
Decentralized load balancing for highly irregular search problems

Giuseppe Di Fatta a,*, Michael R. Berthold b

a School of Systems Engilleering. The University of Readillg. Whiteknights. Reading. Berkshire. RG6 6A Y. UK
b Department of Computer alld Illformation Science. University of Konstaflz. Box M712. 78457 KOflstanz. Germany

Abstract

In this paper, we present a distributed computing framework for problems characterized by a highly irregular search tree, whereby no
reliable workload prediction is available. The framework is based on a peer-to-peer computing environment and dynamic load balancing.
The system allows for dynamic resource aggregation, does not depend on any specific meta-computing middleware and is suitable for
large-scale, multi-domain, heterogeneous environments, such as computational Grids. Dynamic load balancing policies based on global
statistics are known to provide optimal load balancing performance, while randomized techniques provide high scalability . The proposed
method combines both advantages and adopts distributed job-pools and a randomized polling technique. The framework has been suc­
cessfully adopted in a parallel search algorithm for subgraph mining and evaluated on a molecular compounds dataset. The parallel
application has shown good scalability and close-to linear speedup in a distributed network of workstations.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Distributed computing; Peer-to-peer-computing; Dynamic load balancing; Irregular search problems; Subgraph mining

1. Introduction

A large class of applications relies on implicitly defined
search trees and are based on a Depth First Search
(DFS) strategy, e.g. problems solved using the divide and
conquer strategy. In order to reduce running times and to
cope with larger problem instances, partitioning a DFS
tree, i.e. parallel backtracking [I], has been widely and suc­
cessfully adopted in many applications. It is quite straight­
forward to partition the search tree to generate new
independent jobs, which can be assigned to idle processors
for asynchronous execution. In general, a static partition of
the search space ean be effectively adopted when job run­
ning times can be estimated. However, in many real-world
problems the search space is highly irregular and no work
load estimation is available. In the present work, we define
the irregularity of a computational problem in terms of the
empirical probability distribution of the task complexity,
given a partitioning strategy. In particular, highly irregular

• Corresponding author.
E-llwi/ addresses: G.DiFatta@reading.ac. uk (G. Di FaUa), Michael.

Berthold@uni-konstanz.de (M.R. Berthold).

problems are characterized by a power-law distribution of
the task running times in a wide range. For such irregular
problems it is essential to provide a dynamic partitioning
strategy along with a Dynamic Load Balancing (DLB)
policy.

Many DLB algorithms for irregular problems have been
proposed in the literature and their properties have been
studied. However, most of them rely on assumptions that
do not hold in general. Some DLB techniques for irregular
problems are based either on the assumption of uniform or
bounded task times, or on the availability of workload esti­
mates. In [2], uniform time tasks are assumed. In [3], it is
assumed that the smallest task time is comparable to or
greater than network communication time for a task. In
[4], the computation, is first evenly partitioned among pro­
cessors and, subsequentially task migration is adopted to
maintain load balance in the system. In [5], several DLB
algorithms are analyzed and their scalability properties
are provided in terms of the isoefficiency analysis. This
study particularly addresses irregular problems where it is
not possible to estimate the size of work at processors .
Nevertheless, the assumptions in [5] require the guarantee
that the computation cost of jobs is always greater than

http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-117872

274

the relative transmitting time. However, this is not the case
in highly irregular problems where a poor work-splitting
mechanism generates a high number of trivial tasks and
makes the DLB policy inefficient. Moreover, such a prob­
lem becomes more relevant in large computational environ­
men ts, like Grids, with multi-domain and heterogeneous
resollrces.

We present a distributed computing framework for
highly irregular search problems, whereby no reliable
workload prediction is available. The framework is based
on a Peer-to-Peer (P2P) computing environment and a
DLB policy. The DLB method employs a randomized tech­
nique that is enhanced by global statistics to cope with
highly irregular search problems. The adoption of heuris­
tics based on global statistics provides good load balancing
performance, while the P2P approach and the randomized
technique provide high scalability.

The proposed distributed computing framework has
been developed in Java according to a multi-agent model.
It has been successfully adopted to deploy and test a paral­
lel application of the subgraph mining problem for the dis­
covery of relevant fragments in molecular compounds.

The rest of the paper is structured as follows. In the next
section we introduce the test application, i.e. the frequent
subgraph mining problem applied to molecular com­
pounds, and discuss the irregular computation that charac­
terizes it. In Section 3, we introduce the general
architecture of the distributed computing framework and
describe the dynamic load balancing policy. Section 4 pre­
sents a performance evaluation of the parallel application.
Finally, we provide conclusive remarks and future research
directions.

2. Frcqucnt subgraph mining

Algorithms to find frequent subgraphs in a set of graphs
have received increasing attention over the past years. E.g.,
in molecular biology it is often desirable to find common
topological properties in large numbers of drug candidates.
Existing methods attempt to implicitly organize the space
of all possible subgraphs in a lattice, which models sub­
graph relationships. The search then reduces to traversing
this lattice and reporting all subgraphs that fulfill the
desired criteria.

