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Abstract

A novel test-per-clock built-in self-test (BIST)ugmnent design method for combinational or fullsscsequential
circuits is proposed in this paper. Particularlettest pattern generator is being designed. Théaedeas based on similar
principles as are well known test pattern generatesign methods, like bit-fixing and bit-flippinthe novelty comprises
in proposing a brand new algorithm to synthesize tist pattern generator. In principle, we synthesa combinational
block - the Decoder, transforming pseudo-randomecadrds into deterministic test patterns pre-coraduty an ATPG
tool. The Column-Matching algorithm to design thecatder is proposed. Here the maximum of outputabées of the
decoder is tried to be matched with the decodeuts\pyielding the outputs be implemented as mereswihus without
any logic. No memory elements are needed to dheréest patterns, which reduces the BIST area @asth

Our BIST exploits mixed-mode testing principlese BIST execution is divided into two disjoint plsase the
pseudo-random phase and the deterministic phase.eRables to reach high fault coverage in a slhest time and with
a low area overhead. The choice of the lengthsi@ftivo phases directly influences the test tim&TBiesign time and
BIST area overhead. A big effort has been put taability of trading-off the design criteria. Timethod allows for
scaling the test time, BIST area overhead, BISTgdetime, etc. The time complexity of the algoritterstudied and
experimentally evaluated.

Keywords. Built-in self-test, test pattern generator, mixede® testing, weighted random pattern testing, Idgsign.

1. Introduction

With the ever-increasing complexity of present VIcBtuits, their testing is becoming more and niorportant. There
often arise faulty chips during the manufacturimpgess due to an inaccurate technology and sugbs ddtiould be
detected and eliminated. Using only external testipment (ATE) to test the chips is becoming venyetconsuming,
mainly due to a huge amount of test vectors, l@st time and very expensive test equipment. A solutf this problem
consists in incorporating the Built-in Self-Testufgment (BISTE) into the circuit. No external tesgerequired to test the
circuit, since all the circuitry needed to condtha test is included in the very circuit. This Big by an area overhead,
long test time and often low fault coverage.

The basic idea of Built-in Self-Test (BIST) is tesilgn a circuit so that it is able to test itselflletermine whether it is
fault-free or faulty. This typically requires addital circuitry incorporated into the design. Thidditional logic must be
capable to generate test patterns as well as iodgr@ mechanism to determine if the test respoak#te circuit under
test (CUT) correspond to those of a fault-free witrtcThe basic architecture of the BIST circuitrg & might be
incorporated into the CUT is shown in Fig. 1 [9].

Our aim is to design the Test Pattern GeneratoG]TBo that it provides complete (100%) non-redabdguck-at fault
coverage and its size is maximally reduced.
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Fig. 1: Basic BIST architecture
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Up to now, many BIST design methods have been dpedl [1-3, 9, 13, 18-23, 28], all of them tryingdfitmd some
trade-off between these four aspects that cannali satisfied at one time:
» Fault coverage
* Testtime
* BIST area overhead
» BIST design time

To reach high fault coverage, either a long tesietior a high area overhead is involved. A pseuddam testing
established the simplest trade-off between allalmieria. With an extremely low area overheaddiheuit can be tested
usually up to more than 90% in a relatively smaiiter of clock cycles. To improve the fault coveragd to reduce the
test time, many enhancements of this pseudo-rammiple have been developed. All of them are aqeanied by some
additional area overhead.

Different ASIC designers integrating BIST logicantheir circuits have different requirements. Sames there is a
requirement to design the BIST logic as quicklypassible, regardless the area overhead and thiecfardrage (to some
limited extent, of course). For low-power desigtitee BIST logic area overhead should be kept aslsasapossible,
whereas the BIST design time is not that import@nt.and this is the most common case in pradtigd fault coverage is
important, whereas the BIST design time plays dlsmia. This is due to a fact that the design tioi¢he tested circuit is
mostly significantly higher than the BIST logic @estime.

We propose a flexible way how to design test pattgenerators (TPGs) meetirany of the above-mentioned
restrictions (or, better, quality measures). Theigteer is able to freely adjust the BIST logic desiime, BIST logic area
overhead and BIST run time, according his prefezent00% fault coverage (of non-redundant faut€pnsidered in the
following text. However, the method may be modifial that less fault coverage is reached, with afiteof less area
overhead and shorter design time.

The paper is structured as follows: the proposstl pattern generator design is described in Se@io8ection 3
describes the design of the Decoder, as an edseatiaf the proposed method. The possibility cdlsg of the lengths of
the BIST phases is discussed in Section 4, thehsayto reduce the LFSR width is shown in SectioAlbimprovement
of the basic column-matching algorithm, yieldingdeBIST area overhead is briefly described in 8ecé. Section 7
contains some experimental results, Section 8 odesl| the paper.

2. Proposed Test Pattern Generator Design Method

The method is primarily intended for a test-perkI®IST, thus the test patterns are applied tgtireary inputs of the
circuit-under-test (CUT) in parallel. However, theethod can be modified for a test-per-scan as [8&lIMultiplexers
separating combinational parts of sequential disduave to be present, similarly like in full-saesigns.

