good coverage of the variation space; hence, an accurate yield 
estimation for the related objective values. As it can be seen from 
Figure 10, decreasing the QMC sample size to below 35 decreases 
the variation space covered drastically. Increasing the QMC 
sample size also increases the variation space covered; however, 
a very large sample size will require very high number of electrical 
simulations worsening the efficiency of the optimization 
drastically. The overall robust optimization time required for a 
two-dimensional, 100 population size Pareto Front is 5 hours 22 
minutes for a QMC sample size of 50. Increasing the QMC sample 
size to 100 increases the overall robust optimization time to 9 
hours 55 minutes with only a marginal improvement in the yield 
estimation, as the variation spaces shown in the Figure 10 are very 
similar. A QMC sample size of 1000 on the other hand, will 
enhance the accuracy of the yield estimation however, an 
estimated robust optimization time is slightly above 4 days, 
making it not a practical solution. It should be noted that the 
optimizations are run on a 1.9 GHz i3-3227 microprocessor. 
 
   In order to have a reasonable accuracy for yield estimation and 
also practical optimization times to obtain yield-aware Pareto 
Fronts, QMC sample size has been selected as 50 for two-
dimensional optimization. For three-dimensional optimization, on 
the other hand, a technique based on a linear increment of the 
QMC sample size has been applied at the yield-aware 
optimization iterations. Using this method, the QMC sample size 
per solution starts with 46 and goes up to 70 at the last iteration, 
with a linear increment of one sample per generation. With this 
methodology, replacements of the robust solutions are realized at 
the first iterations while the last iterations with higher QMC 
sample size guarantee the accuracy of the yield estimation. This 
methodology has been proposed as a generic technique and 
implemented on three-dimensional yield-aware optimization of 
the MEMS accelerometer system. 

 

 
 

Figure 10. QQ-Plots obtained by different QMC sample sizes for the 
“measurement range” objective of the MEMS accelerometer system   

 
E. Selection of the yield optimization constraints for CW and IBY 
 
     The CW defined in Section 2 is applied as a constraint to 
penalize the design points in case the CW calculated is above a 



 

certain value, in order to guarantee the survival of robust solutions 
only, during the yield-aware optimization iterations. For two-
dimensional optimization, the CW constraint has been selected as 
0.2 (meaning 20% two-dimensional normalized total distance) 
and 0.27 (meaning 27% three-dimensional normalized distance) 
for three-dimensional robust optimization of the MEMS 
accelerometer system. The main motivation for the selection of 
these values is the initial variability information of the design 
points obtained after nominal optimization. The average CW for 
the all design points on the PF has been calculated as around 0.3 
for two-dimensional optimization and around 0.4 for the three-
dimensional optimization. Setting up the above constraint values, 
the variability of the solutions generated after yield-aware 
optimization is guaranteed to have an improvement of above 30%, 
compared to the results of the nominal optimization. 
 
     For the selection of the IBY on the other hand, a practical value 
of 90% yield has been used as the constraint to decide whether a 
penalization will be applied to the solutions (by increasing the 
fitness values of the minimization problem) on the Pareto front or 
not. The acceptance region is defined by allowing 5% variation 
(higher or lower depending on the type of the objective) on the 
nominal solution. With the same motivation as the selection of 
CW constraint, the selection of these values is based on the initial 
variability information of the design points obtained after nominal 
optimization. The average yield for the all design points on the PF 
has been calculated as around 65% for two-dimensional 
optimization and around 66% for the three-dimensional 
optimization. Setting up the above yield constraint to each single 
solution on the PF, the yield of all the solutions generated after 
yield-aware optimization is guaranteed to be above 90% for the 
acceptance region defined.  
 
     More details on the CW and yield values obtained after 
nominal optimization, as well as the robustness improvements 
obtained, are given in Section 4. 
 