The Frequent Subgraph Mining (FSM) problem [6] is
formulated in ana logy to the Association Rule Mining
(ARM) problem [7]. While in ARM the main structure of
the data is a list of items (itemset) and the basic operation
is the subset test, FSM relies on graph and subgraph
isomorphism.

The subgraph isomorphism test is known to be an NP­
complete problem [8]. Furthermore, there exists no known
polynomial algorithm for isomorphism testing of general
graphs, although the problem has not been shown to be
NP-complete. In [9] the problem has been assigned to a
specia l graph isomorphism complete complexity class,
which falls between the P and NP-complete classes.

However, it is known that it can be solved in polynomial
time for many restricted classes of graphs, such as bound­
ed-degree graphs [iO].

Nevertheless, the combinatorial nature of the problem
poses a great challenge. The computational complexity of
the underlying problem and the large search space to be
explored often render sequential algorithms useless. In such
cases, distributed and parallel high performance computing
becomes necessary for practical applications.

2. 1. Molecular fragments discovery

The problem of selecting relevant molecular fragments
in a set of molecules can be formulated in terms of frequent
subgraph mining in a set of graphs. Molecules are repre­
sented by attributed graphs, in which each vertex repre­
sents an atom and each edge a bond between atoms.
Each vertex carries attributes that indicate the atom type
(i.e., the chemical element), a possible charge, and whether
it is part of an aromatic ring. Each edge carries an attribute
that indicates the bond type (single, double, triple, or aro­
matic). Frequent molecular fragments are subgraphs that
have a certain minimum support in a given set of graphs,
i.e., are part of at least a certain percentage of the mole­
cules. We assume that the molecular compounds in the
dataset can be classified in two groups. We refer to the
two classes of molecules as the focus set (active molecules)
and its complement (non-active molecules). For example,
during the high throughput screening of drug candidates,
compounds are tested for a certain active behavior and a
score associated to their activity level is determined. In this
case, a threshold (thres) on the activity value allows the
classification of the molecules in the two groups.

The aim of the data mining process is to provide a list of
molecular fragments that are frequent in the active dataset
and infrequent in the inactive dataset. These topological
fragments carry important information and may be repre­
sentative of those components in the compounds that are
responsible for a positive behavior. In this case, two
parameters are required : a minimum support (minSupp)
for the focus subset and a maximum support (max Supp)
for the complement.

Such discriminative fragments can be used to predict
activity in other compounds and to guide the synthesis of
new ones. For example, they can be adopted as features
in a multidimensional space for molecular compounds clas­
sification [II] and clustering [12].

Based on existing ARM algorithms for market basket
analysis [7,13] proposed methods for subgraph mining con­
duct depth-first [14,15] or breadth-first searches [16].

2.2. Irregular search space

An analysis of the sequential algorithm for molecular
fragments discovery in [14] points out the irregular nature
of the search tree. An irregular problem is characterized
by a highly dynamic or unpredictable domain. In this

application, the complexity and the exploration time of the
search tree, and even of each single search tree node cannot
be estimated . The data mining nature of the problem
makes the time required to visit a node unpredictable. In
our tests a single node exploration can take from few mil­
liseconds to several minutes. It is known that the pruning
techniques, which this kind of search algorithms heavily
rely on, make the estimation of the tree exploration time
very difficult. Depth and fan of the search tree are also
unpredictable.

In order to provide evidence of the above consider­
ations, we collected statistics of the running time required
by the sequential algorithm for the expansion of each
search tree node (Fig. I(a)) and for the complete visit of
the associated subtree (Fig. I(b)) . Both are characterized
by a power-law distribution. This may not come as a sur­
prise with regard to the subtree visiting time, since it is well
known that this kind of distribution is typical for aggrega­
tions of multi-scale hierarchies such as trees. However, it is
interesting that the node expansion time shows the same
type of distribution. This can be tentatively explained by
the structure of the input data and the node expansion step
in the sequential algorithm. Each search tree node repre­
sents a molecular fragment and the expansion step consists
of the extension of the fragment in all possible successors
by adding a bond and, eventually, an atom. Intuitively, this

a le+06

100000
'" .,

<tj
0 10000 c

..c
u

~ 1000
'-
0

.... / ...
.'.,.
.~ ..

... 100 .,
.0
E
;:J

10 Z

10 100 1000 10000 100000

Time [msec]

b le+06

100000

'" .,
10000 .,

b
.0
~

1000 " '- , 0,
~, .0 100 E

;:J

~# _. Z
10

10 100 1000 10000 100000

Time [msec]

Fig. I. Running time distribution in the search tree (lI1inSupp = 10% and
II1(1XSUPP = 1%), (a) Search-node expansion time , (b) Search subtree
visiting time.