The proposed test pattern generator (TPG) corsigteo main parts: a linear feedback shift regigtdfSR) producing
pseudorandom patterns and the Decoder, which ésndinational block transforming these patterns aeterministic test
patterns computed by an ATPG tool. Generating ly fiidterministic test detecting 100% non-redundsnotk-at faults
would involve a huge combinational logic (of theddder). Hence, a mixed-mode (or sometimes calledidlyBIST [1, 2,
28] is used. The BIST run is divided into two pleagbe pseudorandom and deterministic one. Therdifice between our
mixed-mode BIST method and most of the others,(bigflipping [1], bit-fixing [2]) is that the twghases are separated
in our approach. First, the easy-to-detect faulkscavered in th@seudo-randonphase run. Then, a set of deterministic
test vectors covering the undetected faults is egethband these vectors are then generated by sfdraration of the
subsequent LFSR patterns. This significantly redum@th the Decoder and BIST control logic. No mgmalements are
needed to recognize patterns that are to be mddffiiee in [1, 2]); switching between the two phase handled by the
BIST controller counter. The proposed BIST schesrghown in Fig. 2.
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21 TheLFSR Design

A linear feedback shift regist§ FSR) is used as a pseudo-random pattern gemeénatur TPG. Ann-bit (n-stage)
LFSR is a linear sequential circuit consisting oflip-flops and XOR gates generating code wordstépas) of a cyclic
code. The structure of amstage LFSR-I (with internal XORSs) is shown in Rg.

e e =
D D D DI | | Serial Output

Parallel Outputs
Fig. 3: LFSR structure

The register has parallel outputs corresponding to the outputshef® flip-flops, and one flip-flop output can beeds
as a serial output of a register.

The coefficients, ¢, ...,G.1 express whether there exists (1) a connection fhareedback to the corresponding XOR
gate or there is no connection (0). Thus it deteesiiwhether there is a respective XOR gate presethie flip-flops are
connected directly. The feedbacks leading to th&Xfates are also call¢aps

The sequence of code words produced by an LFSReaescribed by generating polynomiag(x) in GF(2) [4].

g(x) = X'+ X+ goxX™+ Lt ext + 1 1)

If the generating polynomial is primitive (non-diithle by any other polynomial), the LFSR has a maxn period 2-1,
thus it produces"™ different patterns. However, the use of a piiraippolynomial is not needed for our purposes, esinc
only few (i.e., thousands) patterns from all thesgible 2-1 are needed to conduct the test. Thus, we ussmdomly
generated 1-tap LFSR (i.e., having only one XOR)gab minimize the area overhead, see the stufbj.ifror course, we
have to assure that the LFSR period is long encaigh, by simulation.

3. The Decoder Design

The Decoder is designed by the column-matchingrilgo proposed here. Let us have mbit LFSR running for
p clock cycles. The code words generated by thisR.B& described by @ matrix code matri¥ of dimensionsg, n.
These code words are to be transformed into deteéstiai test patterns computed by an ATPG tool. Tkterministic
patterns are described bylamatrix ¢est matriy. For anr-input CUT and the test consistingsofectors thel matrix has
dimensions g, 1). The rows of the matrices will be denotedvastors The Decoder logic modifies th@ matrix vectors
to obtain all theT matrix vectors. As the proposed method is resiicb combinational (or full-scan) circuits, theler
of the test patterns is insignificant. Moreoverapg” in the transformation do not matter as wakytonly represent non-
testing vectors. Finding a transformation from @enatrix to theT matrix means finding a pairing of all tisgows of the
T matrix with distinct rows of th& matrix — finding arow assignmentseeFig. 4. Here there are fodr matrix rows
assigned to five&c matrix rows, the third@C matrix row remains unassigned.



The Output decodeis a combinational block transformisgi-dimensional vectors of theé matrix intos r-dimensional
vectors of thel matrix. The decoder is represented by a Booleaatifion havingn inputs and outputs, where only values
of sterms are defined; the rest are don't cares intiglid his Boolean function can be described byt table, where the
output part corresponds to thiematrix, while the input part consists ®€ matrix vectors assigned to tfiematrix rows.
The set of such vectors will be denoted asumedC matrix The prunedC matrix vectors are th€ matrix vectors
assigned according the arrows.
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Fig. 4: Assignment of the rows

3.1. The Column-Matching Algorithm

The major task to solve is to assign the rows thesher in such a way, so that the Decoder loglicbs as small as
possible. The column-matching algorithm has beerldped for this purpose. The principle of the lfpon is to assign
all the T matrix rows to some of th€ matrix rows so that someolumnsof the T matrix will be equalto some of the
pruned C matrix columns in the result. This involve® logic needed to implement the§ematrix columns (which
correspond to respective output variables of tremder); they are implemented as simple wired caiiomes: This idea can
be extended to megative matchingby allowing negated columns to be matched. Thisl@/involve a negligible amount
of additional logic as well.

The algorithm is thus based on finding columns thay be matched and subsequently assigning thetmeach other
according to the selected column matches. The nuofhgossible combinations of matches grows wiflaciorial of the
number of theC matrix columns, thus finding an optimum solutionirigpossible. In practice, we use a simple heuristic
method. Since the number of tGematrix rows is often much higher (typically by ometwo orders of magnitude) than the
number of theT matrix rows, finding several initial column matshis a trivial task: almost any two columns can be
matched, because there is a big choice of posadsiggnments for the matrix rows. Hence the selection of the rows to be
matched is done at random.

Two random columns are chosen for matching and wWeemust determine whether the match can be realye. This
is done by performing the row assignment (i.e.jgaesg distinctC matrix rows to all thel matrix rows). An efficient
heuristic based onldocking matrixB has been proposed in [10]. The blocking matrix sreary matrix (it contains only
“0” and “1” values) of dimensiong( s). Thus, it has as many columns as thereTareatrix rows and as many rows as
there areC matrix rows. The value "1" in the cd[k, I] indicates that th&-th C matrix row may be assigned to thth
T matrix row, "0" value indicates the contrary.