 
F. Design variables and objectives 
 
     The optimization loop includes 20 different design variables. 
Seven of them (beam and mass thickness, width and length values, 
as well as the capacitive gap) correspond to the MEMS sensor. 
These 7 design variables are used in order to obtain the 
performances such as noise and area using an analytical model, as 
well as the capacitance values which are used to generate the 
capacitive interface of the MEMS sensor. This interface circuit is 
integrated into the netlist of the read-out circuitry in order to 
simulate the system level performances, in the same optimization 
loop. The 13 electrical  design variables are the bias current, the 
feedback capacitance, the feedback resistance, transistor width 
and length values. Using these 13 design variables and the 
capacitive interface generated by the sensor evaluations, the 

system level performance is evaluated. Table 2 shows the system 
design variables and their allowable ranges.  
 

Table 2. Design variables and their allowable ranges 
 

 

Design Variable Minimum Value Maximum Value 

𝐿௠௔௦௦, 𝑊௠௔௦௦, 𝑊௕௘௔௠ 200 µm 3 mm 

𝑡௠௔௦௦ 250 µm 500 µm 

𝐿௕௘௔௠ 200 µm 2 mm 

𝑡௕௘௔௠ 50 µm 150 µm 

𝐶௚௔௣ 0.5 µm 1.5 µm 

𝑊௧௥௔௡௦௜௦௧௢௥௦ 0.5 µm 300 µm 

𝐿௧௥௔௡௦௜௦௧௢௥௦ 0.35 µm 30 µm 

𝑅ி 10 kΩ 1 MΩ 

𝐶ி 0.1 pF 10 pF 

𝐼௕௜௔௦ 0.5 µA 2.5 mA 

 
     There are 13 different transistors in the amplifier. 5 different 
W and 5 different L values have been defined as design variables 
since the transistors are in general working as pairs with the same 
geometry to create the current mirrors. All the 13 transistors use a 
certain factor of W and L values that are optimized as design 
variables. The amplifier topology used is given in Figure 11. The 
optimization for both nominal and yield-aware phase is realized 
by using these 20 design variables. 

 
 

Figure 11. The folded cascode amplifier topology used [20] 
 
     In order to embed the variation information for the MEMS 
sensor, 3-sigma process variation data from the Tubitak Turkey 
cleanroom facilities has been used. The process variations 
considered for the length and width of the mass and beam 



 

structures are the geometrical variations which take both 
lithography and etch variations into account. For the thickness of 
the mass and the beam structures, the variations of the deep Silicon 
etch process has been used. The variations on the capacitive gap 
are defined by the deposition variations of the sacrificial oxide 
layer which is later removed in order to complete the formation of 
the capacitive gaps between the electrodes. The variation 
modeling for MEMS is done by directly adding these fluctuations 
to the design variables, according to the Tubitak cleanroom 
process characterization data. 
 
     For the electrical simulations, BSIM3v3 models for a 0.35 µm 
CMOS technology were used. The process variation library for 
this 0.35 µm technology, which includes several statistical 
parameters for Monte Carlo simulations, has also been used in the 
optimization loop, to evaluate the variabilities in the system 
performance.  
 
     Several MEMS accelerometer system performances are 
obtained after the electrical simulations. They are the overall 
system manufacturing cost, total system noise, phase shift delta, 
measurement range and the power consumption.  
 
     Phase shift delta is defined as the phase difference of the 
system output from 90º. The phase shift delta at the output of the 
C/V converter circuit is an important quality parameter for the 
MEMS device since the output signal is likely to be modulated. 
 
