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Abstract 

In this paper, we present a distributed computing framework for problems characterized by a highly irregular search tree, whereby no 
reliable workload prediction is available. The framework is based on a peer-to-peer computing environment and dynamic load balancing. 
The system allows for dynamic resource aggregation, does not depend on any specific meta-computing middleware and is suitable for 
large-scale, multi-domain, heterogeneous environments, such as computational Grids. Dynamic load balancing policies based on global 
statistics are known to provide optimal load balancing performance, while randomized techniques provide high scalability . The proposed 
method combines both advantages and adopts distributed job-pools and a randomized polling technique. The framework has been suc­
cessfully adopted in a parallel search algorithm for subgraph mining and evaluated on a molecular compounds dataset. The parallel 
application has shown good scalability and close-to linear speedup in a distributed network of workstations. 
© 2007 Elsevier B.V. All rights reserved. 

Keywords: Distributed computing; Peer-to-peer-computing; Dynamic load balancing; Irregular search problems; Subgraph mining 

1. Introduction 

A large class of applications relies on implicitly defined 
search trees and are based on a Depth First Search 
(DFS) strategy, e.g. problems solved using the divide and 
conquer strategy. In order to reduce running times and to 
cope with larger problem instances, partitioning a DFS 
tree, i.e. parallel backtracking [I], has been widely and suc­
cessfully adopted in many applications. It is quite straight­
forward to partition the search tree to generate new 
independent jobs, which can be assigned to idle processors 
for asynchronous execution. In general, a static partition of 
the search space ean be effectively adopted when job run­
ning times can be estimated. However, in many real-world 
problems the search space is highly irregular and no work 
load estimation is available. In the present work, we define 
the irregularity of a computational problem in terms of the 
empirical probability distribution of the task complexity, 
given a partitioning strategy. In particular, highly irregular 
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problems are characterized by a power-law distribution of 
the task running times in a wide range. For such irregular 
problems it is essential to provide a dynamic partitioning 
strategy along with a Dynamic Load Balancing (DLB) 
policy. 

Many DLB algorithms for irregular problems have been 
proposed in the literature and their properties have been 
studied. However, most of them rely on assumptions that 
do not hold in general. Some DLB techniques for irregular 
problems are based either on the assumption of uniform or 
bounded task times, or on the availability of workload esti­
mates. In [2], uniform time tasks are assumed. In [3], it is 
assumed that the smallest task time is comparable to or 
greater than network communication time for a task. In 
[4], the computation, is first evenly partitioned among pro­
cessors and, subsequentially task migration is adopted to 
maintain load balance in the system. In [5], several DLB 
algorithms are analyzed and their scalability properties 
are provided in terms of the isoefficiency analysis. This 
study particularly addresses irregular problems where it is 
not possible to estimate the size of work at processors . 
Nevertheless, the assumptions in [5] require the guarantee 
that the computation cost of jobs is always greater than 
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the relative transmitting time. However, this is not the case 
in highly irregular problems where a poor work-splitting 
mechanism generates a high number of trivial tasks and 
makes the DLB policy inefficient. Moreover, such a prob­
lem becomes more relevant in large computational environ­
men ts, like Grids, with multi-domain and heterogeneous 
resollrces. 

We present a distributed computing framework for 
highly irregular search problems, whereby no reliable 
workload prediction is available. The framework is based 
on a Peer-to-Peer (P2P) computing environment and a 
DLB policy. The DLB method employs a randomized tech­
nique that is enhanced by global statistics to cope with 
highly irregular search problems. The adoption of heuris­
tics based on global statistics provides good load balancing 
performance, while the P2P approach and the randomized 
technique provide high scalability. 

The proposed distributed computing framework has 
been developed in Java according to a multi-agent model. 
It has been successfully adopted to deploy and test a paral­
lel application of the subgraph mining problem for the dis­
covery of relevant fragments in molecular compounds. 

