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Abstract 

A novel test-per-clock built-in self-test (BIST) equipment design method for combinational or full-scan sequential 
circuits is proposed in this paper. Particularly, the test pattern generator is being designed. The method is based on similar 
principles as are well known test pattern generator design methods, like bit-fixing and bit-flipping. The novelty comprises 
in proposing a brand new algorithm to synthesize the test pattern generator. In principle, we synthesize a combinational 
block - the Decoder, transforming pseudo-random code words into deterministic test patterns pre-computed by an ATPG 
tool. The Column-Matching algorithm to design the decoder is proposed. Here the maximum of output variables of the 
decoder is tried to be matched with the decoder inputs, yielding the outputs be implemented as mere wires, thus without 
any logic. No memory elements are needed to store the test patterns, which reduces the BIST area overhead. 

Our BIST exploits mixed-mode testing principles. The BIST execution is divided into two disjoint phases – the 
pseudo-random phase and the deterministic phase. This enables to reach high fault coverage in a short test time and with 
a low area overhead. The choice of the lengths of the two phases directly influences the test time, BIST design time and 
BIST area overhead. A big effort has been put to a capability of trading-off the design criteria. The method allows for 
scaling the test time, BIST area overhead, BIST design time, etc. The time complexity of the algorithm is studied and 
experimentally evaluated. 
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1. Introduction 

With the ever-increasing complexity of present VLSI circuits, their testing is becoming more and more important. There 
often arise faulty chips during the manufacturing process due to an inaccurate technology and such chips should be 
detected and eliminated. Using only external test equipment (ATE) to test the chips is becoming very time-consuming, 
mainly due to a huge amount of test vectors, long test time and very expensive test equipment. A solution of this problem 
consists in incorporating the Built-in Self-Test Equipment (BISTE) into the circuit. No external tester is required to test the 
circuit, since all the circuitry needed to conduct the test is included in the very circuit. This is paid by an area overhead, 
long test time and often low fault coverage.  

The basic idea of Built-in Self-Test (BIST) is to design a circuit so that it is able to test itself and determine whether it is 
fault-free or faulty. This typically requires additional circuitry incorporated into the design. This additional logic must be 
capable to generate test patterns as well as to provide a mechanism to determine if the test responses of the circuit under 
test (CUT) correspond to those of a fault-free circuit. The basic architecture of the BIST circuitry as it might be 
incorporated into the CUT is shown in Fig. 1 [9]. 

Our aim is to design the Test Pattern Generator (TPG), so that it provides complete (100%) non-redundant stuck-at fault 
coverage and its size is maximally reduced. 
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Fig. 1: Basic BIST architecture 

Up to now, many BIST design methods have been developed [1-3, 9, 13, 18-23, 28], all of them trying to find some 
trade-off between these four aspects that cannot be all satisfied at one time:  
• Fault coverage 
• Test time 
• BIST area overhead 
• BIST design time 
 

To reach high fault coverage, either a long test time or a high area overhead is involved. A pseudo-random testing 
established the simplest trade-off between all these criteria. With an extremely low area overhead the circuit can be tested 
usually up to more than 90% in a relatively small number of clock cycles. To improve the fault coverage and to reduce the 
test time, many enhancements of this pseudo-random principle have been developed. All of them are accompanied by some 
additional area overhead. 

Different ASIC designers integrating BIST logic into their circuits have different requirements. Sometimes there is a 
requirement to design the BIST logic as quickly as possible, regardless the area overhead and the fault coverage (to some 
limited extent, of course). For low-power designs, the BIST logic area overhead should be kept as small as possible, 
whereas the BIST design time is not that important. Or, and this is the most common case in practice, high fault coverage is 
important, whereas the BIST design time plays a small role. This is due to a fact that the design time of the tested circuit is 
mostly significantly higher than the BIST logic design time.  

We propose a flexible way how to design test pattern generators (TPGs) meeting any of the above-mentioned 
restrictions (or, better, quality measures). The designer is able to freely adjust the BIST logic design time, BIST logic area 
overhead and BIST run time, according his preferences. 100% fault coverage (of non-redundant faults) is considered in the 
following text. However, the method may be modified so that less fault coverage is reached, with a benefit of less area 
overhead and shorter design time. 

 
The paper is structured as follows: the proposed test pattern generator design is described in Section 2. Section 3 

describes the design of the Decoder, as an essential part of the proposed method. The possibility of scaling of the lengths of 
the BIST phases is discussed in Section 4, the way how to reduce the LFSR width is shown in Section 5. An improvement 
of the basic column-matching algorithm, yielding less BIST area overhead is briefly described in Section 6. Section 7 
contains some experimental results, Section 8 concludes the paper. 

 

2. Proposed Test Pattern Generator Design Method 

The method is primarily intended for a test-per-clock BIST, thus the test patterns are applied to the primary inputs of the 
circuit-under-test (CUT) in parallel. However, the method can be modified for a test-per-scan as well [3]. Multiplexers 
separating combinational parts of sequential circuits have to be present, similarly like in full-scan designs. 