     The total system cost, on the other hand, is calculated in USD, 
with the assumption of a hybrid manufacturing approach in which 
the sensor and the circuit including the feedback components are 
manufactured seperately and, then, bonded. The manufacturing 
cost is 58 𝑐𝑒𝑛𝑡𝑠/𝑚𝑚ଶ for the CMOS read-out circuitry and 16 
𝑐𝑒𝑛𝑡𝑠/𝑚𝑚ଶ for the sensor. These cost values were obtained from 
the cleanroom facility of Tubitak Turkey and they are the cost per 
area standard for the standard CMOS and MEMS manufacturing. 
With the additional two US dollars, which correspond to the 
packaging cost, the total cost of the overall system can be 
calculated as: 
 
𝑡𝑜𝑡𝑎𝑙௖௢௦௧ ൌ 0.58 ∗ 𝐴𝑟𝑒𝑎௘௟௘௖௧௥௢௡௜௖௦ ൅ 0.16 ∗ 𝐴𝑟𝑒𝑎௦௘௡௦௢௥ ൅ 2     (7) 
 
     In two-dimensional robust optimization, the total system noise 
and the measurement range has been selected as the objectives 
which the yield-aware PFs are synthesized for. For three-
dimensional robust optimization, phase shift delta has been added 
as the third objective while all other specifications are defined as 
system constraints. Table 3 shows the system level specifications 
for two-dimensional robust optimization while Table 4 shows the 
system level specifications for three-dimensional robust 
optimization of the MEMS accelerometer system. 
 

Table 3. System level specifications for two-dimensional optimization 
 

Performance - System Value 

Total System Noise ሺµ𝑔/√𝐻𝑧ሻ Minimize (Objective 1) 

Measurement Range (g) Minimize (Objective 2) 
Phase Shift Delta (º) < 3 

Power Consumption (µW) < 500 

System Manufacturing Cost 
(USD) 

< 5 

 
Table 4. System level specifications for three-dimensional optimization 

 

Performance - System Value 

Total System Noise ሺµ𝑔/√𝐻𝑧ሻ Minimize (Objective 1) 

Measurement Range (g) Minimize (Objective 2) 
Phase Shift Delta (º) Minimize (Objective 3) 

Power Consumption (µW) < 500 

System Manufacturing Cost 
(USD) 

< 5 

 
 

IV. YIELD-AWARE OPTIMIZATION RESULTS 
 
     In order to demonstrate the proposed methodology, two- and 
three-dimensional yield-aware optimizations have been run. 
 
 
A. Two-dimensional yield-aware optimization results 
 
     Two-dimensional robust optimization of the MEMS 
accelerometer system has been run using a population size of 100. 
Initially, the nominal optimization is run until the LM based 
stopping criterion is satisfied. This is based on calculating the LM 
value at each iteration and checking if the improvement compared 
to the average of past 20 iterations is below 0.15%. After the 
nominal optimization phase, the transition coefficients are applied 
and yield-aware iterations including the variability information of 
the CMOS, passive devices and the MEMS sensor are run until 
the two stopping critera defined in Section III-B are reached, in 
order to obtain robust MEMS design points on the final PF. Both 
CW and IBY methodologies have been implemented and 
compared for yield optimization. The QMC sample size used for 
the two-dimensional yield-aware optimization is 50. The yield-
aware optimization results have also been compared with the 
results obtained with nominal optimization to show the 
improvements on the device robustness. For the nominal 
optimization results (where no yield-aware optimizations are run) 
which are compared with CW and IBY in Tables 6-9, some extra 
nominal optimization iterations have been run (which is equal to 
the number of yield-aware iterations determined by the two 
different stopping criteria) after the stopping criterion of nominal 
optimization is satisfied, in order to make the overall number of 
iterations, hence the number of simulations for the nominal design 



 

points, equal. The overall yield-aware optimization time required 
has an average of 5 hours 25 minutes using a 1.9 GHz i3-3227 
microprocessor. In order to have a fair comparison, 8 different 
design points obtained using different techniques, which have 
similar system noise and measurement range values have been 
identified and the results are shown in Table 5. The Figure-of-
Merit for two-dimensional optimization is: 
 