The rest of the paper is structured as follows. In the next 
section we introduce the test application, i.e. the frequent 
subgraph mining problem applied to molecular com­
pounds, and discuss the irregular computation that charac­
terizes it. In Section 3, we introduce the general 
architecture of the distributed computing framework and 
describe the dynamic load balancing policy. Section 4 pre­
sents a performance evaluation of the parallel application. 
Finally, we provide conclusive remarks and future research 
directions. 

2. Frcqucnt subgraph mining 

Algorithms to find frequent subgraphs in a set of graphs 
have received increasing attention over the past years. E.g., 
in molecular biology it is often desirable to find common 
topological properties in large numbers of drug candidates. 
Existing methods attempt to implicitly organize the space 
of all possible subgraphs in a lattice, which models sub­
graph relationships. The search then reduces to traversing 
this lattice and reporting all subgraphs that fulfill the 
desired criteria. 

The Frequent Subgraph Mining (FSM) problem [6] is 
formulated in ana logy to the Association Rule Mining 
(ARM) problem [7]. While in ARM the main structure of 
the data is a list of items (itemset) and the basic operation 
is the subset test, FSM relies on graph and subgraph 
isomorphism. 

The subgraph isomorphism test is known to be an NP­
complete problem [8]. Furthermore, there exists no known 
polynomial algorithm for isomorphism testing of general 
graphs, although the problem has not been shown to be 
NP-complete. In [9] the problem has been assigned to a 
specia l graph isomorphism complete complexity class, 
which falls between the P and NP-complete classes. 

However, it is known that it can be solved in polynomial 
time for many restricted classes of graphs, such as bound­
ed-degree graphs [iO]. 

Nevertheless, the combinatorial nature of the problem 
poses a great challenge. The computational complexity of 
the underlying problem and the large search space to be 
explored often render sequential algorithms useless. In such 
cases, distributed and parallel high performance computing 
becomes necessary for practical applications. 

2. 1. Molecular fragments discovery 

The problem of selecting relevant molecular fragments 
in a set of molecules can be formulated in terms of frequent 
subgraph mining in a set of graphs. Molecules are repre­
sented by attributed graphs, in which each vertex repre­
sents an atom and each edge a bond between atoms. 
Each vertex carries attributes that indicate the atom type 
(i.e., the chemical element), a possible charge, and whether 
it is part of an aromatic ring. Each edge carries an attribute 
that indicates the bond type (single, double, triple, or aro­
matic). Frequent molecular fragments are subgraphs that 
have a certain minimum support in a given set of graphs, 
i.e., are part of at least a certain percentage of the mole­
cules. We assume that the molecular compounds in the 
dataset can be classified in two groups. We refer to the 
two classes of molecules as the focus set (active molecules) 
and its complement (non-active molecules). For example, 
during the high throughput screening of drug candidates, 
compounds are tested for a certain active behavior and a 
score associated to their activity level is determined. In this 
case, a threshold (thres) on the activity value allows the 
classification of the molecules in the two groups. 

The aim of the data mining process is to provide a list of 
molecular fragments that are frequent in the active dataset 
and infrequent in the inactive dataset. These topological 
fragments carry important information and may be repre­
sentative of those components in the compounds that are 
responsible for a positive behavior. In this case, two 
parameters are required : a minimum support (minSupp) 
for the focus subset and a maximum support (max Supp) 
for the complement. 

Such discriminative fragments can be used to predict 
activity in other compounds and to guide the synthesis of 
new ones. For example, they can be adopted as features 
in a multidimensional space for molecular compounds clas­
sification [II] and clustering [12]. 

Based on existing ARM algorithms for market basket 
analysis [7,13] proposed methods for subgraph mining con­
duct depth-first [14,15] or breadth-first searches [16]. 

2.2. Irregular search space 

An analysis of the sequential algorithm for molecular 
fragments discovery in [14] points out the irregular nature 
of the search tree. An irregular problem is characterized 
by a highly dynamic or unpredictable domain. In this 



application, the complexity and the exploration time of the 
search tree, and even of each single search tree node cannot 
be estimated . The data mining nature of the problem 
makes the time required to visit a node unpredictable. In 
our tests a single node exploration can take from few mil­
liseconds to several minutes. It is known that the pruning 
techniques, which this kind of search algorithms heavily 
rely on, make the estimation of the tree exploration time 
very difficult. Depth and fan of the search tree are also 
unpredictable. 