The proposed test pattern generator (TPG) consists of two main parts: a linear feedback shift register (LFSR) producing 
pseudorandom patterns and the Decoder, which is a combinational block transforming these patterns into deterministic test 
patterns computed by an ATPG tool. Generating a fully deterministic test detecting 100% non-redundant stuck-at faults 
would involve a huge combinational logic (of the Decoder). Hence, a mixed-mode (or sometimes called hybrid) BIST [1, 2, 
28] is used. The BIST run is divided into two phases: the pseudorandom and deterministic one. The difference between our 
mixed-mode BIST method and most of the others (e.g., bit-flipping [1], bit-fixing [2]) is that the two phases are separated 
in our approach. First, the easy-to-detect faults are covered in the pseudo-random phase run. Then, a set of deterministic 
test vectors covering the undetected faults is computed and these vectors are then generated by a transformation of the 
subsequent LFSR patterns. This significantly reduces both the Decoder and BIST control logic. No memory elements are 
needed to recognize patterns that are to be modified (like in [1, 2]); switching between the two phases is handled by the 
BIST controller counter. The proposed BIST scheme is shown in Fig. 2. 
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Fig. 2: Proposed BIST scheme 

2.1. The LFSR Design 

A linear feedback shift register (LFSR) is used as a pseudo-random pattern generator in our TPG. An n-bit (n-stage) 
LFSR is a linear sequential circuit consisting of D flip-flops and XOR gates generating code words (patterns) of a cyclic 
code. The structure of an n-stage LFSR-I (with internal XORs) is shown in Fig. 3. 

 

 

Fig. 3: LFSR structure 

The register has n parallel outputs corresponding to the outputs of the D flip-flops, and one flip-flop output can be used 
as a serial output of a register. 

The coefficients c1, c2, ...,cn-1 express whether there exists (1) a connection from the feedback to the corresponding XOR 
gate or there is no connection (0). Thus it determines whether there is a respective XOR gate present or the flip-flops are 
connected directly. The feedbacks leading to the XOR gates are also called taps. 

The sequence of code words produced by an LFSR can be described by a generating polynomial g(x) in GF(2n) [4]. 
 

g(x) = xn
 + cn-1x

n-1 + cn-2x
n-2 + ... + c1x

1 + 1 (1) 
 

If the generating polynomial is primitive (non-divisible by any other polynomial), the LFSR has a maximum period 2n-1, 
thus it produces 2n-1 different patterns. However, the use of a primitive polynomial is not needed for our purposes, since 
only few (i.e., thousands) patterns from all the possible 2n-1 are needed to conduct the test. Thus, we use a randomly 
generated 1-tap LFSR (i.e., having only one XOR gate), to minimize the area overhead, see the study in [5]. For course, we 
have to assure that the LFSR period is long enough, e.g., by simulation. 
 

3. The Decoder Design 

The Decoder is designed by the column-matching algorithm proposed here. Let us have an n-bit LFSR running for 
p clock cycles. The code words generated by this LFSR are described by a C matrix (code matrix) of dimensions (p, n). 
These code words are to be transformed into deterministic test patterns computed by an ATPG tool. The deterministic 
patterns are described by a T matrix (test matrix). For an r-input CUT and the test consisting of s vectors the T matrix has 
dimensions (s, r). The rows of the matrices will be denoted as vectors. The Decoder logic modifies the C matrix vectors 
to obtain all the T matrix vectors. As the proposed method is restricted to combinational (or full-scan) circuits, the order 
of the test patterns is insignificant. Moreover, “gaps” in the transformation do not matter as well, they only represent non-
testing vectors. Finding a transformation from the C matrix to the T matrix means finding a pairing of all the s rows of the 
T matrix with distinct rows of the C matrix – finding a row assignment, see Fig. 4. Here there are four T matrix rows 
assigned to five C matrix rows, the third C matrix row remains unassigned. 



 

The Output decoder is a combinational block transforming s n-dimensional vectors of the C matrix into s r-dimensional 
vectors of the T matrix. The decoder is represented by a Boolean function having n inputs and r outputs, where only values 
of s terms are defined; the rest are don’t cares implicitly. This Boolean function can be described by a truth table, where the 
output part corresponds to the T matrix, while the input part consists of s C matrix vectors assigned to the T matrix rows. 
The set of such vectors will be denoted as a pruned C matrix. The pruned C matrix vectors are the C matrix vectors 
assigned according the arrows. 
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Fig. 4: Assignment of the rows 

3.1. The Column-Matching Algorithm 

The major task to solve is to assign the rows to each other in such a way, so that the Decoder logic will be as small as 
possible. The column-matching algorithm has been developed for this purpose. The principle of the algorithm is to assign 
all the T matrix rows to some of the C matrix rows so that some columns of the T matrix will be equal to some of the 
pruned C matrix columns in the result. This involves no logic needed to implement these T matrix columns (which 
correspond to respective output variables of the decoder); they are implemented as simple wired connections. This idea can 
be extended to a negative matching, by allowing negated columns to be matched. This would involve a negligible amount 
of additional logic as well. 

The algorithm is thus based on finding columns that may be matched and subsequently assigning the rows to each other 
according to the selected column matches. The number of possible combinations of matches grows with a factorial of the 
number of the C matrix columns, thus finding an optimum solution is impossible. In practice, we use a simple heuristic 
method. Since the number of the C matrix rows is often much higher (typically by one or two orders of magnitude) than the 
number of the T matrix rows, finding several initial column matches is a trivial task: almost any two columns can be 
matched, because there is a big choice of possible assignments for the C matrix rows. Hence the selection of the rows to be 
matched is done at random. 

Two random columns are chosen for matching and then we must determine whether the match can be really made. This 
is done by performing the row assignment (i.e., assigning distinct C matrix rows to all the T matrix rows). An efficient 
heuristic based on a blocking matrix B has been proposed in [10]. The blocking matrix is a binary matrix (it contains only 
“0” and “1” values) of dimensions (p, s). Thus, it has as many columns as there are T matrix rows and as many rows as 
there are C matrix rows. The value "1" in the cell B[k, l] indicates that the k-th C matrix row may be assigned to the l-th 
T matrix row, "0" value indicates the contrary. 

At the beginning of the algorithm all the B matrix cells are filled with a "1" value, since there are no restrictions for row 
assignments. After the i-th C matrix column is matched with the j-th T matrix column, the B matrix cells [k, l] are set to "0" 
when the k-th input row contains in the i-th column the opposite value to the l-th output row in the j-th column. Thus, rows 
that contain opposite values in the matched columns cannot be assigned to each other.  