At the beginning of the algorithm all tfeematrix cells are filled with a "1" value, sinceetk are no restrictions for row
assignments. After theth C matrix column is matched with theéh T matrix column, thé matrix cells k, I] are set to "0"
when thek-th input row contains in thieth column the opposite value to thth output row in theg-th column. Thus, rows
that contain opposite values in the matched coluransiot be assigned to each other.

B[k, I] :=“0” when C[k, i] ZT[l,j] OT[l, j] # don’t care) (2)

If the negative column match is to be performed,Bhmatrix cells are set to “0” when equal values @nesent in the
respective positions.

When performing the row assignment, distinct rowsehto be assigned to each other. It is a triviablem for a test
without don’t cares, since there does not exBtraatrix row having a “1” value in more than onewuh (one LFSR code
word cannot be assigned to more than one testrpatfEhe final assignment then consists in selgctine row from the
possible ones for each of the columns. Unfortugatelthe algorithm exploiting don'’t cares in trest, theB matrix rows
may have ones in more than one column, since s@lewin the test patterns will be determined &fterassignment.
This makes the assignment NP-hard. Again, a silmieery efficient greedy heuristic is used to sdivis problem [10].

The row assignment has to be performed after e@dhfdr a column match, to determine whether thetah is valid.
If the assignment fails, the column-matching predssterminated and the last valid assignment isicered as the final



solution. The final valid row assignment forms athr table, which has to be processed by a minimoizabol [6-8] to
synthesize the final Decoder logic.

The basic algorithm can be described by the folhgwpseudo-code. The inputs of the algorithm areGhand T
matrices, the output is the minimized Boolean figmct

Algorithm 1: Column-matching algorithm

ColumnMatching(C, T) {

for( k=0; k< C_matrix_rows; k ++) I initiallize B matrix
for( | =0; | < T_matrix_rows; | ++)
Bk, | ]="17
A= [0,
do
i =random( C_matrix_columns ); / randomly select columns
j= random( T_matrix_columns );
for( k=0; k< C_matrix_rows;k ++) I modify blocking matrix
for( | =0; | < T_matrix_rows; | ++)
if (M I,j ] #DC&&C[ k,i 1 #T[ I,j DB[ k| ]=*07
A =A; /1 backup the row assignment
A = MakeRowAssignment(B); // make a row assignment
}while (A # FAILED);
Substitute_DCs(T); 1 substitute test DCs with “0” or “1”
CompactTest(T); 1 do test compaction
ExtractMatches(C, T); I remove matched outputs
F = Minimize(A") 1 synthesize the remaining logic
return F;

This basic column-matching algorithm has been lagtended to perform better, by introducing a deg-s
backtracking. If the match fails, the algorithrmist terminated but another match is looked for. @lyorithm terminates
once no more matches are possible to be done.

The asymptotic complexity of this extended algarittcalled a Thorough Searchy’is Of-r*p's’). For more detailed
description of the column-matching algorithm se@, [111].

3.2

Let us assume our example from Fig. 4. We have Tomatrix vectors (labeled ‘A’-‘D’ now) that are to lassigned to
some of the fiveC matrix vectors (labeled ‘a’-‘e’). The LFSR outpuise., decoder inputs) will be labeled — X, the
decoder outputg, — y4 (here the columns & andT matrices). Since there are no matches selectbe &#eginning, any
matrix vector may be assigned to aDymatrix vector, theB matrix is filled with 1-values, see Fig. 5a. Now wecide
(randomly) to try to assigy, to xo. Then theB matrix will be pruned to some extent, see Fig.Fsdr. example, th& matrix
row ‘A’ may be assigned t€ matrix rows having a ‘1’ value in thg column only, since it has a ‘1’ value in thg
column, i.e., {a, b, e}. Then we select the- y; match (Fig. 5¢). More intensiV@ matrix pruning can be observed here.
The ‘C’ row can be matched with the ‘b’ row onlypfn now on. Next we proceed with negatively matching v (Fig.
5d) and positivex; — ¥ (Fig. 5€). There is no possibility for matchigg after performing these four matches, thus the
algorithm ends up with four matches. There has lbefetwo choices for matching the ‘D’ row (‘d’ arid’), ‘d’ is chosen
randomly. The test don't care values are then gubed by exact values, so that the resped@ivend T matrix columns
will contain equal values. The final row assignmisrghown in Fig. 5f.

The first four Decoder outputgy(— ys) have been successfully matched, thus these sutplitoe implemented without
any logic. The outpw, has to by synthesized, e.g., by using a Boolearinmizer. The resulting Decoder logic is shown in
Fig. 6. We can see that only one logic gate is eé¢d perform the matrices transformation.

Let us note that the “random” choices for the calumatches in this example have been made intefitipt@ obtain
the best possible result and in a direct way, withiovalid trials. Any other combination of match&suld yield worse
results. However, the Thorough Search algorithnallisdiscovers a solution shown in this examplersoo

Column Matching Example
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Fig. 5: Column Matching example

Yo = Xo
Y1=Xa
Yo = X'
Y3=X1
Ya=Xg + Xq

Fig. 6: The Decoder logic

3.3. Mixed-Mode Column-Matching BIST

When the mixed-mode BIST technique is used, thtedetivided into two phases — the pseudorandomdaterministic
one. In the pseudorandom phase the LFSR code vesedapplied to the CUT unmodified, to detect theyda-detect
faults. Faults that remained undetected are foundiablt simulation and deterministic test vectoetedting them are
computed by an ATPG. These deterministic vectoestlaen generated by a transformation of the LFS# aords that
follow the pseudorandom sequence.