In order to provide evidence of the above consider­
ations, we collected statistics of the running time required 
by the sequential algorithm for the expansion of each 
search tree node (Fig. I(a)) and for the complete visit of 
the associated subtree (Fig. I(b)) . Both are characterized 
by a power-law distribution. This may not come as a sur­
prise with regard to the subtree visiting time, since it is well 
known that this kind of distribution is typical for aggrega­
tions of multi-scale hierarchies such as trees. However, it is 
interesting that the node expansion time shows the same 
type of distribution. This can be tentatively explained by 
the structure of the input data and the node expansion step 
in the sequential algorithm. Each search tree node repre­
sents a molecular fragment and the expansion step consists 
of the extension of the fragment in all possible successors 
by adding a bond and, eventually, an atom. Intuitively, this 
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produces a high number of fast fragment exte nsions due to 
the extension rules of the algorithm [14], and a smallnum­
ber of computationally long extensions. The i rregularity of 
the search space implies that the work load of a task is not 
known in advance and cannot be estimated . As a conse­
quence, in a parallel approach a static load balancing pol­
icy cannot be adopted or it would produce very poor 
results. Moreover, no assumption can be made on the low­
er bound of subtask workloads. We cannot assume, for 
example, that the subtask transmission time is less than 
the computation cost associated. This makes most dynamic 
load balancing policies unsuitable for this problem and 
others with similar characteristics. 

In the next section, we describe the proposed distributed 
computing framework for problems with a highly irregular 
search space, which has been designed for heterogeneous 
and distributed computing resources. 

3. Distributed computing framework 

The parallel application is mainly a work load distribu­
tion process based on dynamic partitioning of the search 
space, a dynamic load balancing policy and a peer-to-peer 
computing model. A P2P communication framework natu­
rally fits with a receiver-initiated DLB approach and pro­
vides good scalability properties. Each peer registers at a 
centralized bootstrap node to join the system and to con­
tribute to the computation task. Peers can directly 
exchange system information and computation subtasks, 
since each process implements both client and server func­
tionality. The bootstrap node provides initial configuration 
information and a dynamic peer directory service. 

The model of each peer process is a multi-agent system 
(Fig. 2), where each agent is an independent local entity 
(Java thread) with a specific role. Agents exchange and 
react to asynchronous messages by taking proper actions. 
Three main agent protocols have been designed for, respec­
tively, the peer-to-peer system management, the DLB pol­
icy and the job statistics maintenance. MPI-like methods 
have also been adopted for synchronous communication. 

The Communication Manager (eM) provides an inter­
face to network communication and is responsible for the 
peer-to-peer system management (the setup and mainte­
nance of the distributed environment). The implementation 
of our P2P computing framework allows the dynamic 
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Fig, 2, Peer a rchitecture, 
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joining of peers and provides a basic fault-tolerance mech­
anism in case of abrupt peer disconnection. eM also imple­
men ts some typical MPI methods, which are used to 
implement higher level functionalities, such as agent mes­
sage delivery, synchronization barriers, reduction opera­
tions, etc. 

The Data Manager (OM) provides an interface to access 
the input data in a distributed environment. Typically, the 
OM at the boot node reads the data from a local file and 
transfers them to the other OMs. OM also provides basic 
mechanisms to partition the data among the peers. In our 
tests the entire dataset is simply sent to each peer. In the 
present work we tested a parallel application that adopts 
a task parallel approach and does not include any form 
of data parallelism. 

The Job Manager (JM) implements the OLB algorithm 
based on distributed job pool, as described more in details 
in the Section 3.2. 