𝐹𝑂𝑀ଶ஽ ൌ 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑅𝑎𝑛𝑔𝑒/𝑇𝑜𝑡𝑎𝑙 𝑆𝑦𝑠𝑡𝑒𝑚 𝑁𝑜𝑖𝑠𝑒         (8) 
 

Table 5. Comparison of eight adjacent solutions obtained with different 
techniques 

 

Design Point #1 CW IBY Nominal 
Noise 20.17 20.25 20.11 

Measurement Range 170.0 169.6 170.1 
FOM 8.43 8.38 8.46 
Yield 81.88% 90.12% 69.14% 

Design Point #2 CW IBY Nominal 
Noise 29.73 29.82 29.68 

Measurement Range 285.8 284.8 285.8 

FOM 9.61 9.55 9.63 
Yield 83.44% 90.72% 63.12% 

Design Point #3 CW IBY Nominal 
Noise 39.98 40.01 39.94 

Measurement Range 407.0 404.9 408.2 

FOM 10.18 10.12 10.22 
Yield 82.65% 90.81% 66.24% 

Design Point #4 CW IBY Nominal 
Noise 50.54 50.87 50.52 

Measurement Range 535.6 534.8 536.9 

FOM 10.60 10.51 10.63 
Yield 80.77% 90.44% 58.45% 

Design Point #5 CW IBY Nominal 
Noise 60 59.98 59.96 

Measurement Range 649.4 643.6 650.6 

FOM 10.82 10.73 10.85 
Yield 80.61% 91.83% 57.45% 

Design Point #6 CW IBY Nominal 
Noise 70.44 70.55 70.46 

Measurement Range 769.2 766.9 772.2 
FOM 10.92 10.87 10.96 
Yield 80.41% 92.22% 62.71% 

Design Point #7 CW IBY Nominal 
Noise 80.22 80.46 80.11 

Measurement Range 886.8 883.7 889.6 

FOM 11.05 10.98 11.10 
Yield 81.44% 90.20% 66.34% 

Design Point #8 CW IBY Nominal 
Noise 90.45 90.48 90.39 

Measurement Range 990.6 985.3 991.6 

FOM 10.95 10.89 10.97 
Yield 82.65% 94.89% 68.84% 

     In Table 6, the average yield values and the objective variations 
(defined as the two-dimensional CW as shown in Figure 7) 
obtained from all the solutions on the final PF is given. In order to 
calculate the yield values for each design point, an acceptance 
region is defined by allowing 5% variation (higher or lower 

depending on the objective) on the nominal solution. Hence, it 
should be noted that the yield values reported are based on the 
acceptance regions defined for each single nominal design point 
and comprising the robustness (low-variability) information of 
each single solution. 
 

Table 6. Comparison of the average yield and variation values for all the 
solutions on the two-dimensional PFs 

 

Performance \ Technique CW IBY Nominal 
2D Variation:  

Cloud Width (CW) 19.71% 17.50% 30.17% 
Yield 81.23% 90.55% 65.10% 

 
  The results suggest that for both CW and IBY techniques, the 
nominal design points generated by the yield-aware optimization 
tool are comparable with the outputs of a nominal optimization 
but with a much better yield performance. Hence, the robustness 
of the solutions on the final PF has been drastically improved. 
Using the CW technique, the yield obtained is improved compared 
to nominal optimization but it is worse than the yield values 
obtained by the IBY. The CW has marginally better nominal 
design points compared to IBY. 
 
 
 

B. Three-dimensional yield-aware optimization results 
 
     Three-dimensional robust optimization of the MEMS 
accelerometer system has been run by considering the phase shift 
delta as the third objective and using a population size of 200. 
Very high population sizes will require a high number of 
simulations, increasing the overall run time of the optimization. 
Especially, considering the yield-aware QMC simulations, the 
population size should not be kept too high. A small population 
size, on the other hand, will not be able to capture the entire search 
space of the solution space; hence, lowering the diversity of the 
solutions on the final PF.  
 