275

produces a high number of fast fragment exte nsions due to
the extension rules of the algorithm [14], and a smallnum­
ber of computationally long extensions. The i rregularity of
the search space implies that the work load of a task is not
known in advance and cannot be estimated . As a conse­
quence, in a parallel approach a static load balancing pol­
icy cannot be adopted or it would produce very poor
results. Moreover, no assumption can be made on the low­
er bound of subtask workloads. We cannot assume, for
example, that the subtask transmission time is less than
the computation cost associated. This makes most dynamic
load balancing policies unsuitable for this problem and
others with similar characteristics.

In the next section, we describe the proposed distributed
computing framework for problems with a highly irregular
search space, which has been designed for heterogeneous
and distributed computing resources.

3. Distributed computing framework

The parallel application is mainly a work load distribu­
tion process based on dynamic partitioning of the search
space, a dynamic load balancing policy and a peer-to-peer
computing model. A P2P communication framework natu­
rally fits with a receiver-initiated DLB approach and pro­
vides good scalability properties. Each peer registers at a
centralized bootstrap node to join the system and to con­
tribute to the computation task. Peers can directly
exchange system information and computation subtasks,
since each process implements both client and server func­
tionality. The bootstrap node provides initial configuration
information and a dynamic peer directory service.

The model of each peer process is a multi-agent system
(Fig. 2), where each agent is an independent local entity
(Java thread) with a specific role. Agents exchange and
react to asynchronous messages by taking proper actions.
Three main agent protocols have been designed for, respec­
tively, the peer-to-peer system management, the DLB pol­
icy and the job statistics maintenance. MPI-like methods
have also been adopted for synchronous communication.

The Communication Manager (eM) provides an inter­
face to network communication and is responsible for the
peer-to-peer system management (the setup and mainte­
nance of the distributed environment). The implementation
of our P2P computing framework allows the dynamic

: I ~, /gt!r~:;~
\·~·)~·~~;'i,.~·.·}: __________ _

Fig, 2, Peer a rchitecture,

276

joining of peers and provides a basic fault-tolerance mech­
anism in case of abrupt peer disconnection. eM also imple­
men ts some typical MPI methods, which are used to
implement higher level functionalities, such as agent mes­
sage delivery, synchronization barriers, reduction opera­
tions, etc.

The Data Manager (OM) provides an interface to access
the input data in a distributed environment. Typically, the
OM at the boot node reads the data from a local file and
transfers them to the other OMs. OM also provides basic
mechanisms to partition the data among the peers. In our
tests the entire dataset is simply sent to each peer. In the
present work we tested a parallel application that adopts
a task parallel approach and does not include any form
of data parallelism.

The Job Manager (JM) implements the OLB algorithm
based on distributed job pool, as described more in details
in the Section 3.2.

The Worker executes assigned jobs by means of the
algorithm (Miner) for a particular application. It provides
an interface to which a sequential algorithm must comply
in order to be embedded in the system. Three methods have
to be implemented to adapt the sequential code. The exe­
cute method is used to invoke the execution of a sequential
task. This simply corresponds to a wrapper of the sequen­
tial algorithm to comply with the Worker interface. A par­
titioning method for work splitting (split) divides a
sequential task into two independent subtasks. The work
splitting mechanism depends on the particular data mining
applications. In applications based on a search tree, the
search nodes are typically stored in a stack and the work
splitting mechanism corresponds to the selection of one
or more elements of the local stack to generate and donate
a subtask to an idle Worker. A third method (merge) com­
bines two partial results. In the particular data mining
application, this operation involves graph and subgraph
isomorphism tests to discard duplicates and to select only
the closed frequent fragments. The three 'methods will be
invoked asynchronously at each peer of the distributed sys­
tem according to the parallel algorithm and the dynamic
load balancing policy.

The Worker must also provide mechanisms to convert
internal/external representations of jobs (e .g. search tree
nodes) . Since we adopt a distributed memory model, inter­
nal representations of the algorithm data have to be con­
verted to external ones, which do not depend on the
particular memory address space. This generates extra
computation that contributes to the overall parallel over­
head. The internal representation depends on the particular
application and the sequential algorithm [14]. e.g. In the
tested application, for the external representation we have
enhanced the SMILES syntax for molecular compounds
in order to embed partial state information from which
the computation can be restarted in a different machine.

The parallel algorithm (Fig. 3) is composed by three
phases. In the first phase the P2P computing environment
is configured for the execution of the computational tasks .

The second phase is the exploration of the search space and
corresponds to the computation in the seque ntial algo­
rithm. When the search is completed, in the third phase,
local lists of partial results have to be merged and collected
at a single node to be reported to the user.

The search space partitioning, the OLB policy, the ter­
mination detection of the search phase and the final reduc­
tion of results are discussed in the next sections.

3. 1. Search space partitioning

Partitioning a OFS tree, i.e. parallel backtracking [I],
has been widely and successfully adopted in ma ny parallel
applications. In general, it is quite straightforward to par­
tition the search tree to generate new independent jobs,
which can be assigned to idle processors. In this case, no
synchronization is required among remote jobs.

. A job assignment contains the description of a node
removed from the search tree of the donor Worker, which
becomes the root node from which the receiving Worker
starts a new search. The job assignment must contain all
the information needed to continue the search from exactly
the same point in the search space.