The Worker executes assigned jobs by means of the 
algorithm (Miner) for a particular application. It provides 
an interface to which a sequential algorithm must comply 
in order to be embedded in the system. Three methods have 
to be implemented to adapt the sequential code. The exe­
cute method is used to invoke the execution of a sequential 
task. This simply corresponds to a wrapper of the sequen­
tial algorithm to comply with the Worker interface. A par­
titioning method for work splitting (split) divides a 
sequential task into two independent subtasks. The work 
splitting mechanism depends on the particular data mining 
applications. In applications based on a search tree, the 
search nodes are typically stored in a stack and the work 
splitting mechanism corresponds to the selection of one 
or more elements of the local stack to generate and donate 
a subtask to an idle Worker. A third method (merge) com­
bines two partial results. In the particular data mining 
application, this operation involves graph and subgraph 
isomorphism tests to discard duplicates and to select only 
the closed frequent fragments. The three 'methods will be 
invoked asynchronously at each peer of the distributed sys­
tem according to the parallel algorithm and the dynamic 
load balancing policy. 

The Worker must also provide mechanisms to convert 
internal/external representations of jobs (e .g. search tree 
nodes) . Since we adopt a distributed memory model, inter­
nal representations of the algorithm data have to be con­
verted to external ones, which do not depend on the 
particular memory address space. This generates extra 
computation that contributes to the overall parallel over­
head. The internal representation depends on the particular 
application and the sequential algorithm [14]. e.g. In the 
tested application, for the external representation we have 
enhanced the SMILES syntax for molecular compounds 
in order to embed partial state information from which 
the computation can be restarted in a different machine. 

The parallel algorithm (Fig. 3) is composed by three 
phases. In the first phase the P2P computing environment 
is configured for the execution of the computational tasks . 

The second phase is the exploration of the search space and 
corresponds to the computation in the seque ntial algo­
rithm. When the search is completed, in the third phase, 
local lists of partial results have to be merged and collected 
at a single node to be reported to the user. 

The search space partitioning, the OLB policy, the ter­
mination detection of the search phase and the final reduc­
tion of results are discussed in the next sections. 

3. 1. Search space partitioning 

Partitioning a OFS tree, i.e. parallel backtracking [I], 
has been widely and successfully adopted in ma ny parallel 
applications. In general, it is quite straightforward to par­
tition the search tree to generate new independent jobs, 
which can be assigned to idle processors. In this case, no 
synchronization is required among remote jobs. 

. A job assignment contains the description of a node 
removed from the search tree of the donor Worker, which 
becomes the root node from which the receiving Worker 
starts a new search. The job assignment must contain all 
the information needed to continue the search from exactly 
the same point in the search space. 

Often the efficiency of search algorithms relies on 
advanced pruning techniques, which require specific state 
information to be propagated in the nodes along the search 
tree. Thus, a job description must include the search·node 
state necessary to rebuild the same conditions in the dis­
tributed search tree as in the sequential one (e.g. structural 
pruning state in [14]). This requires an explicit representa­
tion of the relevant implicit state for the donated search 
nodes. 

During the parallel execution of subtasks, each Worker 
maintains only a local and partial list of results that are 
found . 

. The partitioning of the search space is carried out by the 
Worker upon request of the local JM, according to the 
OLB algorithm. . 

3.2. Dynamic load balancing 

In general, a OLB policy has to provide a mechanism to 
fairly distribute the load among the processors using a 
small number of generated subtasks to reduce the commu­
nication cost and the computational overhead. In particu­
lar, in applications based on irregular search-trees the OLB 
policy has to carefully select (I) a suitable subtask donor 
among all the workers and (2) a non-trivial subtask among 
the search nodes in the loca l stack of the donor. The qual­
ity of both the selection of donors and the generation of 
new sub tasks is fundamental for an effective and efficient 
computational load distribution. These two tasks are car­
ried out, respectively, by the OLB policy and the work 
splitting-mechanism. 