B[k, l] := “0”  when (C[k, i] ≠ T[l, j] ∧ T[ l, j] ≠ don’t care)  (2) 

If the negative column match is to be performed, the B matrix cells are set to “0” when equal values are present in the 
respective positions. 

When performing the row assignment, distinct rows have to be assigned to each other. It is a trivial problem for a test 
without don’t cares, since there does not exist a B matrix row having a “1” value in more than one column (one LFSR code 
word cannot be assigned to more than one test pattern). The final assignment then consists in selecting one row from the 
possible ones for each of the columns. Unfortunately, in the algorithm exploiting don’t cares in the test, the B matrix rows 
may have ones in more than one column, since some values in the test patterns will be determined after the assignment. 
This makes the assignment NP-hard. Again, a simple but very efficient greedy heuristic is used to solve this problem [10]. 

The row assignment has to be performed after each trial for a column match, to determine whether the match is valid. 
If the assignment fails, the column-matching process is terminated and the last valid assignment is considered as the final 



 

solution. The final valid row assignment forms a truth table, which has to be processed by a minimization tool [6-8] to 
synthesize the final Decoder logic. 

The basic algorithm can be described by the following pseudo-code. The inputs of the algorithm are the C and T 
matrices, the output is the minimized Boolean function. 

Algorithm 1: Column-matching algorithm 

ColumnMatching(C, T) { 
for ( k  = 0; k  < C_matrix_rows; k ++)  // initiallize B matrix 

for ( l  = 0; l  < T_matrix_rows; l ++) 
B[ k, l ] = “1”; 

A = ∅; 
do { 

i  = random( C_matrix_columns );   // randomly select columns  
j = random( T_matrix_columns ); 
for ( k  = 0; k  < C_matrix_rows; k ++)  // modify blocking matrix 
 for ( l  = 0; l  < T_matrix_rows; l ++) 

if (T[ l, j ] ≠ DC && C[ k, i ] ≠ T[ l, j ]) B[ k, l ] = “0”; 
A’ = A;    // backup the row assignment 
A = MakeRowAssignment(B); // make  a row assignment 

} while (A ≠ FAILED); 
Substitute_DCs(T);  // substitute test DCs with “0” or “1” 
CompactTest(T);   // do test compaction  
ExtractMatches(C, T);  // remove matched outputs  
F = Minimize(A’)   // synthesize the remaining logic  
return F; 

} 
 

This basic column-matching algorithm has been later extended to perform better, by introducing a one-step 
backtracking. If the match fails, the algorithm is not terminated but another match is looked for. The algorithm terminates 
once no more matches are possible to be done. 

The asymptotic complexity of this extended algorithm (called a “Thorough Search”) is O(n·r2
·p·s2). For more detailed 

description of the column-matching algorithm see [10, 11]. 

3.2. Column Matching Example 

Let us assume our example from Fig. 4. We have four T matrix vectors (labeled ‘A’-‘D’ now) that are to be assigned to 
some of the five C matrix vectors (labeled ‘a’-‘e’). The LFSR outputs (i.e., decoder inputs) will be labeled x0 – x4, the 
decoder outputs y0 – y4 (here the columns of C and T matrices). Since there are no matches selected at the beginning, any T 
matrix vector may be assigned to any C matrix vector, the B matrix is filled with 1-values, see Fig. 5a. Now we decide 
(randomly) to try to assign y0 to x0. Then the B matrix will be pruned to some extent, see Fig. 5b. For example, the T matrix 
row ‘A’ may be assigned to C matrix rows having a ‘1’ value in the x0 column only, since it has a ‘1’ value in the y0 
column, i.e., {a, b, e}. Then we select the x1 – y1 match (Fig. 5c). More intensive B matrix pruning can be observed here. 
The ‘C’ row can be matched with the ‘b’ row only from now on. Next we proceed with negatively matching x2 – y2 (Fig. 
5d) and positive x1 – y3 (Fig. 5e). There is no possibility for matching y4 after performing these four matches, thus the 
algorithm ends up with four matches. There has been left two choices for matching the ‘D’ row (‘d’ and ‘e’), ‘d’ is chosen 
randomly. The test don’t care values are then substituted by exact values, so that the respective C and T matrix columns 
will contain equal values. The final row assignment is shown in Fig. 5f. 

The first four Decoder outputs (y0 – y3) have been successfully matched, thus these outputs will be implemented without 
any logic. The output y4 has to by synthesized, e.g., by using a Boolean minimizer. The resulting Decoder logic is shown in 
Fig. 6. We can see that only one logic gate is needed to perform the matrices transformation. 

Let us note that the “random” choices for the column matches in this example have been made intentionally, to obtain 
the best possible result and in a direct way, without invalid trials. Any other combination of matches would yield worse 
results. However, the Thorough Search algorithm usually discovers a solution shown in this example soon. 
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Fig. 5: Column Matching example 
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Fig. 6: The Decoder logic 

3.3. Mixed-Mode Column-Matching BIST 

When the mixed-mode BIST technique is used, the test is divided into two phases – the pseudorandom and deterministic 
one. In the pseudorandom phase the LFSR code words are applied to the CUT unmodified, to detect the easy-to-detect 
faults. Faults that remained undetected are found by fault simulation and deterministic test vectors detecting them are 
computed by an ATPG. These deterministic vectors are then generated by a transformation of the LFSR code words that 
follow the pseudorandom sequence. 