Often the efficiency of search algorithms relies on
advanced pruning techniques, which require specific state
information to be propagated in the nodes along the search
tree. Thus, a job description must include the search·node
state necessary to rebuild the same conditions in the dis­
tributed search tree as in the sequential one (e.g. structural
pruning state in [14]). This requires an explicit representa­
tion of the relevant implicit state for the donated search
nodes.

During the parallel execution of subtasks, each Worker
maintains only a local and partial list of results that are
found .

. The partitioning of the search space is carried out by the
Worker upon request of the local JM, according to the
OLB algorithm. .

3.2. Dynamic load balancing

In general, a OLB policy has to provide a mechanism to
fairly distribute the load among the processors using a
small number of generated subtasks to reduce the commu­
nication cost and the computational overhead. In particu­
lar, in applications based on irregular search-trees the OLB
policy has to carefully select (I) a suitable subtask donor
among all the workers and (2) a non-trivial subtask among
the search nodes in the loca l stack of the donor. The qual­
ity of both the selection of donors and the generation of
new sub tasks is fundamental for an effective and efficient
computational load distribution. These two tasks are car­
ried out, respectively, by the OLB policy and the work
splitting-mechanism.

In problems with uniform or bounded subtask times the
generation of either too small or too big jobs is not an
Issue. In our case, irregular job granularity may decrease

277

Bootstrap node: Each Peer node:
Setup Jlhase

setup and manage the P2P system
distribute input data

register to bootstrap node
request configuration and data

Search phase
create and assign first job (search
U'ee search node)
maintain global job statistics

execute assigned jobs
request and donate jobs
according to the DLB policy

partition the local search tree
for donation
send requests to potential
donors when idle

maintain and propagate a local
list of potential donors
maintain and propagate local job
statistics for termination
detection

Reduction phase
Perform a reduction operation as Perform a reduction operation on

a logical tree topology root of a logical tree topology

Fig. 3. Pseudocode of the parallel application.

the efficiency and limit the maximum speedup tremendous­
ly . While a coarse job granurarity may induce load imbal­
ance and a bound on the maximum speedup, a fine
granularity may decrease the efficiency of the distributed
system and more processing nodes would be required to
reach the maximum speedup. Thus, it is important to pro­
vide an adaptive mechanism to find a good trade-off
between load balancing and job granularity.

]n order to accomplish this aim we introduce a mecha­
nism at the donor to reduce the probability of generating
trivial tasks and of inducing idle periods at the donor pro­
cessor itself. A set of heuristic rules [17] filters out many
potentially trivial nodes. Although the number of very
small subtasks has been significantly reduced, they cannot
be completely discarded by the use of the rules; the visiting
time of search tree nodes still has a power-law distribution.
A randomized OLB technique further restricts the possible
choices for new subtasks by selecting promising donors.
This, once more, changes the distribution of the subtask
visiting time. The final actual distribution is not available
because it is the result of a parallel execution where sub­
tasks are dynamically generated; task donation alters the
task (subtree) at the donor itself.

Both components, the work splitting technique for· the
subtask generation and the OLB policy for donor selection,
contribute to the overall OLB efficiency, scalability and to
its suitability to irregular problems and to heterogeneous
computing resources. The OLB approach we have adopt­
ed, the Ranked Random Polling (RRP), is a receiver-initiat­
ed algorithm based on a decentralized job-pool system and
a centra lized server for job statistics, as described in the
next sections.

3.2. 1. Decentralized job pool system
Each 1M manages a local pool of available jobs, which

can be assigned to remote 1Ms upon request and to the

local Worker when id le. This simple communication proto­
col is shown in Fig. 4. Requests are based on a soft state.
Each 1M also keeps a list of donated and not completed
jobs in order to support mechanisms for fault tolerance
and termination detection. The 1M also issues requests to
the local Worker for the partitioning of the local search
space Uob generation). These activities are regulated by
two thresholds of the job pool. A job can be donated to
a remote 1M only if the current job pool size is above a
donation threshold Jd , which is constant and typically set
to I (since there is only one local Worker). This way at
the completion of a local job, the request and reception
of a new one can be overlapped to the execution of a job
from the local pool. Overlapping computation with com­
munication of job request/assignment helps to avoid, or
at least to reduce, most of the communication overheads.
Only the latency of the first job assignment and of the last
job-completed message cannot be avoided at all.

The job generation activity is enabled when the job pool
size is below a spawning threshold Js. In a centralized job

Peer

Job Manager Worker/Mi ner
. Local Job Rcqucst §

search

8 job . Local Job Assignmcnt II stack
pool Reject

. Remote Job Rcquest

. Remote Job Assignment II Reject

Peel'

~
Job Manager Workcr/Mincr

. Local Job Request

~
search

U job . Local Job Assignment II stack
pool Reject

Fig. 4. Decentralized job-pool system.

278

pool approach, is can be easily set to the number of partic­
ipating nodes. All nodes send job requests to the central­
ized job pool manager. In a decentralized system the
threshold is must be independently set and adapted at each
peer.

