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This paper presents a novel architecture for fast parallel computation of co-

occurrence matrices in high throughput image analysis applications for which 

time performance is critical. The architecture was implemented on a Xilinx 

Virtex-XCV2000E-6 FPGA using VHDL. The symmetry and sparseness of the 

co-occurrence matrices are exploited to achieve improved processing times, 

and smaller, flexible area utilization as compared with the state of the art. The 

performance of the proposed architecture is evaluated using input images of 

various dimensions, in comparison with an optimized software implementation 

running on a conventional general purpose processor. Simulations of the 

architecture on contemporary FPGA devices show that it can deliver a 

speedup of two orders of magnitude over software.   
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1. Introduction 

The co-occurrence matrix is a powerful statistical tool which has proved its 

usefulness in a variety of image analysis applications, including biomedical 

[1,2], remote sensing [3], quality control [4], and industrial defect detection 

systems [5]. It captures second-order grey-level information, which is mostly 

related to human perception and the discrimination of textures.  

 Although the computational complexity of the co-occurrence matrix for 

an image of N×N dimensions is only O(N2), the processing power 

requirements for the computation of multiple co-occurrence matrices per time 

unit can be prohibiting for the analysis of large image streams, using software 

co-occurrence matrix implementations on general purpose processors. Such 

demanding applications include video analysis [1,6], content-based image 

retrieval [7], real-time industrial applications [5] and high-resolution 

multispectral image analysis [2]. 

Field Programmable Gate Arrays (FPGAs) are low cost, reconfigurable 

high density gate arrays capable of performing many complex computations in 

parallel while hosted by conventional computer hardware [8]. Their features 

enable the development of a hardware system dedicated to performing fast 

co-occurrence matrix computations, thus meeting the requirements of real-

time image analysis applications. On the other hand, the Very Large Scale 

Integration (VLSI) architectures could be considered as competitive 

alternatives [9]. However, they are not reconfigurable and they involve high 

development cost and time-consuming development procedures.  

Within the first FPGA architectures, dedicated to co-occurrence matrix 

computations, was the one presented in [5,6] for the computation of two 
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statistical measures of the co-occurrence matrix. However, these measures 

were being approximated, without needing to compute the matrix itself. In a 

later work, Tahir et al. [2] developed an FPGA architecture for the 

computation of 16 co-occurrence matrices in parallel. The implementation 

considerations include symmetry, but do not include sparseness. As a result, 

a large FPGA area is utilized even for small input images.  

 In this paper, we present a novel FPGA architecture for parallel 

computation of 16 co-occurrence matrices that exploits both their symmetry 

and sparseness to achieve improved processing times and smaller, flexible 

area utilization. 

 

2. The Co-occurrence Matrix 

The co-occurrence matrix of an NxN-pixel image I, comprises of the 

probabilities Pd,θ(i, j) of the transitions from a grey-level i to a grey-level j in a 

given direction θ at a given intersample spacing d:  
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where ),(, jiCd θ  = # {(m, n), (u, v) ∈ NxN: f(m, n) = j, f(u, v) = i, |(m, n)-(u, v)| = 

d, ∠((m, n), (u, v)) = θ}, # denotes the number of elements in the set, f(m, n) 

and f(u, v) correspond to the grey-levels of the pixel located at (m, n) and (u, 

v) respectively, and Ng is the total number of grey-levels in the image [11]. In 

accordance with [2], we choose Ng = 32 (5-bit representation).  

The co-occurrence matrix can be regarded symmetric if the distribution 

between opposite directions is ignored. The symmetric co-occurrence matrix 

is derived as ( ) 2/),(),(),( ,,,
Τ+= jiPjiPjiP ddd θθθ , where symbol T denotes the 
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transpose matrix. Therefore, the co-occurrence matrix can be represented as 

a triangular structure without any information loss, and θ is chosen within the 

range of 0° to 180°. Common choices of θ include 0°, 45°, 90° and 135° 

[1,2,6,12]. Moreover, depending on the image dimensions, the co-occurrence 

matrix can be very sparse, as the number of grey-level transitions for any 

given distance and direction, is bounded by the number of image pixels. 