An artificial illustrative example is shown in Fig. The BIST logic for a 5-input circuit is to bgnshesized here, the
LFSR is required to run for 10 cycles in total. A LFSR is run for 5 cycles first (the “Pseudawdam sequence”), to
detect the easily testable faults. Deterministit vectors for the faults not detected by these Viectors are generated by
an ATPG. At the end the decoder is synthesized@srdinational block transforming the subsequerd fiFSR patterns
into these four deterministic vectors. The resgltiest sequence detecting 100% of faults is shawthe right side of the
figure, the resulting TPG circuitry is shown in F& First, the “Deterministic mode” signal is $et0’, so that the LFSR
sequence is applied to the CUT unmodified. Aftefdek cycles it is switched to ‘1’, to apply theteleministic patterns.

The Decoder logic synthesis process is describ#tkiprevious example.
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Fig. 8: Resulting BIST circuitry

4. Scaling the Lengths of the Phases

As it was said above, the BIST equipment designhotsilogy should cope with the designer’'s needss thel as
customizable as possible. The above mentioneddspects (area overhead, fault coverage, test tasgn time) play a
big role in the overall design process and caneaigiimally satisfied all.

The column-matching based TPG design method is well scalable in all these aspects. The ways alirsg are
described in this section. The fault coverage aspéicnot be discussed here, since 100% of detentn-redundant faults
are assumed. Anyway, the fault coverage is deteunioy the ATPG used. If less than complete faultecage is
sufficient, less deterministic vectors may be usBuen both the TPG area overhead and BIST desige tould be
reduced.

Parameters that most essentially influence the &afe@ overhead and BIST design time are the lerujttiee two BIST
phases. Of course, the duration of the BIST exenlis given by the lengths of the phases directly.

4.1. Pseudo-Random Phase

The aim of the pseudo-random phase is to detetiaay faults as possible, while keeping the test timceptable. Two
aspects play role here: the LFSR polynomial andl seel the test length. Several methods to compwd FSR seed
to achieve good fault coverage have been propds&dl1B]. However, for simplicity, we just repeatedkelect the seed
randomly, evaluate the fault coverage reached mgut and select the best one. This approactwali@aching good fault
coverage as well, whereas the fault coverage magirhest arbitrarily improved, for a cost of the tinme (by increasing
the number of repetitions). Moreover, it is gerngralpplicable to any type of pseudo-random patigenerators, e.g.,
cellular automata [14].

The number of the covered faults as a functiorheftumber of LFSR cycles applied to the CUT folldtes saturation
curve shown in Fig. 9 (for the ¢3540 circuit [19fjrst few vectors detect the majority of faultslahen the fault coverage
increases only slightly.
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Fig. 9: Fault coverage saturation curve

In order to reach satisfactory fault coverage mpkeudo-random phase, the fault coverage satu@iive for the CUT
should be determined by a fault simulation. Therappate length of thé’R phase can be easily derived from it. The
pseudo-random phase should be stopped when thectardrage does not improve for a given numberysfes. This
number can be freely adjusted, according to thdiGgiipn specific requirements (the trade-off betwdhe test time and
area overhead).

To illustrate the scalability of the method in termf the length of the pseudo-random phase, thd BtBicture was
designed for several ISCAS benchmarks [15, 16]. [Ength of the pseudo-random phase was varied.evthé length
of the deterministic phase was kept constant, T90[es.

The results are shown in Tab. 1. The benchmark riamshown in the first column. TH®R” column indicates the
length of the pseudo-random phase,thB” column shows the number of stuck-at faults thaeveft undetected by this
phase.vct.” gives the number of deterministic vectors produogan ATPG [24], to test these faults. The lengjtthe
deterministic phase was set constantly to 1000esya@xcept of the s38417 benchmark, where it wats2000 cycles
(because of the size of the test set). TBES” column shows the total complexity of the BIST desiin terms of the gate
equivalents [17]. The time needed to complete thkeinen-matching procedure is indicated in the lagiumn. The
experiment was run on a PC with 1 GHz Athlon CPUnhdgws XP.

Tab. 1: Influence of the length of the pseudo-randa phase

bench PR UD| vct. GEs Time [$]
s1196 200 228 | 104 | 1105 5.05
2K 52 37 37 1.20
10K |9 4 6 0.04
s5378 5K 89 49 65.5 2259
10K |63 23 315 767
20K |48 8 16.5 104
s9234.1 | 1K 1674 215| 883 52 300
50K [ 773 | 99 333.5 4400
200K | 599 | 52 2125 1600

s13207.1| 1K 1793 197| 699 208 K
10K |[617 | 74 280 3480
50K 182 | 21 36 128

s38417 10K | 2067 1391 151065 3417
100K | 780 | 520 | 3259.5| 2263

A big trade-off between the test length and the areerhead can be seen here. The longer the pseandom phase
runs, the less area overhead is reached. ConsbqukatBIST synthesis time reduces as well.
4.2. Deterministic Phase

In the deterministic phase deterministic vectors synthesized from some of the LFSR patterns tbéow the
pseudo-random phase. With increasing the numbetF&R patterns, the chance for finding more columatames



increases as well. This is due to having more freeéh selecting the LFSR vectors to be assignetth@éodeterministic
vectors. However, the algorithm runtime rapidlyreses with the number of deterministic vectors.

This is illustrated by Tab. 2. Its format is pditiaetained from Tab. 1, thtDet.” column indicates the length of the
deterministic phase.

It can be observed that a trade-off between thetitee and area overhead can be freely adjustes ther, according
to the demands of the BIST designer.