     Identical to the two-dimensional optimization, initially, a 
nominal optimization is run until the stopping criterion is satisfied. 
After applying the transition coefficients, yield-aware iterations 
are run until the two stopping critera are satisfied in order to obtain 
a three-dimensional PF with robust MEMS design points. CW and 
IBY methodologies have been both adapted in the optimization 
loop and compared for yield optimization. The QMC sample size 
used for the yield-aware optimization starts with 46 and goes up 
to 70 at the last iteration, with a linear increment of one sample 
per iteration. The goal is guaranteeing the accuracy of the yield 
values calculated at the final iterations while the first iterations can 
realize the replacements of the robust solutions relatively faster. 
This methodology has been applied to three-dimensional 
optimization only in order to enable a higher QMC sample size, 
which is required due to increased number of dimensions, with a 
reasonable optimization time. The overall yield-aware 



 

optimization time required has an average of 15 hours 20 minutes 
using a 1.9 GHz i3-3227 microprocessor. 
 
     The nominal optimization results have also been used for the 
yield comparisons. For the nominal optimization results obtained, 
some extra iterations (equal to the number of yield-aware 
iterations for robust optimization) have been run after the stopping 
criterion is satisfied, just like in the two-dimensional PF 
comparisons. 
 
     A direct comparison of 3 different design points per technique, 
with a very similar system noise, measurement range, and phase 
shift delta performance has been obtained as given in Table 7.  
 
     The Figure-of-Merit for three-dimensional optimization is 
calculated as:  
 
𝐹𝑂𝑀ଷ஽ ൌ 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑅𝑎𝑛𝑔𝑒/ሺ𝑇𝑜𝑡𝑎𝑙 𝑆𝑦𝑠𝑡𝑒𝑚 𝑁𝑜𝑖𝑠𝑒 ∗ 𝑃ℎ𝑎𝑠𝑒 𝑆ℎ𝑖𝑓𝑡 𝐷𝑒𝑙𝑡𝑎ሻ   (8) 

 
     The acceptance region for yield calculations is again defined 
by allowing 5% objective variation based on the nominal design 
points obtained. 
 

Table 7. Comparison of three adjacent solutions obtained with different 
techniques 

 

Comparison #1 CW IBY Nominal 
Noise 18.08 17.77 19.08 

Measurement Range 103.40 96.40 97.80 
Phase Shift Delta 1.86 1.81 1.62 

FOM 3.07 3.00 3.16 
Yield 80.00% 91.42% 65.72% 

Comparison #2 CW IBY Nominal 
Noise 58.87 59.33 58.31 

Measurement Range 450.60 450.10 457.40 
Phase Shift Delta 0.58 0.58 0.59 

FOM 13.20 13.08 13.30 
Yield 82.85% 90.00% 67.14% 

Comparison #3 CW IBY Nominal 
Noise 91.57 94.32 97.85 

Measurement Range 912.40 922.12 903.60 
Phase Shift Delta 1.44 1.43 1.32 

FOM 6.92 6.84 7.00 
Yield 81.42% 91.42% 62.86% 

 
     Table 8, on the other hand, shows the average yield values and 
the variations, defined as CW, obtained from all the solutions on 
the final PF.  
 
Table 8 Comparison of the average yield and variation values for all solutions on 

the three-dimensional PFs 
 

Performance \ Technique CW IBY Nominal 
3D Variation:  25.94% 22.02% 40.58% 

Cloud Width (CW) 
Yield 80.48% 90.69% 66.65% 

 
     The results for three-dimensional robust optimization also 
suggest that for both CW and IBY techniques, the nominal design 
points generated by the yield-aware optimization tool are 
comparable with the outputs of a nominal optimization but with a 
drastically better yield performance. The robustness of the 
solutions on the final PF has been improved with both 
methodologies. The FOMs obtained with the CW technique are 
marginally better than the ones obtained with the IBY; however, 
the yield of the solutions are significantly worse. Hence, the same 
findings observed in two-dimensional optimization is also valid 
for three-dimensional optimization. 
 