 

3. Architecture 

The presented architecture was developed in Very high speed 

integrated circuits Hardware Description Language (VHDL). It was 

implemented on a Xilinx Virtex-XCV2000E-6 FPGA, which is characterized by 

80×120 Configurable Logic Blocks (CLBs) providing 19,200 slices (1 CLB = 2 

slices). The device includes 160 256x16-bit Block RAMs and can support up 

to 600kbit of distributed RAM. The host board, Celoxica RC-1000 has four 

2MB static RAM banks. The RAM banks can be accessed by the FPGA and 

the host computer independently, whereas simultaneous access is prohibited 

by the board’s arbitration and isolation circuits. 

 An overview of the proposed FPGA architecture is illustrated in Fig. 1. 

The FPGA includes a control unit, four memory controllers (one for each 

memory bank) and 16 Co-occurrence Matrix Computation Units (CMCUs). Up 

to four input images of Ng grey-levels can be loaded in parallel to the available 

RAM banks. In accordance with [2], a 5-bit grey-level representation was 

used, i.e. Ng = 32. However, in [2] each image is loaded into a corresponding 

RAM bank using a 5-bit per pixel representation whereas in the proposed 

architecture a 25-bit per pixel representation is used. Each pixel is 
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represented by a vector ],,,,[ 13590450 aaaaaa p=  that comprises of five 5-bit 

components, namely, the grey-level ap of the pixel and the grey-levels a0, a45, 

a90 and a135 of its neighboring pixels at 0°, 45°, 90° and 135° directions. 
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Figure 1. Overview of the FPGA architecture. 
 

  All FPGA functions are coordinated by the control unit which generates 

synchronization signals for the memory controllers and the CMCUs. The 

control unit also handles communication with the host, by exchanging control 

and status bytes, and requesting or releasing the ownership of the memory 

banks. Each CMCU is used for the computation of the co-occurrence matrix of 

an image for a particular direction and distance.  

 

3.1 Co-occurrence Matrix Computation Units 

Three main objectives have been determined upon the requirements of 

the proposed application, for the development of a CMCU: a) small FPGA 

area utilization to allow for a potential expansion of the proposed architecture 
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b) high throughput of one result per cycle to achieve a high per-clock 

performance, and c) low design complexity that will contribute to achieving 

high operation frequency. To meet these objectives we have considered 

various alternatives for the implementation of the CMCUs. These include the 

utilization of the existent FPGA BlockRAM arrays, the implementation of 

standard sparse array structures that store pairs of indices and values, and 

the implementation of set-associative sparse arrays. The BlockRAM arrays 

and the standard sparse array structures would not suffice to meet all three 

objectives. The BlockRAM arrays would lead to a larger area utilization 

compared with the sparse implementations. The standard sparse arrays 

would result in a lower throughput compared with the other two 

implementations, as the cycles needed to traverse the indices of the array are 

proportional to its length. In comparison, the set-associative arrays could be 

considered as a more flexible alternative that can be effectively used for 

achieving all our three objectives.  

Figure 2 illustrates a CMCU as implemented by means of an n-way 

set-associative array of Nc cells and auxiliary circuitry which include n 

comparators, a n-to-log2n priority encoder and an adder. 
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Figure 2. The Co-occurrence Matrix Computation Unit (CMCU). 
 