In problems with uniform or bounded subtask times the 
generation of either too small or too big jobs is not an 
Issue. In our case, irregular job granularity may decrease 
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Bootstrap node: Each Peer node: 
Setup Jlhase 

setup and manage the P2P system 
distribute input data 

register to bootstrap node 
request configuration and data 

Search phase 
create and assign first job (search 
U'ee search node) 
maintain global job statistics 

execute assigned jobs 
request and donate jobs 
according to the DLB policy 

partition the local search tree 
for donation 
send requests to potential 
donors when idle 

maintain and propagate a local 
list of potential donors 
maintain and propagate local job 
statistics for termination 
detection 

Reduction phase 
Perform a reduction operation as Perform a reduction operation on 

a logical tree topology root of a logical tree topology 

Fig. 3. Pseudocode of the parallel application. 

the efficiency and limit the maximum speedup tremendous­
ly . While a coarse job granurarity may induce load imbal­
ance and a bound on the maximum speedup, a fine 
granularity may decrease the efficiency of the distributed 
system and more processing nodes would be required to 
reach the maximum speedup. Thus, it is important to pro­
vide an adaptive mechanism to find a good trade-off 
between load balancing and job granularity. 

]n order to accomplish this aim we introduce a mecha­
nism at the donor to reduce the probability of generating 
trivial tasks and of inducing idle periods at the donor pro­
cessor itself. A set of heuristic rules [17] filters out many 
potentially trivial nodes. Although the number of very 
small subtasks has been significantly reduced, they cannot 
be completely discarded by the use of the rules; the visiting 
time of search tree nodes still has a power-law distribution. 
A randomized OLB technique further restricts the possible 
choices for new subtasks by selecting promising donors. 
This, once more, changes the distribution of the subtask 
visiting time. The final actual distribution is not available 
because it is the result of a parallel execution where sub­
tasks are dynamically generated; task donation alters the 
task (subtree) at the donor itself. 

Both components, the work splitting technique for· the 
subtask generation and the OLB policy for donor selection, 
contribute to the overall OLB efficiency, scalability and to 
its suitability to irregular problems and to heterogeneous 
computing resources. The OLB approach we have adopt­
ed, the Ranked Random Polling (RRP), is a receiver-initiat­
ed algorithm based on a decentralized job-pool system and 
a centra lized server for job statistics, as described in the 
next sections. 

3.2. 1. Decentralized job pool system 
Each 1M manages a local pool of available jobs, which 

can be assigned to remote 1Ms upon request and to the 

local Worker when id le. This simple communication proto­
col is shown in Fig. 4. Requests are based on a soft state. 
Each 1M also keeps a list of donated and not completed 
jobs in order to support mechanisms for fault tolerance 
and termination detection. The 1M also issues requests to 
the local Worker for the partitioning of the local search 
space Uob generation). These activities are regulated by 
two thresholds of the job pool. A job can be donated to 
a remote 1M only if the current job pool size is above a 
donation threshold Jd , which is constant and typically set 
to I (since there is only one local Worker). This way at 
the completion of a local job, the request and reception 
of a new one can be overlapped to the execution of a job 
from the local pool. Overlapping computation with com­
munication of job request/assignment helps to avoid, or 
at least to reduce, most of the communication overheads. 
Only the latency of the first job assignment and of the last 
job-completed message cannot be avoided at all. 

The job generation activity is enabled when the job pool 
size is below a spawning threshold Js. In a centralized job 
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Fig. 4. Decentralized job-pool system. 
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pool approach, is can be easily set to the number of partic­
ipating nodes. All nodes send job requests to the central­
ized job pool manager. In a decentralized system the 
threshold is must be independently set and adapted at each 
peer. 

The determination and dynamic adaptation of the 
threshold i s is critical for the effectiveness of the DLB in 
the system. is adaptation depends on the donor selection 
policy as described in the next section . 

3.2.2. Donor selection 
When the job pool size is below the threshold i d , the JM 

selects a donor among the other peers to request a new sub­
task . A job request sent to a peer has the effect that the 
remote JM will solicit its local Worker to remove a search 
tree node from the local stack in order to distribute part of 
the search tree. In general, not all workers are equally suit­
able as donor. Workers that are running a mining task for 
a longer time, have to be preferred. This choice can be 
motivated by two reasons. The longest running jobs are 
likely to be among the most complex ones. And this prob­
ability increases over time. Secondly, a long job-execution 
time may also depend on the heterogeneity of the process­
ing nodes and their loads. With such a choice we provide 
support to the nodes that are likely overloaded either by 
their current mining task assignment or by other unrelated 
processes. 