An artificial illustrative example is shown in Fig. 7. The BIST logic for a 5-input circuit is to be synthesized here, the 
LFSR is required to run for 10 cycles in total. A 5-bit LFSR is run for 5 cycles first (the “Pseudo-random sequence”), to 
detect the easily testable faults. Deterministic test vectors for the faults not detected by these five vectors are generated by 
an ATPG. At the end the decoder is synthesized as a combinational block transforming the subsequent five LFSR patterns 
into these four deterministic vectors. The resulting test sequence detecting 100% of faults is shown on the right side of the 
figure, the resulting TPG circuitry is shown in Fig. 8. First, the “Deterministic mode” signal is set to ‘0’, so that the LFSR 
sequence is applied to the CUT unmodified. After 5 clock cycles it is switched to ‘1’, to apply the deterministic patterns. 

The Decoder logic synthesis process is described in the previous example. 
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Fig. 7: Test sequence generation 

LFSR

CUT

1

x0 x1 x2 x3 x4

y0 y1 y2 y3 y4

Deterministic
mode

y  = x0 0

y  = x

y  = x

y  = x

y  = x +x

1 1

2 2

3 1

4 0 1

’

’+

 

Fig. 8: Resulting BIST circuitry 

4. Scaling the Lengths of the Phases 

As it was said above, the BIST equipment design methodology should cope with the designer’s needs, thus be as 
customizable as possible. The above mentioned four aspects (area overhead, fault coverage, test time, design time) play a 
big role in the overall design process and cannot be optimally satisfied all. 

The column-matching based TPG design method is very well scalable in all these aspects. The ways of scaling are 
described in this section. The fault coverage aspect will not be discussed here, since 100% of detected non-redundant faults 
are assumed. Anyway, the fault coverage is determined by the ATPG used. If less than complete fault coverage is 
sufficient, less deterministic vectors may be used. Then both the TPG area overhead and BIST design time would be 
reduced. 

Parameters that most essentially influence the TPG area overhead and BIST design time are the lengths of the two BIST 
phases. Of course, the duration of the BIST execution is given by the lengths of the phases directly. 

4.1. Pseudo-Random Phase 

The aim of the pseudo-random phase is to detect as many faults as possible, while keeping the test time acceptable. Two 
aspects play role here: the LFSR polynomial and seed and the test length. Several methods to compute the LFSR seed 
to achieve good fault coverage have been proposed [12, 13]. However, for simplicity, we just repeatedly select the seed 
randomly, evaluate the fault coverage reached by using it, and select the best one. This approach allows reaching good fault 
coverage as well, whereas the fault coverage may be almost arbitrarily improved, for a cost of the runtime (by increasing 
the number of repetitions). Moreover, it is generally applicable to any type of pseudo-random pattern generators, e.g., 
cellular automata [14]. 

The number of the covered faults as a function of the number of LFSR cycles applied to the CUT follows the saturation 
curve shown in Fig. 9 (for the c3540 circuit [15]). First few vectors detect the majority of faults and then the fault coverage 
increases only slightly. 
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Fig. 9: Fault coverage saturation curve 

In order to reach satisfactory fault coverage in the pseudo-random phase, the fault coverage saturation curve for the CUT 
should be determined by a fault simulation. The appropriate length of the PR phase can be easily derived from it. The 
pseudo-random phase should be stopped when the fault coverage does not improve for a given number of cycles. This 
number can be freely adjusted, according to the application specific requirements (the trade-off between the test time and 
area overhead). 

To illustrate the scalability of the method in terms of the length of the pseudo-random phase, the BIST structure was 
designed for several ISCAS benchmarks [15, 16]. The length of the pseudo-random phase was varied, while the length 
of the deterministic phase was kept constant, 1000 cycles. 

The results are shown in Tab. 1. The benchmark name is shown in the first column. The “PR”  column indicates the 
length of the pseudo-random phase, the “UD”  column shows the number of stuck-at faults that were left undetected by this 
phase. “vct.”  gives the number of deterministic vectors produced by an ATPG [24], to test these faults. The length of the 
deterministic phase was set constantly to 1000 cycles, except of the s38417 benchmark, where it was set to 2000 cycles 
(because of the size of the test set). The “GEs” column shows the total complexity of the BIST design, in terms of the gate 
equivalents [17]. The time needed to complete the column-matching procedure is indicated in the last column. The 
experiment was run on a PC with 1 GHz Athlon CPU, Windows XP. 

Tab. 1: Influence of the length of the pseudo-random phase 

bench PR UD vct. GEs Time [s] 
s1196 200 228 104 110.5 5.05 
 2 K 52 37 37 1.20 
 10 K 9 4 6 0.04 
s5378 5 K 89 49 65.5 2259 
 10 K 63 23 31.5 767 
 20 K 48 8 16.5 104 
s9234.1 1 K 1674 215 883 52 300 
 50 K 773 99 333.5 4 400 
 200 K 599 52 212.5 1 600 
s13207.1 1 K 1793 197 699 208 K 
 10 K 617 74 280 3 480 
 50 K 182 21 36 128 
s38417 10 K 2067 1391 15106.5 3 417 
 100 K 780 520 3259.5 2 263 

 
A big trade-off between the test length and the area overhead can be seen here. The longer the pseudo-random phase 

runs, the less area overhead is reached. Consequently, the BIST synthesis time reduces as well. 

4.2. Deterministic Phase 

In the deterministic phase deterministic vectors are synthesized from some of the LFSR patterns that follow the 
pseudo-random phase. With increasing the number of LFSR patterns, the chance for finding more column matches 



 

increases as well. This is due to having more freedom in selecting the LFSR vectors to be assigned to the deterministic 
vectors. However, the algorithm runtime rapidly increases with the number of deterministic vectors. 

This is illustrated by Tab. 2. Its format is partially retained from Tab. 1, the “Det.” column indicates the length of the 
deterministic phase. 

It can be observed that a trade-off between the test time and area overhead can be freely adjusted here too, according 
to the demands of the BIST designer. 