The determination and dynamic adaptation of the
threshold i s is critical for the effectiveness of the DLB in
the system. is adaptation depends on the donor selection
policy as described in the next section .

3.2.2. Donor selection
When the job pool size is below the threshold i d , the JM

selects a donor among the other peers to request a new sub­
task . A job request sent to a peer has the effect that the
remote JM will solicit its local Worker to remove a search
tree node from the local stack in order to distribute part of
the search tree. In general, not all workers are equally suit­
able as donor. Workers that are running a mining task for
a longer time, have to be preferred. This choice can be
motivated by two reasons. The longest running jobs are
likely to be among the most complex ones. And this prob­
ability increases over time. Secondly, a long job-execution
time may also depend on the heterogeneity of the process­
ing nodes and their loads. With such a choice we provide
support to the nodes that are likely overloaded either by
their current mining task assignment or by other unrelated
processes.

Each JM keeps a local directory of potential donors and
performs a random polling over them to get a new task.
The probability of selecting a donor from the list is not uni­
form . In particular, we adopt a simple linearly decreasing
probability, where the donor list is ordered according to
the starting time of their current job. This way, long run­
ning jobs have a high probability of being further parti­
tioned, while most recently assigned tasks do not.

Similarly, if a peer has a high rank in its own list of
donors, it can expect to receive many remote job requests.
As a consequence, it will increase or decrease the local
threshold i s accordingly.

The effectiveness of the donor selection and of the i s
threshold regulation depends on the correctness of the local
statistics. In order to collect and propagate statistics of job
executions, we adopted two mechanisms based on, respec­
tively, a centralized statistics server (typically at the boot­
strap node) and a decentralized P2P information
distribution. The centralized server provides initial config­
uration information and a dynamic peer directory service.
At the starting and at the completion of a job execution,
workers notify the server, which collects global job statis­
tics. Peers update their local donor list with information
exchanged with other peers and by an explicit update mes­
sage from the server (Fig. 5). In general, the local list of
potential donors can be limited to contain only a subset
of all peers (the top elements) and does not need to be
strictly updated and synchronized in the system. Namely,
for a very large system, the centra lized server might become
a bottleneck and, thus, might send less frequent updates to

Peer (bootstrap node)

Job Manager DirectOlY Centralized

~
global of Peers Statistics Se
donor EJ and Job

list Statistics

rver

'U~ .0.... '11 ,:>-u .
~~ ,,/1f'~ "'<:. CZ I" ". ~

o<?, /,>¢, ...• J'<'l j>c,o ~ ~ 0." <7q ~
. ~'1i".:§~. J' ~'. c

~ 1"0' O;,>,!
':$:)" 0' i:.ll1'1" •..•.• ~~ll :,,0 ~o~

". 1"0'
Peer ~., Peer~

Job Manager
. P2P donor list update

Job Manager

~ local
.. ..

~
local

donor donor
list list

F ig. 5. Hybrid centra lized/decentra lized communication system for donor
selection .

the peers (dashed line in the figure). However, the central­
ized server is not so critical in our approach since job sta­
tistics are also exchanged between peers.

The centralized server at the bootstrap node allows the
determination of suitable job donors from the complete
knowledge of the job statistics in the system. Approaches
based on global statistics are known to provide optimal
load balancing performance, while randomized techniques
provide high scalability. We expect that for a larger and
larger number of peers the performance of the DLB would
decrease in a graceful way to the lower bound given by a
simple random polling policy.

In some aspects, our approach is similar to the one
described in [5] as a "modified" scheduler-based load bal­
ancing. In the latter, donors directly assign subtasks to idle
workers, as in our case. However, in the approach
described in [5J, the poll is always generated by the central­
ized server, which adopts a round robin donor selection
among the workers. In our case, the generation of job
requests (polls) has also been decentralized. Moreover, in
our DLB approach the use of the ranked-random tech­
nique is fundamental for the selection of the most suitable
donors to avoid the generation of a high number of trivial
tasks. Then, in our case, polls are not uniformly distributed
among all workers, but they are still spread over several
donors.

3.3. Search termination detection

Each JM keeps a list of assigned and not completed jobs
in order to support mechanisms for fault tolerance and ter­
mination detection. With the adoption of a global collec­
tion of job statistics is quite straightforward to detect the
termination of the entire search task. When all peers are
not executing a job, have an empty job pool and an empty
list of assigned jobs, then the search tree has been explored
entirely.

When the search termination condition is detected, the
centralized server will issue a broadcast message to inform
the peers in order to start the next phase, i.e. the reduction
of all local lists of partial results.

In some cases it may not be convenient to adopt a cen­
tralized server for the termination detection. For a very
high number of peers it may become a bottleneck and
decrease the performance by simply delaying the start of
the next phase. Also hierarchical systems, like multi-do­
main computational environments, may suffer from a cen­
tralized approach. In these cases a distributed algorithm
[18] for the termination detection can be adopted.