The lengths of both the phases significantly inficeethe BIST design time as well. The design poé&ebeing sped up
when increasing the length of the pseudo-randonseghsince the number of deterministic vectors iagreeduced this
way. On the other hand, an increasing length ofigterministic phase slows down the process.

Tab. 2: Influence of thethe length of thedeterministic phase

bench | inps PR Det.| GEsTime [s]
c3540 | 50 1000 | 200 34| 0.32
500 29.50.52
1000 | 28 | 1.02
2000 | 16.51.47
s1196 | 32 5000 | 200 25|9.17
500 25 | 0.32
1000 | 17 | 0.48
2000 | 17 | 152
5000 | 9 2.16
10000 | 4.5| 5.83

43. Summary

By increasing the length of the pseudorandom phidmenumber of undetected faults decreases. Thaspnimber
of deterministic test vectors that are needed togéeerated inthe deterministic phase is decreasewell. As a
consequence of this, the BIST design time is asignificantly decreased (even though the fault $tn time is higher)
and the area overhead is reduced as well. To obtshresults, the pseudorandom phase should bentiirmost of the
easy-to-detect faults are detected, accordingFiBunning this phase longer becomes ineffective.

By prolonging the run of the deterministic phase #olumn-matching algorithm runtime is increaselde ®lgorithm
has more freedom in the selection of matches oottier hand, so the area overhead of the decodecigased.

Tab. 3: Influence of the test lengths

Longer PR phase Longer Det. phage
BIST design time decreased increased
BIST area overhead decreased decreased
BIST run length increased increased

5. Reducing the LFSR Width

As it was stated before, the column-matching atgoriis primarily designed for a test-per-clock BI€Iriginally, the
number of the LFSR bits had to be equal to the rrmbCUT inputs. However, the LFSR width may bleitaarily scaled
by using the weighted pattern testing. The efféctugh a scaling will be shown in this section. TSR scaling affects
both the total TPG area overhead and the TPG désign

5.1. Weighted Pattern Testing

There have been many weighted pattern testing appes proposed up to now [18-23]. Basically, athein are based
on computing the probability of occurrence of ‘Inda‘0’ values (weights) on particular inputs and difiging the
pseudorandom sequence (which usually has this pilape0.5 at all the inputs) by some additionakighting logic,
to meet these weights. In general, the weightimicleonsists of AND and OR gates, which, when fgd.BSR outputs,
produce weighted patterns. For example, when twBR_utputs are led into an AND gate, the resulpngbability
of occurrence of ‘1’ at the output of the AND gatiél be 0.25.

It was shown that using only simple weighted pattersting does not ensure sufficient fault coverage multiple
weight sets are needed [19]. Another alternative isse a combination of weighted pattern testiith deterministic test,



as shown, e.g., in [23]. We propose such an apprtuas; particularly the combination of weightedtpat pseudorandom
testing with column-matching.

The weights are usually being computed from theerdahistic test set derived for the tested circitcommon
approach is to find a set of so callethdom pattern resistant faults (RPRFgich are faults that are difficult to detect
by random patterns. Then, a test vector set is atenpto test these faults. The weights are theivaetbiby computing
respective 0/1 value ratios for each CUT input.

The RPRFs are determined by repeatedly applyingdmsandom vectors to the CUT and recording the teotied
faults. The number of RPRFs obtained thus strodgphends on the number of pseudorandom patternedpphe higher
their number is, the less faults remain undetectbdre arises a question of what number of RPRBaldtbe considered
to compute the weights, to obtain optimum res@se limit approach is to considall faults and to derive the weights
from a complete test for the circuit. This approatoften unusable for very large circuits, sinbe tomplete test set
computation would take a very long time. We havdgmmed experiments to estimate what number of RP§tfould be
used to compute the test weights. We have useds®284.1 ISCAS'89 benchmark circuit [16] for the ldaling
measurement. We have varied the number of pseudlmmamectors applied to the CUT to detect RPRFsn fdo(all faults
are used to compute weights) to 100 000. Then &ighw set was computed using the test vectors tilegethese RPRFs.
After that, the weighting logic was synthesized dhe weighted test pattern generator was run fodQDcycles. The
number of undetected faults was measured. Suchkx@arimment was repeatedly run 10 000-times (usifigrdint LFSRs
and keeping the computed weight set) and the asarbthe result was computed (for the number ofeteted faults), for
higher precision of the measurement. The resuisshown in Tab. 4. First the number of pseudorandeators used
to determine RPRFs is shown, then the number of fBRiRtained. Thevtts' column indicates the number of test vectors
used for the weight computation. Finally, the agermumber of faults undetected by the run of tlsailtimg weighted
pattern generator is shownUP”). The dependency of the number of undetectedifanth the number of test vectors
testing RPRFs is visualized by Fig. 10. There isapparent global minimum to be seen, corresponttintpe optimum
number of test vectors to determine the test weighowever, it is hard to estimate this optimunpiactice, for different
circuits. It has to be found experimentally, byingy out different numbers of vectors that are agplio the circuit and
picking the best trial.

Tab. 4: Computing test weights

vectors RPRFs| vcts. ub
0 6927 6470 | 852
100 3060 2605| 817
1000 1997 1544) 815
2000 1709 1257] 805
2500 1614 1162]| 802
3000 1482 1030] 781
4000 1347 895 762
5000 1280 828 808
10 000 1080 628 818
20 000 950 498 860
50 000 876 424 862
100 000 | 715 263 891
900—-
880—-
%] 860—-
E 840—-
8 4
© 8204
Q ]
(5]
© 8004
s
7804
760—-
0 10600 20600 BO(IJOO 4O(I)OO SO(I)OO 60600
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Fig. 10: Numbers of undetected faults

Another issue that has to be taken into accoutieislesign of the weighting logic. The higher is firecision of weight
generation, the higher the area overhead of thghtia logic. For our examples we will limit ourget to the 3-weight
and 5-weight logic only, since more weights (orremeore weight sets) would involve a large arealoead caused by the
weighting logic, while the gain in quality (faulbeerage) is negligible.