The lengths of both the phases significantly influence the BIST design time as well. The design process is being sped up 
when increasing the length of the pseudo-random phase, since the number of deterministic vectors is being reduced this 
way. On the other hand, an increasing length of the deterministic phase slows down the process. 

 

Tab. 2: Influence of the the length of the deterministic phase 

bench inps PR Det. GEs Time [s] 
c3540 50 1000 200 34 0.32 
   500 29.5 0.52 
   1000 28 1.02 
   2000 16.5 1.47 
s1196 32 5000 200 25.5 0.17 
   500 25 0.32 
   1000 17 0.48 
   2000 17 1.52 
   5000 9 2.16 
   10000 4.5 5.83 

 

4.3. Summary 

By increasing the length of the pseudorandom phase, the number of undetected faults decreases. Thus, the number 
of deterministic test vectors that are needed to be generated in the deterministic phase is decreases as well. As a 
consequence of this, the BIST design time is often significantly decreased (even though the fault simulation time is higher) 
and the area overhead is reduced as well. To obtain best results, the pseudorandom phase should be run until most of the 
easy-to-detect faults are detected, according Fig. 9. Running this phase longer becomes ineffective. 

By prolonging the run of the deterministic phase the column-matching algorithm runtime is increased. The algorithm 
has more freedom in the selection of matches on the other hand, so the area overhead of the decoder is decreased. 

Tab. 3: Influence of the test lengths 

 Longer PR phase Longer Det. phase 
BIST design time decreased increased 
BIST area overhead decreased decreased 
BIST run length increased increased 

5. Reducing the LFSR Width 

As it was stated before, the column-matching algorithm is primarily designed for a test-per-clock BIST. Originally, the 
number of the LFSR bits had to be equal to the number of CUT inputs. However, the LFSR width may be arbitrarily scaled 
by using the weighted pattern testing. The effect of such a scaling will be shown in this section. The LFSR scaling affects 
both the total TPG area overhead and the TPG design time. 

5.1. Weighted Pattern Testing 

There have been many weighted pattern testing approaches proposed up to now [18-23]. Basically, all of them are based 
on computing the probability of occurrence of ‘1’ and ‘0’ values (weights) on particular inputs and modifying the 
pseudorandom sequence (which usually has this probability 0.5 at all the inputs) by some additional weighting logic, 
to meet these weights. In general, the weighting logic consists of AND and OR gates, which, when fed by LFSR outputs, 
produce weighted patterns. For example, when two LFSR outputs are led into an AND gate, the resulting probability 
of occurrence of ‘1’ at the output of the AND gate will be 0.25. 

It was shown that using only simple weighted pattern testing does not ensure sufficient fault coverage and multiple 
weight sets are needed [19]. Another alternative is to use a combination of weighted pattern testing with deterministic test, 



 

as shown, e.g., in [23]. We propose such an approach too, particularly the combination of weighted pattern pseudorandom 
testing with column-matching. 

The weights are usually being computed from the deterministic test set derived for the tested circuit. A common 
approach is to find a set of so called random pattern resistant faults (RPRFs), which are faults that are difficult to detect 
by random patterns. Then, a test vector set is computed to test these faults. The weights are then derived by computing 
respective 0/1 value ratios for each CUT input. 

The RPRFs are determined by repeatedly applying pseudorandom vectors to the CUT and recording the undetected 
faults. The number of RPRFs obtained thus strongly depends on the number of pseudorandom patterns applied. The higher 
their number is, the less faults remain undetected. There arises a question of what number of RPRFs should be considered 
to compute the weights, to obtain optimum results. One limit approach is to consider all faults and to derive the weights 
from a complete test for the circuit. This approach is often unusable for very large circuits, since the complete test set 
computation would take a very long time. We have performed experiments to estimate what number of RPRFs should be 
used to compute the test weights. We have used the s9234.1 ISCAS’89 benchmark circuit [16] for the following 
measurement. We have varied the number of pseudorandom vectors applied to the CUT to detect RPRFs, from 0 (all faults 
are used to compute weights) to 100 000. Then a 3-weight set was computed using the test vectors detecting these RPRFs. 
After that, the weighting logic was synthesized and the weighted test pattern generator was run for 10 000 cycles. The 
number of undetected faults was measured. Such an experiment was repeatedly run 10 000-times (using different LFSRs 
and keeping the computed weight set) and the average of the result was computed (for the number of undetected faults), for 
higher precision of the measurement. The results are shown in Tab. 4. First the number of pseudorandom vectors used 
to determine RPRFs is shown, then the number of RPRFs obtained. The “vcts” column indicates the number of test vectors 
used for the weight computation. Finally, the average number of faults undetected by the run of the resulting weighted 
pattern generator is shown (“UD”). The dependency of the number of undetected faults on the number of test vectors 
testing RPRFs is visualized by Fig. 10. There is an apparent global minimum to be seen, corresponding to the optimum 
number of test vectors to determine the test weights. However, it is hard to estimate this optimum in practice, for different 
circuits. It has to be found experimentally, by trying out different numbers of vectors that are applied to the circuit and 
picking the best trial. 

Tab. 4: Computing test weights 

vectors RPRFs vcts. UD 
0 6927 6470 852 
100 3060 2605 817 
1000 1997 1544 815 
2000 1709 1257 805 
2500 1614 1162 802 
3000 1482 1030 781 
4000 1347 895 762 
5000 1280 828 808 
10 000 1080 628 818 
20 000 950 498 860 
50 000 876 424 862 
100 000 715 263 891 

                                        

                                        

                                        

                                        

                                        

                                        

0 10000 20000 30000 40000 50000 60000

760

780

800

820

840

860

880

900

U
n

d
et

ec
te

d
 fa

ul
ts

Vectors to compute weights

 



 

Fig. 10: Numbers of undetected faults 

Another issue that has to be taken into account is the design of the weighting logic. The higher is the precision of weight 
generation, the higher the area overhead of the weighting logic. For our examples we will limit ourselves to the 3-weight 
and 5-weight logic only, since more weights (or even more weight sets) would involve a large area overhead caused by the 
weighting logic, while the gain in quality (fault coverage) is negligible. 