The set-associative arrays can be utilized for efficient storage and 

retrieval of sparse matrices, ensuring a throughput of one access per cycle 

with a latency of four cycles. An n-way set-associative array consists of n 

independent tag arrays (tags0 - tagsn-1) as illustrated in Fig. 2. The tag-arrays 

are implemented in the FPGA’s distributed RAM and each of them consists of 

Nc/n cells. The set-associative array uniquely maps an input pair of 5-bit gray-

level intensities (i, j) into an address of the Nc-cell data array. The data arrays 

are implemented using FPGA Block RAMs, each of which can hold up to 256 

co-occurrence matrix elements. The data array cells contain the number of 

occurrences of the respective (i, j) pairs. Each of these pairs is represented by 
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a single 10-bit integer k, resulting from the concatenation of i and j. This 

integer can be considered to consist of two parts: the first is called set(i, j) and 

comprises of the log2(Nc/n) least significant bits of k, whereas the second part 

is called tag(i, j) and comprises of the 10-log2(Nc/n) most significant bits of k. 

The increment of a data array cell that corresponds to an input pair (i, j) is 

implemented in four pipeline stages: 

Stage 1. The tag array cells located in the set(i, j) row are retrieved and 

stored in temporary registers. 

Stage 2. The values of the temporary registers values are compared with 

tag(i, j).  

  a. If a match is found the column number of the matching 

tag is written in the offset register.  

  b. If there are not any matches the tag(i, j) is stored in the 

tags array, at the first available cell of the set(i, j) row.  

Stage 3. The contents of both the offset register and set(i, j) form an 

address a. The data array element stored in a, is read. 

Stage 4. The value read in the previous cycle increases by one and it is 

written back to a.  

After all input pairs are read and processed the data array will contain 

the co-occurrence matrix of the input image. 

 

4. Results 

Experiments focusing to the evaluation of the time performance and 

the area utilization of the proposed architecture were performed using 
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standard texture images from the Brodatz album of 16x16, 32x32, 64x64, 

128x128, 256x256 and 512x512-pixel dimensions (Fig. 3) [13].  
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Figure 3. Texture image D9 from the Brodatz album cropped at various sizes. 
 

 

Given a triangular co-occurrence matrix of Ng = 32, the number of pixel 

pairs that can be considered for its computation in the case of a 16x16-pixel 

input image, is smaller than the total number of co-occurrence matrix 

elements, and reaches the number of all image pixels. Therefore, the co-

occurrence matrix will be sparse and Nc is set to a maximum possible value of 

16x16 = 256. In the case of a 32x32-pixel or a larger input image, the co-

occurrence matrix is not considered sparse as the number of all possible pixel 

pairs that can be considered for its computation is larger than the total number 

of its elements (i.e. 528). Therefore, Nc is set to 528. It is worth noting that the 

effect of sparseness in area utilization is amplified and becomes more useful 

as Ng increases. For example, if Ng was set at 64 or at 128 grey-levels, the 
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co-occurrence matrix could be considered sparse for images up to 32x32 or 

64x64-pixel dimensions, respectively. By following a grid search approach for 

the determination of n, it was found that the sixteen-way set-associative 

arrays (n = 16) result in the optimal tradeoff between time performance and 

area utilization. 

The proposed architecture, as implemented on the Xilinx Virtex-

XCV2000E-6 FPGA, operates at 38.4MHz and utilizes only 39% of the FPGA 

area for 16x16 input images, where the sparseness of the co-occurrence 

matrices is exploited. The use of larger input images results in approximately 

the same operating frequency reaching 38.2MHz and a larger area utilization 

of 45%. In comparison, the architecture proposed in [2] operates at 50MHz 

and utilizes a larger area percentage (59%) on an FPGA of the same type, for 

the same Ng, regardless of the image dimensions. The time performance 

reported in [2] for the computation of a total of 64 co-occurrence matrices in 

512x512-pixel 16-band multispectral images was 6.3x105 μs. For the same 

computations, the proposed architecture requires 28,041x4=1.1x105 μs (Table 

1), which can be interpreted in approximately 500% reduction of the 

processing time. This improvement in time performance is mainly attributed to 

the use of vectors a  for the retrieval of five pixels in one cycle instead of the 

five cycles required in the per pixel retrieval used in [2].  