There have been several weighting logic designpgs®d. The simplest one (see, e.g., [18]) propaséghts like O,
0.5, 1 for 3-weighted logic, 0, 0.25, 0.5, 0.75fot 5-weight logic, etc. This approach has beemébuery inefficient
in terms of the fault coverage reached, see Talih& is most probably due to constant 0 and 1emlm the test.
However, such a 3-weight test does not require aahgitional weighting hardware, since the 0 and lIghts are
implemented as hard-wired connections to the graurttie voltage supply, respectively, and the Oefght is constructed
as a direct connection to an LFSR output. We u8eneight testing method where the weights are 0025,and 0.75.
Thus, the two weights are constructed by AND-ind @R-ing two LFSR outputs and, for a 5-weight met{@.125, 0.25,
0.5, 0.75, 0.875), the weights are generated by AMlpand OR-ing two or three LFSR outputs. Thisrapph involves
some additional hardware, however the increasbefault coverage reached by it is fully compersdte the reduction
of the deterministic test generator logic.

The effect of the use of the weighting logic on fhalt coverage is illustrated by Fig. 11. We hawmputed the
weights for the ISCAS’89 s13207.1 circuit [16], egpedly reseeded the LFSR and constructed the tirglogic
(10 000-times). The number of faults that remainedetected by a sequence of 5000 vectors gendrgttte final TPG
was measured. The curves represent the frequeottbe respective amounts of undetected faults éfea below the
curves is equal to the number of vectors applied, 10 000). Four curves are shown, representingdifferent weighting
logics. The most efficient one is the 5-weight tpgivhere no 0 and 1 weights are used (the leftowose). Here minimum
of faults are left undetected. Similar 3-weightitoig illustrated by the neighboring curve. The foemof undetected faults
is almost the same. Then the case with no weightigig used is shown, for comparison. It can bangbat the weighting
logic significantly reduces the number of undetddi@ults, with respect to this case. The rightmmstve describes the
5-weight logic case, where constant 0 and 1 weigigsused. Here the number of undetected fautgen increased. The
3-weight logic with 0 and 1 constants is not shawthe graph, since the number of undetected fasilextremely high
(far to the right).

The results are summarized in Tab. 5. Minimum aretage numbers of undetected faults are shown,tfarall the
five weighting logic cases. The s13207.1 circui B&15 faults in total.

1400
5weights: 0.125, 0.25, 0.5, 0.75,0.875
12004 3weights: 0.25, 0.5,0.75
1000 5weights: 0,0.25, 0.5, 0.75,1
g 200 J n{jNEightS /
35
g 600
C
400
200
0 r Pttt T T Y T ¥ 1
0 500 1000 1500 2000 2500
Undetected faults
Fig. 11: Weighting logic effects
Tab. 5: Weighting logic effects
Weighting logic Min. | Avg.
5-weights (0.125, 0.25, 0.5, 0.75, 0.875) 269 39p
3-weights (0.25, 0.5, 0.75) 299 425
no weights 742 1250
5-weights (0, 0.25, 0.5, 0.75, 1) 1761 1833
3-weights (0, 0.5, 1) 3762 3771




5.2.  Weighted Pattern Column-Matching
When the weighted pattern testing is used in cairesvith the column-matching method, a new blogknitroduced
into the TPG — theveighting logicblock. See Fig. 12. The LFSR widtt) (nay be then less than the number of CUT inputs

(m), the number of TPG outputs is increased jushiewteighting logic block.
In practice, an LFSR with a random polynomial anddom seed is used. This ensures (to some extamj)f@am

distribution of ‘1’'s and ‘O’'s in code words prodacéy it. In other words, the weights of all thelFSR outputs are
approximately 0.5. To generate the weighted pattetime outputs of the weighting logic are generdigdAND-ing
or OR-ing randomly selected LFSR outputs. Timsyeighted TPG outputs are generated by this way.

PG LFSR
r<m

Weighting logic

m

—

Switch p—{mode

1 m
CUT

Fig. 12: Weighted column-matching BIST scheme

The effects of the LFSR scaling are shown in Tabfor6the ISCAS s13207.1 benchmark having 700 ingutd
compared with a standard approach (the case wheveights are used). Th& FSR column indicates the width of the
LFSR usedr. In a case of weighted pattern testing the numibgates needed for the weighting logic is showrthia
next column (W”). The total TPG area overhead (including the LFF&Rcomputed in terms of gate equivalents [17].PAn
input NAND gate counts for OrbGEs, the two-input XOR gate (used in LFSR) is @Bs. The size of a D flip-flop is
considered to be 4 GEs, which complies with thegiesf a standard flip-flop in CMOS logic. We hatred to scale the
originally 700-bit LFSR down to 30 bits. It can been that optimum results are obtained for theiBQHSR, the TPG
area reduction is more than 70% with respect tootiginal (700-bit unweighted) case. When the LRS8Rth is scaled
down more, the TPG area overhead rapidly increasese the weighted LFSR is not able to cover ehdiaglts, due
to reduced randomness of the patterns. The coluatohimg results for the 30-bit LFSR are not preseuaé to very high

column-matching algorithm runtimes.
See [25] for more details of the principles of wa& pattern column-matching testing.