3.4. Reduction of final results

Each Worker maintains only a local and partial list of
results found during the execution of subtasks. Therefore,
at the end of the search process we perform a reduction
operation. Workers are organized in a communication tree
and the number of communication steps required is in the
order of O(logN), where N is the number of processes.
Generic collective operations, including the reduction, have
been implemented in the CM and can be specialized for the
specific application by the Worker.

This is more efficient than a star topology of a master­
slave approach (e.g. [19]), which requires O(N) sequential
communication steps.

In the test application, partial local lists of frequent frag­
ments are merged and duplicate and non-discriminative
fragments are discarded . However, the determination and
selection of the discriminative fragments include expensive
graph and subgraph isomorphism tests and may represent
a non-trivial computational cost for a single processor.
Moreover, the number of all frequent fragments may
become very large and the communication cost would be
too expensive. Therefore, the selection of the discriminative
fragments has to be distributed as well. This can be per­
formed during the reduction operation in parallel by sever­
al concurrent processes and not only by the single node
where the results will be finally collected.

The reduction operation based on a logical communica­
tion tree has the advantage of a minimum number of com­
munication steps. Moreover, it also has the advantage of
distributing the computational load associated to the costly
graph and subgraph isomorphism tests for the reduction of
the final list of the molecular fragments.

4. Performance evaluation

The distributed application has been tested for the anal­
ysis of a set of real molecular compounds - a well-known,
publicly available dataset from the National Cancer Insti­
tute, the DTP AIDS Antiviral Screen dataset [20]. This
screen utilized a soluble formazan assay to measure protec­
tion of human CEM cells from HIV -I infection [21]. We
used a total of 37,169 compounds, of which 325 belong

279

to the class of active compounds and the remaining
36,844 to the class of inactive compounds.

Experimental tests have been carried out on a network
of Linux workstations I located in different LANs of the
University of Konstanz; the software has been developed
in Java. The communication among processes has been
implemented using TCP socket API and XML data
format.

In our tests, we introduced a synchronization barrier to
wait for a number of processors to join the P2P system
before starting the mining task only in order to collect per­
formance results. In general, this is not necessary, but in
the following results we did not want to consider the laten­
cy that is required to simply start up the remote peers.

4.1 . Dynamic load balancing pelformance

In order to evaluate our DLB algorithm (RRP), we also
implemented a random polling (RP) policy with distributed
job queues and a centralized job-pool approach, i.e. a mas­
ter-slave (MS) architecture [19]. The three techniques use
the same work-splitting mechanism described in [17].

We compare three performance figures, the running
time, the Jain's fairness index [22] and the relative load
imbalance index. The running time gives an immediate
measure of the effectiveness of the DLB. The Jain's fairness
index is often adopted to measure the equality of the allo­
cation of a shared resource to different contending entities.
In this case, we want to measure the quality of the load bal­
ancing, which aims at the equal allocation of the overall
computational load to processors. The Jain's fairness index
is defined as:

f()
(L:IX;)2

J= XI,X2,,,, , XN = N 2'
N'L;=IX ;

(I)

where Xi is a measure of the work load at processor Pi' In
particular, the quantity we consider is the running time
spent in useful work by each processor:

Xi = TP"work.

The index of formula (I) is continuous and bounded in the
range [0, I]. It is independent of the scale, the metric and
the total amount of the shared resource and of the number
of contending entities. An index closer to I means a better
fairness in the allocation, hence better load balancing.

Another index that has often been adopted to measure
the DLB performance (e.g. in [23]), is the relative load
imbalance index (LI), given by

LI f() I
L~_ IX; = XI , X2 , .. · , XN = - , N

N· max;=lx;
(2)

I Nodes have different hardware and software configurations. The group
of the eight highest performing machines is equipped with a CPU Intel
Xeon 2.40 GHz, 3GB RAM and run Linux 2.6.5-7 .151 as well as Java SE
1.4.2_ 06.

280

Table I
Dynamic load balancing performance (lI'IillSupp = 6%, lI'IaxSupp = 1% alld
NPWC5 = 24)

Runtime (s)
Jain 's index
Ll index

MS

91
0.90
0.38

RP

114
0.99
0.10

RRP

76
0 .99
0. 13

The index is bounded in the range [0, I], but it does not
have the other properties described above for the Jain's in­
dex. The LI index is a measure of the load imbalance; a
lower value means better load balancing.

Table I provides a comparison of typical values of these
three performance figures for the different DLB algorithms.
In general, the two random approaches attain better load
balancing because they distribute job requests to more
donors than the centralized approach, which adopts a sin­
gle job-pool at the manager and a single donor. However,
the simple random polling is not able to reduce the running
time because of the irregularity of the search space. A more
accurate selection of donors (cf. Section 3.2) still allows for
a better distribution of the work load, while it also attains a
lower running time.

It should be noticed that both indexes are not sufficient
to evaluate the quality of DLB policies; the running time
must be taken into account. According to the LI index
RP should perform slightly better than RRP, while it actu­
ally shows longer running time. The reason is that the LI
index puts in evidence small differences that are not rele­
vant. On the contrary, the Jain's fairness index provides
indications that are, at least, not in contradiction with
the running times. It is saturated (almost 1.0) in both the
randomized techniques and their slight difference is not in
evidence.