Each JM keeps a local directory of potential donors and 
performs a random polling over them to get a new task. 
The probability of selecting a donor from the list is not uni­
form . In particular, we adopt a simple linearly decreasing 
probability, where the donor list is ordered according to 
the starting time of their current job. This way, long run­
ning jobs have a high probability of being further parti­
tioned, while most recently assigned tasks do not. 

Similarly, if a peer has a high rank in its own list of 
donors, it can expect to receive many remote job requests. 
As a consequence, it will increase or decrease the local 
threshold i s accordingly. 

The effectiveness of the donor selection and of the i s 
threshold regulation depends on the correctness of the local 
statistics. In order to collect and propagate statistics of job 
executions, we adopted two mechanisms based on, respec­
tively, a centralized statistics server (typically at the boot­
strap node) and a decentralized P2P information 
distribution. The centralized server provides initial config­
uration information and a dynamic peer directory service. 
At the starting and at the completion of a job execution, 
workers notify the server, which collects global job statis­
tics. Peers update their local donor list with information 
exchanged with other peers and by an explicit update mes­
sage from the server (Fig. 5). In general, the local list of 
potential donors can be limited to contain only a subset 
of all peers (the top elements) and does not need to be 
strictly updated and synchronized in the system. Namely, 
for a very large system, the centra lized server might become 
a bottleneck and, thus, might send less frequent updates to 
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the peers (dashed line in the figure). However, the central­
ized server is not so critical in our approach since job sta­
tistics are also exchanged between peers. 

The centralized server at the bootstrap node allows the 
determination of suitable job donors from the complete 
knowledge of the job statistics in the system. Approaches 
based on global statistics are known to provide optimal 
load balancing performance, while randomized techniques 
provide high scalability. We expect that for a larger and 
larger number of peers the performance of the DLB would 
decrease in a graceful way to the lower bound given by a 
simple random polling policy. 

In some aspects, our approach is similar to the one 
described in [5] as a "modified" scheduler-based load bal­
ancing. In the latter, donors directly assign subtasks to idle 
workers, as in our case. However, in the approach 
described in [5J, the poll is always generated by the central­
ized server, which adopts a round robin donor selection 
among the workers. In our case, the generation of job 
requests (polls) has also been decentralized. Moreover, in 
our DLB approach the use of the ranked-random tech­
nique is fundamental for the selection of the most suitable 
donors to avoid the generation of a high number of trivial 
tasks. Then, in our case, polls are not uniformly distributed 
among all workers, but they are still spread over several 
donors. 

3.3. Search termination detection 

Each JM keeps a list of assigned and not completed jobs 
in order to support mechanisms for fault tolerance and ter­
mination detection. With the adoption of a global collec­
tion of job statistics is quite straightforward to detect the 
termination of the entire search task. When all peers are 
not executing a job, have an empty job pool and an empty 
list of assigned jobs, then the search tree has been explored 
entirely. 



When the search termination condition is detected, the 
centralized server will issue a broadcast message to inform 
the peers in order to start the next phase, i.e. the reduction 
of all local lists of partial results. 

In some cases it may not be convenient to adopt a cen­
tralized server for the termination detection. For a very 
high number of peers it may become a bottleneck and 
decrease the performance by simply delaying the start of 
the next phase. Also hierarchical systems, like multi-do­
main computational environments, may suffer from a cen­
tralized approach. In these cases a distributed algorithm 
[18] for the termination detection can be adopted. 

3.4. Reduction of final results 

Each Worker maintains only a local and partial list of 
results found during the execution of subtasks. Therefore, 
at the end of the search process we perform a reduction 
operation. Workers are organized in a communication tree 
and the number of communication steps required is in the 
order of O(logN), where N is the number of processes. 
Generic collective operations, including the reduction, have 
been implemented in the CM and can be specialized for the 
specific application by the Worker. 

This is more efficient than a star topology of a master­
slave approach (e.g. [19]), which requires O(N) sequential 
communication steps. 