Tab. 6: LFSR scaling

LESR (1) method w time [s TPG GES
700 no weights - 4720 2975

700 3-w 518 | 245 3361

200 3-w 365 | 653 1231

50 3-w 365 | 2835 671

45 3-w 365 | 3423 693

40 3-w 365 | 29434 1288

30 3-w 365 | - -

6. Multiple-Vector Column-Matching

The more “freedom” has the column-matching alganiih selection of the matches, the better it penforParticularly,
more don’t care values in the test set induce rmohemn matches and thus less area overhead [16je 8 PG tools are
able to produce rather complex (and redundant)s,teshich can be efficiently exploited by the columatching
algorithm. E.g., the Atalanta ATPG [24] is capapleducing more than one (or all) vectors testing particular fault.
The test set is then much larger, yielding the mmitmatching process be slower. However, due to rfreedlom for a
column match selection, the area of the Decodests

This is documented by Tab. 7. Thect/flt" column indicates the number of processed testoveqer one fault. The
total number of generated test vectors (T-matrze)is shown in the next column. The TPG desigretand its area



overhead (w.r.t. the original circuit) are showrxtn@he improvement with respect to the originaleevector method is
indicated in the last column. We can conclude thite a significant area reduction may be obtaimbdn multiple vectors
per one fault are used, for a cost of a longerimant

See [26] for more details on multiple-vector columatching.

Tab. 7: Multiple-vector column-matching

bench | vct/fltl vcts| time[s] overhedd impr.

cl1908 |1 36 6.7 5.7%
10 340 | 55.9 3.0% 48 %
c3540 |1 31 3.9 2.2%

10 101 | 19.1 1.6 % 27 %
100 555 | 90.0 13% 42 %6

c7552 |1 106 | 1104.8 | 17.0 %

10 1206 16124.7 148 % 13 Yo
s1196 |1 55 5.5 11.1%

10 259 | 109.0 7.8 % 30 %o
s1238 |1 33 2.9 6.7 %

100 95 16.7 4.6 % 31 %
s5378 |1 19 7.7 1.5%

100 258 | 181.5 0.9 % 40 %o
$9241.1| 1 52 160.7 5.3%

10 564 | 3508.6| 4.9% 10 %o

7. Experimental Results

7.1. Comparison with Other State-of-the-Art Methods

The proposed column-catching method is comparet thitee state-of-the-art methods in this sectiamely the
bit-fixing accompanied by a “bit-correlating” ATP[2], the “3-weight weighted random pattern BIST'bposed in [19]
and the row matching method proposed in [3]. Thamarison results are shown in Tab. 8. ThE’ columns indicate the
total length of the test, th&GEs” columns give the number of gate equivalents (omp2t NAND gates) of the BIST
combinational circuits and thdit:” columns indicate the number of literals in themsaf-products (SOP) form of the
decoding logic. Test lengths have been set apprieinequal.

Let us mention here, that a special kind of a pestern generator (GLFSR) is used in the row matclipproach [3].
Using such a circuit causes quite a large areaheagrin most cases, for many XOR gates involved dVerhead is not
included in the table. Generally, the column-matghimethod is independent on a pseudorandom pagenerator
employed, thus in all the cases an LFSR with ond&Xfate only was used. Thus, sometimes bigger arednead of our
method could be compensated by a small area gfdtsedorandom pattern generator used.

In the bit-fixing and weighted BIST methods seveadditional registers (flip-flops) are present Ire ttest pattern
generator. In the column-matching method no flgp# are needed (except of those in the LFSR).

The column-matching results describe the overall length and the number of gate equivalents ofitbeoder. The
number of GEs approximately corresponds to the munuh SOP literals, thus a comparison with thefikirg and
weighted BIST methods can be freely made.

The empty cells indicate that the data for the eeipe circuit was not available.



Tab. 8: Comparison results

Bit-fixing | Weighted BIST Row Column
[2] [19] matching [3]] matching
Bench| TL| lit. TL lit. TL |GEs| TL |GEs
c880 | - - - - 640 21 |1K 15
c1355 | - - - - 18K |0 |[15K |15
c1908 | - - - - 47K |8 |3K 10.5

c2670 | 10K 385 |8K 269 6 K 119|5K 113
c3540 | - = = 48K |4 |55K |15

s420 10K 59 [14K |67 - - 1K 24.5
s641 10K 98 |768 45 77K 6 |4K 15

s713 - - = = 48K |4 |5K 16.5
s838 10K 183 |3.1K |108 - - 6 K 130
s1196 | 10K 97 |16.8K |67 10K | 36 |10K |6

s1238 | - - 17K 33 - - 4 K 26.5
s5378 | 10K 332 |18.4K |68 - - 11K [19.0

7.2. Resultsfor Standard Benchmarks

Since the comparison shown in Tab. 8 describedtsefeu a few small benchmark circuits only, welvpitesent a more
exhaustive result table (Tab. 9), for some of tiggdr ISCAS [15, 16] and ITC'99 [27] benchmarks.eTéasy-to-test
benchmarks were omitted (benchmarks 100% testablieds than 100 000 random vectors). The BIST itincwvas
synthesized in two modes for each benchmark —arfitat mode, the test length was set to be redbtismall (the white
rows). In the second mode a big effort has beerigpabtain low area overhead in a reasonable BESigd time. The test
is prolonged and some improvement techniques, ilkdtiple-vector column-matching and weighted paittasting, are
sometimes used to design the TPG. This is indidatéte ‘Method” column. The legend to the values is below theetabl

The “Inps” column indicates the number of the benchmark sput the“100% FC’ column the number of
pseudorandom vectors needed to be applied to thé ©@WUachieve 100% fault coverage is shown, jusshow the
effectiveness of the method. TH&L” column gives the lengths of the pseudo-random detkrministic phases.
Thousands of vectors are abbreviated by “K”, milidby “M”. The ‘Match’ columns show the total number of column
matches reached. The complexity of the switchirgiclés shown in théSW GES column, the complexity of the output
decoder is shown itOD GEs”. These numbers are summed together (and withipessimber of weighting gates) in the
“Total GES’ column. The percentage of the area overheadeo@tlitput Decoder and Switch, with respect to thd Qs
is shown in the BIST Overheatdcolumn. The runtime needed to complete the colmatching process is indicated in the
last column.