4.2. Speedup

We complete the analysis of the distributed application
with the ranked-random DLB technique by showing the
running time and the speedup curve (Fig. 6) of the parallel
over the serial algorithm. The performance of the sequen­
tial algorithm that is used to determine the speedup, is
obtained from an optimized version of the algorithm
described in [14] in the highest performing single-proces­
sor2 server that is available for our tests. Moreover, we car­
ried out a series of preliminary tests to measure the
performance of each available workstation for the specific
mining algorithm. A cumulative performance index is
shown in the figure and provides a speedup bound for
the different configurations.

The speedup curves show that for lower minSupp values,
i.e. more complex mining tasks, the speedup improves, as
expected. In particular, for the value minSupp = 6%, the
speedup is linear and exactly follows' the speedup bound

~ Intel P4 30Hz 2 OB RAM.

a 24
/

minSupp=6% ---+-

20 minSupp=7% --x--
...-8

minSupp= 12% - ~ !If - -

minSupp=18% E!-
16 cum. perf. index --.. - ./ ...-

/ .-'
0. • ::J

/' '0 ., 12 .,
0.

(I)

8

O+-~-r---'----.----r----r---,
o

b lOOO

800

0' .,
600 ~ .,

E
E= 400

200

0
0

4

..

8 12 16 20
Number of processors

minSupp=6% --+­
minSupp=7% - -><- -

minSupp=12% - - .. - -
minSupp= 18% -.. 'E!- ..

Gl·~·: .:m.:.:_,.;;'~~: .~;.,~~::; .~-:,-::,::;::;.:;.;;::.:::
4 8 12 16 20 24

Number of processors

24

Fig. 6. (a) Speedup and (b) running time (maxSupp = 1%).

in the first part of the chart. Then, it is evident that more
resources cannot further decrease the running time; the
amount of work is not enough and additional computa­
tional resources cannot be effectively exploited. Neverthe­
less, it is positive that the running time does not increase
when unnecessary resources are used as one might expect
because of the additional communication and computation
overheads. This provides evidence of the good scalability
properties of the system. Moreover, it shows that the deter­
mination of the optimal number of processors for a given
task is not critical with respect to the running time.

5. Conclusions

In this paper we have presented a distributed computing
framework for problems based on a search strategy. It
employs a decentralized dynamic load balancing technique
that is enhanced by global statistics to cope with highly
irregular problems. The proposed approach is particularly
useful for parallel and distributed applications where no
assumption of uniform or bounded task times can be made
and no workload estimate is available. For these applica­
tion simple DLB policies, like random polling and schedul­
er-based, do not provide' an efficient solution.

We adopted the distributed computing framework for a
parallel formulation of the frequent subgraph mining prob-

lelll applied to the task of discriminative molecular frag­
ment discovery.

Experimental tests on real molecular compounds in a
distributed non-dedicated computing environment con­
firmed its effectiveness in terms of running time perfor­
mance, low parallel overhead and load balancing. In a
24-node system and in comparison to a Master/Slave
approach, the improvement of the running time was up
to 16% and the quality of the load distribution (Jain index)
improved up to 10%. In larger computational environ­
ments we expect that such improvements become more
important.

Future research efforts will focus on a more accurate
formalization of the model and its simulation on very
large-scale systems. Experimental tests on large-scale sys­
tems are needed to verify the scalability of the P2P
approach. The centralized server for job statistics could
potentially become a bottleneck and a completely decen­
tralized solution should be adopted.

Other research directions include the adoption of the
approach in other application domains to verify and extend
its general applicability and the introduction of advanced
and intelligent services, e.g. the dynamic and autonomous
management of overlay networks of peers. Peers can
dynamically organize themselves in clusters in order to
aggregate computing resources for computing-intensive
subtasks by exploiting physical connectivity. This would
be particularly useful for those problems whose complexity
is not known in advance or it is difficult to be estimated
with sufficient precision. At run time further resoui'ces
could be dynamically aggregated and allocated to particu­
larly difficult subtasks.

Acknowledgements

This work was partly supported by the Deutsche Fors­
chungsgemeinschaft (DFG) Research Training Group
GK-I042 "Explorative Analysis and Visualization of large
Information Spaces". We thank the Department of Com­
puter and Information Science of the University of Kon­
stanz for the use of their machines.

References

[I] R . Finkel, U. Manber, Dib - a distributed implementation of
backtracking, ACM Transactions on Programming Languages and
Systems 9 (2) (1987) 235- 256.

[2] R . Karp, Y. Zhang, A randomized parallel branch-and-bound
procedure, in: Proceedings of the 20th Annual ACM Symposium
on Theory of Computing (STOC), 1988, pp. 290- 300.

[3] S. Chakrabarti, A. Ranade, K. Yelick, Randomized load-balancing
for tree-structured computation, in: Proceedings of the Scalable High
Performance Computing Conference (SHPCC), 23- 25 May 1994,
Knoxville, TN, 1994, pp. 666- 673.