Even though the implementation of the proposed architecture was 

based on the Xilinx Virtex-XCV2000E-6 FPGA, we run several simulations on 

state of the art FPGA devices, such as Virtex-XCV2000E-8 (19200 slices), 

Virtex2-XC2V6000-6 (33792 slices) and Spartan3-XC3S4000-5 (27648 

slices). The processing times achieved for the computation of 16 co-
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occurrence matrices in hardware and software respectively are presented in 

Table 1.  

 
Implementation Frequency Image Dimensions (pixels) 

  (MHz) 16x16 32x32 64x64 128x128 256x256 512x512
Hardware    
XCV2000E-6  38 30 113 442 1,756 7,013 28,041
XCV2000E-8 51 22 83 323 1,283 5,123 20,483
XC3S4000-5 72 15 59 230 915 3,653 14,606
XC2V6000-6 83 13 51 198 788 3,149 12,590

Software    

P
ro

ce
ss

in
g 

tim
es

 (μ
s)

 

Athlon XP 2700+ 2,167 1,371 3,247 10,018 36,320 143,600 562,080
 
Table 1. Processing times (μs) achieved for various input image dimensions 

using various FPGA devices, and software.  

 

Software processing times were measured using an MMX optimized 

software implementation developed in C programming language and 

executed on an Athlon XP2700+ processor. The optimizations were based on 

the guidelines suggested by Intel and AMD [14,15]. These include contiguous 

arrays allocation for improving CPU caching performance, system call 

overhead reduction by allocation of static arrays for data used iteratively 

within the program, usage of efficient C library functions such as memset() 

and memcpy(), and vectorization of several functions using the MMX 

instruction set [16]. Additional code fine-tuning includes code rearrangement 

for breaking dependencies in tight loops, dereferencing of commonly used 

pointers and reduction of the function call overhead using inline functions. 

The results reveal the superior performance of the hardware 

implementations of the proposed architecture over the software 

implementation. The speedup factors achieved in hardware vary depending 



 12

on the FPGA model used. The minimum speedup is approximately 20 in the 

case of XCV2000E-6 for 512x512 images, whereas it exceeds 100 in the case 

of XC2V6000-6 for 16x16 images. The variance in speedup is mainly 

attributed to the different frequencies of the various FPGA models and does 

not correlate with the sparseness of the co-occurrence matrix, which mainly 

affects the area utilization. In Table 1 it can be observed that the increase in 

processing times as the image dimensions increase by two is not exactly 

divided by four, as it would have been expected by the quadruplication of the 

image pixels. This is explained by the constant time period spent for resetting 

the FPGA circuit.   

 

5. Conclusions 

We presented a novel FPGA architecture which is capable of 

performing fast parallel co-occurrence matrix computations in grey-level 

images. It performs better than the state of the art FPGA architecture 

presented in [2]. The proposed architecture and the architecture in [2] have 

two main differences pinpointed to the input data format and the co-

occurrence matrix representation. The vector representation of the input 

image pixels and the use of set-associative arrays for the sparse 

representation of the co-occurrence matrix result in a higher time performance 

and smaller area utilization respectively. Its advantageous time performance 

compared with the architecture in [2] and with an optimized software 

implementation for general purpose processors, makes it appealing for use in 

high throughput applications. Moreover, the smaller FPGA area it utilizes, 

allows for the exploitation of the remaining area for other tasks, such as the 
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computation of co-occurrence matrix features [11], or the computation of more 

co-occurrence matrices in parallel, if the host board is equipped with more 

RAM banks.  

It is worth noting that the computation of co-occurrence matrices in 

conjunction with feature extraction in the same FPGA design still remains a 

challenge. In [2], two different FPGA designs, one for the computation of co-

occurrence matrices and one for the feature extraction, are interchangeably 

configured on a single FPGA. 

Within our future perspectives are the extension of the current 

architecture for efficient on-chip extraction of multiple textural features from 

grey-level and color images, in the same FPGA design, and its integration in a 

complete, hardware/software system with real-time video analysis capabilities.    
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