There have been several weighting logic designs proposed. The simplest one (see, e.g., [18]) proposes weights like 0, 
0.5, 1 for 3-weighted logic, 0, 0.25, 0.5, 0.75, 1 for 5-weight logic, etc. This approach has been found very inefficient 
in terms of the fault coverage reached, see Tab. 5. This is most probably due to constant 0 and 1 values in the test. 
However, such a 3-weight test does not require any additional weighting hardware, since the 0 and 1 weights are 
implemented as hard-wired connections to the ground or the voltage supply, respectively, and the 0.5 weight is constructed 
as a direct connection to an LFSR output. We use a 3-weight testing method where the weights are 0.25, 0.5 and 0.75. 
Thus, the two weights are constructed by AND-ing and OR-ing two LFSR outputs and, for a 5-weight method (0.125, 0.25, 
0.5, 0.75, 0.875), the weights are generated by AND-ing and OR-ing two or three LFSR outputs. This approach involves 
some additional hardware, however the increase of the fault coverage reached by it is fully compensated by the reduction 
of the deterministic test generator logic. 

The effect of the use of the weighting logic on the fault coverage is illustrated by Fig. 11. We have computed the 
weights for the ISCAS’89 s13207.1 circuit [16], repeatedly reseeded the LFSR and constructed the weighting logic 
(10 000-times). The number of faults that remained undetected by a sequence of 5000 vectors generated by the final TPG 
was measured. The curves represent the frequencies of the respective amounts of undetected faults (the area below the 
curves is equal to the number of vectors applied, i.e., 10 000). Four curves are shown, representing four different weighting 
logics. The most efficient one is the 5-weight logic, where no 0 and 1 weights are used (the leftmost curve). Here minimum 
of faults are left undetected. Similar 3-weight logic is illustrated by the neighboring curve. The number of undetected faults 
is almost the same. Then the case with no weighting logic used is shown, for comparison. It can be seen that the weighting 
logic significantly reduces the number of undetected faults, with respect to this case. The rightmost curve describes the 
5-weight logic case, where constant 0 and 1 weights are used. Here the number of undetected faults is even increased. The 
3-weight logic with 0 and 1 constants is not shown in the graph, since the number of undetected faults is extremely high 
(far to the right). 

The results are summarized in Tab. 5. Minimum and average numbers of undetected faults are shown there, for all the 
five weighting logic cases. The s13207.1 circuit has 9815 faults in total. 
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Fig. 11: Weighting logic effects 

Tab. 5: Weighting logic effects 

Weighting logic Min. Avg. 
5-weights (0.125, 0.25, 0.5, 0.75, 0.875) 269 392 
3-weights (0.25, 0.5, 0.75) 299 425 
no weights 742 1250 
5-weights (0, 0.25, 0.5, 0.75, 1) 1761 1823 
3-weights (0, 0.5, 1) 3762 3771 

 



 

5.2. Weighted Pattern Column-Matching 

When the weighted pattern testing is used in connection with the column-matching method, a new block is introduced 
into the TPG – the weighting logic block. See Fig. 12. The LFSR width (r) may be then less than the number of CUT inputs 
(m), the number of TPG outputs is increased just by the weighting logic block. 

In practice, an LFSR with a random polynomial and random seed is used. This ensures (to some extent) a uniform 
distribution of ‘1’s and ‘0’s in code words produced by it. In other words, the weights of all the r LFSR outputs are 
approximately 0.5. To generate the weighted patterns, the outputs of the weighting logic are generated by AND-ing 
or OR-ing randomly selected LFSR outputs. Thus, m weighted TPG outputs are generated by this way. 

 

Decoder

Switch

CUT

MISR

TPG

mode

m

m

m

LFSR
r<m

Weighting logic

 

Fig. 12: Weighted column-matching BIST scheme 

The effects of the LFSR scaling are shown in Tab. 6 for the ISCAS s13207.1 benchmark having 700 inputs and 
compared with a standard approach (the case when no weights are used). The “LFSR” column indicates the width of the 
LFSR used (r). In a case of weighted pattern testing the number of gates needed for the weighting logic is shown in the 
next column (“w”). The total TPG area overhead (including the LFSR) is computed in terms of gate equivalents [17]. An n-
input NAND gate counts for 0.5n GEs, the two-input XOR gate (used in LFSR) is 2.5 GEs. The size of a D flip-flop is 
considered to be 4 GEs, which complies with the design of a standard flip-flop in CMOS logic. We have tried to scale the 
originally 700-bit LFSR down to 30 bits. It can be seen that optimum results are obtained for the 50-bit LFSR, the TPG 
area reduction is more than 70% with respect to the original (700-bit unweighted) case. When the LFSR width is scaled 
down more, the TPG area overhead rapidly increases, since the weighted LFSR is not able to cover enough faults, due 
to reduced randomness of the patterns. The column-matching results for the 30-bit LFSR are not present, due to very high 
column-matching algorithm runtimes. 

See [25] for more details of the principles of weighted pattern column-matching testing. 