It can be seen that quite a large number of colamatches is often reached and thus the Output Dedodi is
reduced to minimum, thus the overall BIST overhisagduced to percents of the size of the origiirabit.

The experiments were run on a PC with 2,6 GHz At&D CPU, Windows XP operating system.



Tab. 9: Results for standard benchmarks

Bench Inps| 100% FG TL (PR + Det) Methpd Match SWOD Total BIST | Time [s]
GEs | GEs GEs | Overhead
c2670 233 | 24 M 1K+1K 193 90 1095 1995 19% |166
4K+1K 1) 201 825 |715 154 15 % 437
c7552 207 | >100M | 7K+1K 131 261 325 586 19% | 005
10K+1K 133 256.5 | 248.5 |505 16 % 887
s420 34 165 K 400 + 600 32 21 3.5 24.5 13 % 0.75
5K+1K 1) 34 18 0 18 9 % 5.01
s641 54 200K 500 + 500 52 21 2 23 9% 0.47
3K+1K 54 15 0 15 6 % 0.21
s713 54 300 K 500 + 500 52 24 3 27 8 % 0.56
3K+1K 54 18 0 18 5% 0.32
s838 67 >100M | 1K+1K 37 81 45 126 32 % 26.20
10K +2K 46 795 |29 108.5 |28 % 51.51
51196 32 200 K 2K+ 1K 28 13.5] 235 37 7% 1.20
9K+ 1K 32 6 0 6 1% 0.04
9234 247 | 10M 50K+ 1K 208 1635 156 3195 8% |350
200K + 1K 1) 225 127.5 |66 1935 |5% 3500
s13207.1| 700 | 100K 1K+1K 638 456 294 750 13 % | 4000
50K + 1 K 700 36 0 36 <1% 13
s$15850.1| 611 | >10M 10K+1K 478 397/5 187 584|9 % 812
100K +2 K 553 306 |66.5 3725 |5% 1244
38417 1664 >10M 10K+1K 1240 136p 1389.5 4255 17 % 24 K
100K+ 1K 2) 1000 1239 |142 2284 |14 % 4660
s$38584.1| 1464 >1G 10K+1K 1435 3795 57.5 437 3% 650
100K +1K 1464 |165 |0 165 1% 34
b07 50 200 K 1K+1K 45 33 8.5 42.5 11 % 4
10K +1K 50 24 0 24 6 % 0.5
b12 126 | 5M 1K+1K 117 37.5| 45 82.5 9 % 40
10K+1K 1) 118 33 34 67 7% 1080
b14 277 | >100M | 1M/2K 84 318 8017 8335 141 %| 70K
100M /1K 90 328.5 | 2663.5 | 3319.5 |56 % 100 K
b15 485 | >100M | 100K /1K 241 558 4709 5267 67 % |50 K
1M/1K 2) 378 373.5 | 667 1355.5 |17 % 4800

1) 10 vectors per fault
2) 3-weight logic

8. Conclusions

A scalable and customizable mixed-mode BIST equigndesign method based orc@lumn-matchingorinciple has
been proposed. Here pseudorandom LFSR code wadsearg transformed into deterministic test pattearomputed by

an ATPG tool. The transformation is being done hyueely combinational block; no additional registere needed to

perform the transformation. The algorithm tries‘imatch” maximum of decoder outputs with its inputd)ich yields no
logic needed to implement these outputs.

The pseudo-random and deterministic phases areasegawhich enables to reach less area overhetite afontrol
logic. The method is based on a design of a decwdasforming the LFSR code words into determiniséist vectors
testing the hard-to-detect faults. Moreover, no menelements are needed to recognize LFSR patthaisare to be
modified, like in other state-of-the-art approacfeg. bit-fixing, bit-flipping).

Since the test is divided into two phases, thetlengf both phases may be freely adjusted, to dinichde-off between
the test time and area overhead. It has been stimtithe length of the pseudo-random phase hascéatimpact to the
result. The length of the deterministic phase mfices the result as well, though not that signifigaThe impact of the
test lengths to the duration of the BIST desigrcess is considered too.



A big scalability of the method, in terms of thearoverhead, test time and design time is showmneyhted pattern
testing principle is used to reduce the LFSR widdlext, multiple-vector column-matching method redgcthe area
overhead for a cost of a longer runtime is proposed

The proposed algorithm should serve as a basicelinéd how to design more complex BIST designs, itee
multiple-scan chain based BIST, the STUMPS architecg etc. The method should be as general, astliee state-of-the-
art methods are (e.g., bit-flipping, bit-fixing)h& obtained results, in terms of the area overhasedcomparable to the
other methods, sometimes they are significantltebet

The method has been tested on standard benchnmatiteearesults were compared with other state-efatth methods.

The proposed method could be very suitable for dexype.g, SoC designs — here only the Decoder lbgg to be
synthesized for each combinational block (coreg; tRSR and the BIST control logic may be sharedragrtbe blocks.
The investigation of such possibilities would beaat of our future research.
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