[4] Y. Chung, J. Park, S. Yoon, An asynchronous algorithm for
balancing unpredictable workload on distributed-memory machines,
ETRI Journal 20 (4) (1998) 346- 360.

28 1

[5] V. Kumar, A. Grama, V.N. Rao, Scalable load bala ncing techniques
for parallel computer, Journal of Parallel and Distributed Computing
22 (I) (1994) 60- 79.

[6] T. Washio, H. Motoda, State of the art of graph-based data mining,
ACM SIGKDD Explorations Newsletter 5 (I) (2003) 59- 68.

[7] R. Agrawal, T. Imielinski, A.N. Swami, Mining association rules
between sets of items in large databases, in: Proceedings of the 1993
ACM SIGMOD Internat ional Conference on Management of Data,
26- 28 May 1993, Washington, DC, 1993, pp. 207- 2 16.

[8] M.R. Garey, D.S. Johnson, Computers and intractability: a guide to
the theory of NP-completeness, W.H. Freeman, 1979.

[9] S. Skiena, Implementing Discrete Mathematics: Combinatorics and
Graph Theory with Mathematica, Addison-Wesley, 1990.

[10] E.M. Luks, Isomorphism of graphs of bounded valence can be tested
in polynomial time, Journal of Computer and System Sciences 25
(1982) 42- 65.

[II] M. Deshpande, M. Kuramochi, G. Karypis, Frequent sub-structure­
based approaches for classifying chemical compounds, in: Proceed­
ings of IEEE International Conference on Data Mining (ICDM), 19-
22 November 2003, Melbourne, Florida, USA, 2003.

[12] G. Di Fatta, A. Fiannaca, R . Rizzo, A. Urso, M .R. Berthold, S.
Gaglio, Context-aware visual exploration of molecular databases, in:
Proceedings of the International Workshop on Data Mining in
Bioinformatics, 6th IEEE International Conference on Data Mining,
18- 22 December 2006, Hong Kong, 2006.

[13] M. Zaki, S. Parthasarathy, ·M. Ogihara, W. Li, New algorithms for
fast discovery of association rules, in: Proceedings of 3rd Interna­
tional Conference on Knowledge Discovery and Data Mining
(KDD), 1997, pp. 283- 296.

[14] C. Borgelt, M.R. Berthold, Mining molecular fragments: Finding
relevant substructures of molecules, in: IEEE International Confer­
ence on Data Mining (ICDM), 9- 12 December 2002, Maebashi,
Japan, 2002, pp. 51 - 58.

[15] X. Van, J . Han, gSpan: graph-based substructure pattern mining,
IEEE International Conference on Data Mining (ICDM) (2002) 721 .

[16] M. Deshpande, M. Kuramochi, G. Karypis, Automated approaches
for classifying structures, in: Proceedings of Workshop on Data
Mining in Bioinformatics (BioKDD), 2002, pp. 11 - 18.

[17] G. Di Fatta, M.R. Berthold, High performance subgraph mining in
molecular compounds, in: Springer's LNCS Proceedings of the
International Conference on High Performance Computing and
Communications (HPCC), 21 - 24 September 2005, Sorrento, Italy ,
2005.

[18] C. Sieb, G. Di Fatta, M.R. Berthold , A hierarchical distributed
approach for mining molecular fragments , in: Proceedings of the
ECML/PKDD 2006 Workshop on Parallel Data Mining, 18- 22
September 2006, Berlin, Germany, 2006.

[19] G. Di Fatta, M.R. Berthold, Distributed mining of molecular
fragments, Proceedings of the Workshop on Data Mining and the
Grid (DM-Grid) of the IEEE International Conference on Data
Mining (ICDM), 1-4 November 2004, Brighton, UK, 2004.

[20] National Cancer Institute, DTP AIDS antiviral screen dataset.
<http://dtp.nci .nih .gov./docs/aids/aids_screen.html/> .

[21] O. Weislow, R. Kiser, D. Fine, J. Bader, R. Shoemaker, M.
Boyd, New soluble formazan assay for hiv-I cytopathic effects:
Application to high flux screening of synthetic and natural
products for aids antiviral activityJournal of the National Ca ncer
Inst itute, 81, University Press, Oxford, United Kingdom, 1989, pp.
577- 586.

[22] R. Jain, D. Chiu, W. Hawe, A quantitative measure oUairness and
discrimination for resource a llocation in shared computer systems,
Technical report, DEC Resea rch Report TR-30 I (1984).

[23] R. Sakellariou, J .R. GlII'd, Compile-time minimisa tion of load
imbalance in loop nests, in : Proceedings of the 11th ACM
Interna tional Conference on Supercomputing (ICS), July 1997,
pp. 277- 284.

	Text1: Ersch. in: Microprocessors and microsystems ; 31 (2007), 4. - S. 273-281

http://dx.doi.org/10.1016/j.micpro.2007.01.004
	Text2: Konstanzer Online-Publikations-System (KOPS)
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-117872