     Figures 12, 13, and 14 show the variations on the system 
performance for the first design points in Table 8 obtained using 
the CW methodology and the nominal optimization.  
 

 
 

Figure 12. Noise vs Measurement Range performance variation of a single 
solution for CW vs Nominal Optimization 

 

 
 

Figure 13. Measurement Range vs Phase Shift Delta performance variation of a 
single solution for CW vs Nominal Optimization 

 



 

 
 

Figure 14. Noise vs Phase Shift Delta performance variation of a single solution 
for CW vs Nominal Optimization 

 
 

     The QMC sample size is 70 as the results are extracted from 
the final PF. The variations on the nominal performances are 
shown as two-dimensional projections of the three objectives. 
 
     The results demonstrate the decrease in the variability obtained 
by using the yield-aware optimization methodology proposed. 
 
     In order to guarantee the accuracy of the yield estimation, a 
10,000 sample MC simulation has been run for the first design 
points compared in Table 7. Table 9 shows the yield values 
obtained using 10,000 sample MC analysis.  
 
     Since the QMC is deterministic and has no natural variance, 
there is no practical way to determine the confidence interval of 
the estimated yield. This issue has been address in [21] and [22] 
and a solution has been proposed and implemented by running a 
scrambled QMC, in which samples are randomly permuted, 
several times to obtain a stochastic variance. In order to obtain the 
confidence intervals for the estimated yield, this technique has 
been used by running 20 different scrambled QMC on the nominal 
design parameters of each design point. The confidence intervals 
of the yield estimations with 99% confidence level are also given 
in Table 9.   
 
     The confidence interval for MC (10.000 samples) with 99% 
confidence level, on the other hand, is calculated based on [23] 
and included in Table 9. 
 

Table 9. Comparison of the yield obtained using QMC and MC for the first 
solutions obtained with different techniques 

 

Comparison #1 CW IBY Nominal
Noise 18.08 17.77 19.08 

Measurement Range 103.40 96.40 97.80 
Phase Shift Delta 1.86 1.81 1.62 

FOM 3.07 3.00 3.16 
Yield: QMC 70 Samples 80.00% 91.42% 65.72% 

Yield: MC 10,000 Samples 76.15% 88.72% 61.63% 
Confidence Interval (99%) 

for 70 sample QMC 74.61%≤x ≤80.25% 86.92%≤x≤91.50% 60.61%≤x≤66.07% 
Confidence Interval (99%) 

for 10,000 sample MC 75.06%≤x ≤77.24% 87.91%≤x≤89.53% 60.41%≤x≤62.85% 

 

     The results show that the yield calculations based on 70 sample 
QMC and 10,000 sample MC (which can be considered as exact 
yield) are quite similar to each other, with around and less than 
4% deviation on the yield estimation. Hence, the QMC-based 
methodology can accurately model the yield for the MEMS 
accelerometer system optimized. Moreover, all MC simulation 
results are in the confidence interval calculated. 
 
 

V. CONCLUSION 
 
     The paper is focused on a novel yield-aware optimization 
methodology which can be used for the multi-objective robust 
optimization of the mixed-domain systems, such as MEMS. The 
methodology has been evaluated using a MEMS accelerometer 
system which includes a capacitive MEMS sensor and an analog 
read-out circuitry. In the synthesis loop, two different phases of 
optimization occurs. During the first phase, nominal optimization 
of the MEMS accelerometer system is performed until the 
stopping criterion defined. After that, a second phase, where the 
yield of the solutions on the PF are improved, follows. Two 
different approaches for the yield optimization have been 
implemented. A QMC-based methodology has been used to 
embed the variation effects into the optimization loop. The results 
for both two- and three-dimensional yield-aware optimization are 
quite promising for robust MEMS accelerometer sensor-circuit 
co-design. 
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