Tab. 6: LFSR scaling 

LFSR (r) method w time [s] TPG GEs 
700 no weights - 4720 2975 
700 3-w 518 245 3361 
200 3-w 365 653 1231 
50 3-w 365 2835 671 
45 3-w 365 3423 693 
40 3-w 365 29434 1288 
30 3-w 365 - - 

6. Multiple-Vector Column-Matching 

The more “freedom” has the column-matching algorithm in selection of the matches, the better it performs. Particularly, 
more don’t care values in the test set induce more column matches and thus less area overhead [10]. Some ATPG tools are 
able to produce rather complex (and redundant) tests, which can be efficiently exploited by the column-matching 
algorithm. E.g., the Atalanta ATPG [24] is capable producing more than one (or all) vectors testing one particular fault. 
The test set is then much larger, yielding the column-matching process be slower. However, due to more freedom for a 
column match selection, the area of the Decoder is less. 

This is documented by Tab. 7. The “vct/flt” column indicates the number of processed test vectors per one fault. The 
total number of generated test vectors (T-matrix size) is shown in the next column. The TPG design time and its area 



 

overhead (w.r.t. the original circuit) are shown next. The improvement with respect to the original, one-vector method is 
indicated in the last column. We can conclude that quite a significant area reduction may be obtained when multiple vectors 
per one fault are used, for a cost of a longer runtime. 

See [26] for more details on multiple-vector column-matching. 

Tab. 7: Multiple-vector column-matching 

bench vct/flt vcts. time [s] overhead impr. 
c1908 1 36 6.7 5.7 %  
 10 340 55.9 3.0 % 48 % 
c3540 1 31 3.9 2.2 %  
 10 101 19.1 1.6 % 27 % 
 100 555 90.0 1.3 % 42 % 
c7552 1 106 1104.8 17.0 %  
 10 1206 16124.7 14.8 % 13 % 
s1196 1 55 5.5 11.1 %  
 10 259 109.0 7.8 % 30 % 
s1238 1 33 2.9 6.7 %  
 100 95 16.7 4.6 % 31 % 
s5378 1 19 7.7 1.5 %  
 100 258 181.5 0.9 % 40 % 
s9241.1 1 52 160.7 5.3 %  
 10 564 3508.6 4.9 % 10 % 

7. Experimental Results 

7.1. Comparison with Other State-of-the-Art Methods 

The proposed column-catching method is compared with three state-of-the-art methods in this section, namely the 
bit-fixing accompanied by a “bit-correlating” ATPG [2], the “3-weight weighted random pattern BIST” proposed in [19] 
and the row matching method proposed in [3]. The comparison results are shown in Tab. 8. The “TL”  columns indicate the 
total length of the test, the “GEs”  columns give the number of gate equivalents (or 2-input NAND gates) of the BIST 
combinational circuits and the “lit.” columns indicate the number of literals in the sum-of-products (SOP) form of the 
decoding logic. Test lengths have been set approximately equal. 

Let us mention here, that a special kind of a test pattern generator (GLFSR) is used in the row matching approach [3]. 
Using such a circuit causes quite a large area overhead in most cases, for many XOR gates involved. This overhead is not 
included in the table. Generally, the column-matching method is independent on a pseudorandom pattern generator 
employed, thus in all the cases an LFSR with one XOR gate only was used. Thus, sometimes bigger area overhead of our 
method could be compensated by a small area of the pseudorandom pattern generator used.  

In the bit-fixing and weighted BIST methods several additional registers (flip-flops) are present in the test pattern 
generator. In the column-matching method no flip-flops are needed (except of those in the LFSR). 

The column-matching results describe the overall test length and the number of gate equivalents of the Decoder. The 
number of GEs approximately corresponds to the number of SOP literals, thus a comparison with the bit-fixing and 
weighted BIST methods can be freely made. 

The empty cells indicate that the data for the respective circuit was not available. 



 

Tab. 8: Comparison results 

 Bit-fixing 
[2] 

Weighted BIST 
[19] 

Row 
matching [3] 

Column 
matching 

Bench TL lit. TL lit. TL GEs TL GEs 
c880 - - - - 640 21 1 K 15 
c1355 - - - - 1.8 K 0 1.5 K 15 
c1908 - - - - 4.7 K 8 3 K 10.5 
c2670 10 K 385 8 K 269 6 K 119 5 K 113 
c3540 - - - - 4.8 K 4 5.5 K 1.5 
s420 10 K 59 1.4 K 67 - - 1 K 24.5 
s641 10 K 98 768 45 7.7 K 6 4 K 15 
s713 - - - - 4.8 K 4 5 K 16.5 
s838 10 K 183 3.1 K 108 - - 6 K 130 
s1196 10 K 97 16.8 K 67 10 K 36 10 K 6 
s1238 - - 17 K 33 - - 4 K 26.5 
s5378 10 K 332 18.4 K 68 - - 11 K 19.0 

7.2. Results for Standard Benchmarks 

Since the comparison shown in Tab. 8 describes results for a few small benchmark circuits only, we will present a more 
exhaustive result table (Tab. 9), for some of the bigger ISCAS [15, 16] and ITC’99 [27] benchmarks. The easy-to-test 
benchmarks were omitted (benchmarks 100% testable by less than 100 000 random vectors). The BIST circuitry was 
synthesized in two modes for each benchmark – in the first mode, the test length was set to be relatively small (the white 
rows). In the second mode a big effort has been put to obtain low area overhead in a reasonable BIST design time. The test 
is prolonged and some improvement techniques, like multiple-vector column-matching and weighted pattern testing, are 
sometimes used to design the TPG. This is indicated in the “Method” column. The legend to the values is below the table. 

The “Inps”  column indicates the number of the benchmark inputs, in the “100% FC” column the number of 
pseudorandom vectors needed to be applied to the CUT to achieve 100% fault coverage is shown, just to show the 
effectiveness of the method. The “TL”  column gives the lengths of the pseudo-random and deterministic phases. 
Thousands of vectors are abbreviated by “K”, millions by “M”. The “Match” columns show the total number of column 
matches reached. The complexity of the switching logic is shown in the “SW GEs” column, the complexity of the output 
decoder is shown in “OD GEs” . These numbers are summed together (and with possible number of weighting gates) in the 
“Total GEs” column. The percentage of the area overhead of the Output Decoder and Switch, with respect to the CUT GEs 
is shown in the “BIST Overhead” column. The runtime needed to complete the column-matching process is indicated in the 
last column. 