In the test application, partial local lists of frequent frag­
ments are merged and duplicate and non-discriminative 
fragments are discarded . However, the determination and 
selection of the discriminative fragments include expensive 
graph and subgraph isomorphism tests and may represent 
a non-trivial computational cost for a single processor. 
Moreover, the number of all frequent fragments may 
become very large and the communication cost would be 
too expensive. Therefore, the selection of the discriminative 
fragments has to be distributed as well. This can be per­
formed during the reduction operation in parallel by sever­
al concurrent processes and not only by the single node 
where the results will be finally collected. 

The reduction operation based on a logical communica­
tion tree has the advantage of a minimum number of com­
munication steps. Moreover, it also has the advantage of 
distributing the computational load associated to the costly 
graph and subgraph isomorphism tests for the reduction of 
the final list of the molecular fragments. 

4. Performance evaluation 

The distributed application has been tested for the anal­
ysis of a set of real molecular compounds - a well-known, 
publicly available dataset from the National Cancer Insti­
tute, the DTP AIDS Antiviral Screen dataset [20]. This 
screen utilized a soluble formazan assay to measure protec­
tion of human CEM cells from HIV -I infection [21]. We 
used a total of 37,169 compounds, of which 325 belong 
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to the class of active compounds and the remaining 
36,844 to the class of inactive compounds. 

Experimental tests have been carried out on a network 
of Linux workstations I located in different LANs of the 
University of Konstanz; the software has been developed 
in Java. The communication among processes has been 
implemented using TCP socket API and XML data 
format. 

In our tests, we introduced a synchronization barrier to 
wait for a number of processors to join the P2P system 
before starting the mining task only in order to collect per­
formance results. In general, this is not necessary, but in 
the following results we did not want to consider the laten­
cy that is required to simply start up the remote peers. 

4.1 . Dynamic load balancing pelformance 

In order to evaluate our DLB algorithm (RRP), we also 
implemented a random polling (RP) policy with distributed 
job queues and a centralized job-pool approach, i.e. a mas­
ter-slave (MS) architecture [19]. The three techniques use 
the same work-splitting mechanism described in [17]. 

We compare three performance figures, the running 
time, the Jain's fairness index [22] and the relative load 
imbalance index. The running time gives an immediate 
measure of the effectiveness of the DLB. The Jain's fairness 
index is often adopted to measure the equality of the allo­
cation of a shared resource to different contending entities. 
In this case, we want to measure the quality of the load bal­
ancing, which aims at the equal allocation of the overall 
computational load to processors. The Jain's fairness index 
is defined as: 

f( ) 
(L:IX;)2 

J= XI,X2,,,, , XN = N 2' 
N'L;=IX ; 

(I) 

where Xi is a measure of the work load at processor Pi' In 
particular, the quantity we consider is the running time 
spent in useful work by each processor: 

Xi = TP"work. 

The index of formula (I) is continuous and bounded in the 
range [0, I]. It is independent of the scale, the metric and 
the total amount of the shared resource and of the number 
of contending entities. An index closer to I means a better 
fairness in the allocation, hence better load balancing. 

Another index that has often been adopted to measure 
the DLB performance (e.g. in [23]), is the relative load 
imbalance index (LI), given by 

LI f( ) I 
L~_ IX; = XI , X2 , .. · , XN = - , N 

N· max;=lx; 
(2) 

I Nodes have different hardware and software configurations. The group 
of the eight highest performing machines is equipped with a CPU Intel 
Xeon 2.40 GHz, 3GB RAM and run Linux 2.6.5-7 .151 as well as Java SE 
1.4.2_ 06. 
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Table I 
Dynamic load balancing performance (lI'IillSupp = 6%, lI'IaxSupp = 1% alld 
NPWC5 = 24) 

Runtime (s) 
Jain 's index 
Ll index 

MS 

91 
0.90 
0.38 

RP 

114 
0.99 
0.10 

RRP 

76 
0 .99 
0. 13 

The index is bounded in the range [0, I], but it does not 
have the other properties described above for the Jain's in­
dex. The LI index is a measure of the load imbalance; a 
lower value means better load balancing. 