It can be seen that quite a large number of column matches is often reached and thus the Output Decoder logic is 
reduced to minimum, thus the overall BIST overhead is reduced to percents of the size of the original circuit. 

The experiments were run on a PC with 2,6 GHz Athlon AMD CPU, Windows XP operating system. 
 



 

Tab. 9: Results for standard benchmarks 

Bench Inps 100% FC TL (PR + Det.) Method Match SW 
GEs 

OD 
GEs 

Total 
GEs 

BIST 
Overhead 

Time [s] 

c2670 233 2.4 M 1 K + 1 K  193 90 109.5 199.5 19 % 166 
   4 K + 1 K 1) 201 82.5 71.5 154 15 % 437 
c7552 207 > 100 M 7 K + 1 K  131 261 325 586 19 % 500 
   10 K + 1 K  133 256.5 248.5 505 16 % 887 
s420 34 165 K 400 + 600  32 21 3.5 24.5 13 % 0.75 
   5 K + 1 K 1) 34 18 0 18 9 % 5.01 
s641 54 200 K 500 + 500  52 21 2 23 9 % 0.47 
   3 K + 1 K  54 15 0 15 6 % 0.21 
s713 54 300 K 500 + 500  52 24 3 27 8 % 0.56 
   3 K + 1 K  54 18 0 18 5 % 0.32 
s838 67 > 100 M 1 K + 1 K  37 81 45 126 32 % 26.20 
   10 K + 2 K  46 79.5 29 108.5 28 % 51.51 
s1196 32 200 K 2 K + 1 K  28 13.5 23.5 37 7 % 1.20 
   9 K + 1 K  32 6 0 6 1 % 0.04 
s9234 247 10 M 50 K + 1 K  208 163.5 156 319.5 8 % 350 
   200 K + 1 K 1) 225 127.5 66 193.5 5 % 3500 
s13207.1 700 100 K 1 K + 1 K  638 456 294 750 13 % 4000 
   50 K + 1 K  700 36 0 36 < 1 % 13 
s15850.1 611 > 10 M 10 K + 1 K  478 397.5 187 584.5 9 % 812 
   100 K + 2 K  553 306 66.5 372.5 5 % 1244 
s38417 1664 > 10 M 10 K + 1 K  1240 1365 1389.5 2754.5 17 % 24 K 
   100 K + 1 K 2) 1000 1239 142 2284 14 % 4660 
s38584.1 1464 > 1 G 10 K + 1 K  1435 379.5 57.5 437 3 % 650 
   100 K + 1 K  1464 165 0 165 1 % 34 
b07 50 200 K 1 K + 1 K  45 33 8.5 42.5 11 % 4 
   10 K + 1 K  50 24 0 24 6 % 0.5 
b12 126 5 M 1 K + 1 K  117 37.5 45 82.5 9 % 40 
   10 K + 1 K 1) 118 33 34 67 7 % 1080 
b14 277 > 100 M 1 M / 2 K  84 318 8017 8335 141 % 170 K 
   100 M / 1 K  90 328.5 2663.5 3319.5 56 % 100 K 
b15 485 > 100 M 100 K / 1 K  241 558 4709 5267 67 % 50 K 
   1 M / 1 K 2) 378 373.5 667 1355.5 17 % 4800 

 
1) 10 vectors per fault 
2) 3-weight logic 

 

8. Conclusions 

A scalable and customizable mixed-mode BIST equipment design method based on a column-matching principle has 
been proposed. Here pseudorandom LFSR code words are being transformed into deterministic test patterns computed by 
an ATPG tool. The transformation is being done by a purely combinational block; no additional registers are needed to 
perform the transformation. The algorithm tries to “match” maximum of decoder outputs with its inputs, which yields no 
logic needed to implement these outputs. 

The pseudo-random and deterministic phases are separated, which enables to reach less area overhead of the control 
logic. The method is based on a design of a decoder transforming the LFSR code words into deterministic test vectors 
testing the hard-to-detect faults. Moreover, no memory elements are needed to recognize LFSR patterns that are to be 
modified, like in other state-of-the-art approaches (e.g. bit-fixing, bit-flipping). 

Since the test is divided into two phases, the lengths of both phases may be freely adjusted, to find a trade-off between 
the test time and area overhead. It has been shown that the length of the pseudo-random phase has a crucial impact to the 
result. The length of the deterministic phase influences the result as well, though not that significantly. The impact of the 
test lengths to the duration of the BIST design process is considered too. 



 

A big scalability of the method, in terms of the area overhead, test time and design time is shown. A weighted pattern 
testing principle is used to reduce the LFSR width. Next, multiple-vector column-matching method reducing the area 
overhead for a cost of a longer runtime is proposed. 

The proposed algorithm should serve as a basic guideline how to design more complex BIST designs, i.e., the 
multiple-scan chain based BIST, the STUMPS architecture, etc. The method should be as general, as the other state-of-the-
art methods are (e.g., bit-flipping, bit-fixing). The obtained results, in terms of the area overhead, are comparable to the 
other methods, sometimes they are significantly better. 

The method has been tested on standard benchmarks and the results were compared with other state-of-the-art methods.  
The proposed method could be very suitable for complex, e.g, SoC designs – here only the Decoder logic has to be 

synthesized for each combinational block (core); the LFSR and the BIST control logic may be shared among the blocks. 
The investigation of such possibilities would be a part of our future research. 
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