Table I provides a comparison of typical values of these 
three performance figures for the different DLB algorithms. 
In general, the two random approaches attain better load 
balancing because they distribute job requests to more 
donors than the centralized approach, which adopts a sin­
gle job-pool at the manager and a single donor. However, 
the simple random polling is not able to reduce the running 
time because of the irregularity of the search space. A more 
accurate selection of donors (cf. Section 3.2) still allows for 
a better distribution of the work load, while it also attains a 
lower running time. 

It should be noticed that both indexes are not sufficient 
to evaluate the quality of DLB policies; the running time 
must be taken into account. According to the LI index 
RP should perform slightly better than RRP, while it actu­
ally shows longer running time. The reason is that the LI 
index puts in evidence small differences that are not rele­
vant. On the contrary, the Jain's fairness index provides 
indications that are, at least, not in contradiction with 
the running times. It is saturated (almost 1.0) in both the 
randomized techniques and their slight difference is not in 
evidence. 

4.2. Speedup 

We complete the analysis of the distributed application 
with the ranked-random DLB technique by showing the 
running time and the speedup curve (Fig. 6) of the parallel 
over the serial algorithm. The performance of the sequen­
tial algorithm that is used to determine the speedup, is 
obtained from an optimized version of the algorithm 
described in [14] in the highest performing single-proces­
sor2 server that is available for our tests. Moreover, we car­
ried out a series of preliminary tests to measure the 
performance of each available workstation for the specific 
mining algorithm. A cumulative performance index is 
shown in the figure and provides a speedup bound for 
the different configurations. 

The speedup curves show that for lower minSupp values, 
i.e. more complex mining tasks, the speedup improves, as 
expected. In particular, for the value minSupp = 6%, the 
speedup is linear and exactly follows' the speedup bound 
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Fig. 6. (a) Speedup and (b) running time (maxSupp = 1% ). 

in the first part of the chart. Then, it is evident that more 
resources cannot further decrease the running time; the 
amount of work is not enough and additional computa­
tional resources cannot be effectively exploited. Neverthe­
less, it is positive that the running time does not increase 
when unnecessary resources are used as one might expect 
because of the additional communication and computation 
overheads. This provides evidence of the good scalability 
properties of the system. Moreover, it shows that the deter­
mination of the optimal number of processors for a given 
task is not critical with respect to the running time. 

5. Conclusions 

In this paper we have presented a distributed computing 
framework for problems based on a search strategy. It 
employs a decentralized dynamic load balancing technique 
that is enhanced by global statistics to cope with highly 
irregular problems. The proposed approach is particularly 
useful for parallel and distributed applications where no 
assumption of uniform or bounded task times can be made 
and no workload estimate is available. For these applica­
tion simple DLB policies, like random polling and schedul­
er-based, do not provide' an efficient solution. 

We adopted the distributed computing framework for a 
parallel formulation of the frequent subgraph mining prob-



lelll applied to the task of discriminative molecular frag­
ment discovery. 

Experimental tests on real molecular compounds in a 
distributed non-dedicated computing environment con­
firmed its effectiveness in terms of running time perfor­
mance, low parallel overhead and load balancing. In a 
24-node system and in comparison to a Master/Slave 
approach, the improvement of the running time was up 
to 16% and the quality of the load distribution (Jain index) 
improved up to 10%. In larger computational environ­
ments we expect that such improvements become more 
important. 

Future research efforts will focus on a more accurate 
formalization of the model and its simulation on very 
large-scale systems. Experimental tests on large-scale sys­
tems are needed to verify the scalability of the P2P 
approach. The centralized server for job statistics could 
potentially become a bottleneck and a completely decen­
tralized solution should be adopted. 

Other research directions include the adoption of the 
approach in other application domains to verify and extend 
its general applicability and the introduction of advanced 
and intelligent services, e.g. the dynamic and autonomous 
management of overlay networks of peers. Peers can 
dynamically organize themselves in clusters in order to 
aggregate computing resources for computing-intensive 
subtasks by exploiting physical connectivity. This would 
be particularly useful for those problems whose complexity 
is not known in advance or it is difficult to be estimated 
with sufficient precision. At run time further resoui'ces 
could be dynamically aggregated and allocated to particu­
larly difficult subtasks. 
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