

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://dx.doi.org/10.1016/j.micpro.2011.08.011

http://hdl.handle.net/10251/35968

Elsevier

Roca Pérez, A.; Flich Cardo, J.; Silla Jiménez, F.; Duato Marín, JF. (2011). A low-latency
modular switch for CMP systems. Microprocessors and Microsystems. 35(8):742-754.
doi:10.1016/j.micpro.2011.08.011.

A Low-Latency Modular Switch for CMP Systems

Antoni Roca, José Flich, Federico Silla, José Duato
Grupo de Arquitecturas Paralelas

Departamento de Informática de Sistemas y Computadores

Universidad Politécnica de Valencia

c/camino de vera s/n, 46022, Valencia

anrope2@gap.upv.es

Abstract

As technology advances, the number of cores in Chip MultiProcessor sys-
tems and MultiProcessor Systems-on-Chips keeps increasing. The network must
provide sustained throughput and ultra-low latencies.

In this paper we propose new pipelined switch designs focused in reducing
the switch latency. We identify the switch components that limit the switch
frequency: the arbiter. Then, we simplify the arbiter logic by using multiple
smaller arbiters, but increasing greatly the switch area. To solve this problem,
a second design is presented where the routing traversal and arbitrations tasks
are mixed. Results demonstrate a switch latency reduction ranging from 10 to
21%. Network latency is reduced in a range from 11 to 15%.

Keywords: Network-on-Chip, switch design, arbitration implementation

1. Introduction and Motivation

It is well-known that current Chip MultiProcessor (CMP) and high-end Mul-
tiProcessor System-on-Chip (MPSoC) designs are growing in their number of
components. As technology advances, more and more transistors can be in-
cluded in the same die. Rather than aggregating several complex processors in
the die, the trend is to replicate and include many simpler ones. This is driven
by the power consumption concern, as smaller devices are more power-efficient
than complex ones.

This ever growing number of devices demands an efficient interconnect struc-
ture inside the chip. Initial implementations relied on buses or crossbars. How-
ever, both lack scalability in terms of network bandwidth and implementation
cost, thus becoming either a bottleneck when the number of devices to inter-
connect increases or an unfeasible implementation option. As a solution, the
network-on-chip (NoC) concept arose. The idea is quite simple, a point-to-point
network inside the chip is implemented to connect all the devices. Current re-
search prototypes by Intel deploy a 2D mesh topology built from switches and
links. Such a network is used to interconnect 80 simple (2-FPU units) cores

Preprint submitted to Elsevier January 14, 2011

in the Polaris chip[10], or 24 dual-core tiles each one being x86 compatible and
able to run an operating system, in the case of the Single-chip Cloud Computing
prototype [31]. Moreover, Tilera recently announced a 100 core chip that also
includes a 2D mesh [32].

In this scenario, and with the expectations to reach hundreds of cores in the
near future, an efficient implementation of the NoC becomes a challenge. The
NoC is built from basic components as switches, links, and network interfaces.
Switches and end nodes are connected by links, thus forming the topology and
final network structure. Although the network interface must be carefully de-
signed in order not to introduce bottlenecks, the complexity is usually shifted
to the switch design. Indeed, many previous works have focused in different
switch architectures. In CMPs the current trend is to design pipelined switch
architectures that use wormhole switching in order to increase clock frequency
and reduce buffer requirements. Moreover, it is common to use the Stop&Go
flow control protocol to set the advance of data between switches and network
interfaces and avoiding buffer overflows.

The basic pipelined wormhole switch design is made of four stages: input
buffer (IB), route computation (RC), switch allocator (SA), and switch traversal
(ST). The IB stage is used to allocate an incoming flit from an input port into
a queue. The RC stage is used to compute the output port the message has
to take. This is usually achieved, in a 2D mesh topology, by using a small
logic block implementing the DOR routing algorithm. Once the output port is
computed, at the next cycle, in the SA stage the flit contends for the requested
output port (with all the flits requesting the same output port). Finally, on
success, the flit crosses the internal crossbar of the switch, thus reaching the
output port. This is done in the ST stage. If the switch implements virtual
channels, then an additional stage, named virtual channel allocation (VA) may
be required to arbitrate for the output virtual channel amongst the virtual
channels of an input port.

Several techniques have been proposed to reduce the depth of the switch
pipeline and thus providing lower latencies [8]. One method is to speculatively
contend for the virtual channel (VA stage), in parallel with the SA stage. An-
other possibility is to speculatively forward the flit through the internal crossbar
at the same time the VA and SA stages are performed, thus saving two cycles
in total [8]. Finally, the RC stage can be removed from the critical path if the
previous switch computes the output port at the next switch, and in parallel
with the VA, SA, and ST stages, thus ending up in two stages.

The described efforts to reduce the switch pipeline show how critical is the
switch delay in overall network performance. Actually, applications are spe-
cially sensitive to latency [27]. In this way, although achieving high throughput
numbers in a NoC is important, it is much more challenging to achieve ultra low
latencies. Indeed, as NoC bandwidth is not limited by pin count (as is the usual
case for off-chip networks), large bandwidths can be, relatively easily, achieved
by increasing link width. However, in order to get low latency, an important
design effort must be done for the switch itself.

In this paper we aim to reduce switch latency. However, instead of reducing

2

the number of cycles of the basic pipelined switch design, which is orthogonal
to our proposals, we rather identify the most consuming operations along the
critical path of the switch, and propose three techniques to reduce such overhead.
As on example of this rationale, Table 1 shows the delay of each stage for the
basic 4-stage pipelined switch design previously described. We target a 2D mesh
network connecting one end node per switch. Thus, a 5-port switch is assumed.
As can be observed, the slowest stage is the SA stage which delay is 0.75ns.
Such delay hinders the switch to operate at frequencies higher than 1.33 GHz.
The delay of the slowest stage fixes the delay of the rest of stages because all
of them function at the same operating frequency. Moreover, the total switch
latency is 3 ns since the switch has four stages.

modules area (um
2) critical path (ns)

IB 1324.78 0.52
RC 124.26 0.32
SA 337.88 0.75
ST 1975.6 0.47

Table 1: Area and latency for the pipeline stages of the basic switch design.

Our first proposal aims to reduce the complexity of the SA stage in the
switch. For that purpose, we reduce the complexity of the arbiter that comprises
the SA stage. This is achieved by taking into account the routing algorithm
implemented in the network (DOR routing). Notice that by using DOR, packets
will never take some output ports from a given input port. For example, flits
coming from X input ports may request any output port (or the local port).
However, packets from Y input ports will only request Y output ports (or the
local port). Based on this reasoning, the arbiter can be simplified for Y output
ports. Arbiters for X output ports will be also simplified by providing parallel
links, as will be explained later. The net result is a faster SA stage, what
provides a reduced clock cycle, thus achieving lower latency. Similarly, a second
proposal is presented where a high-performance switch is designed.

With the first proposal, the latency is significantly reduced at the expense
of a non-negligible increase in area. Indeed, additional parallel ports will be
provided to the switch. In order to overcome this issue, we further exploit the
concept of simplifying the bottleneck stage. In this case, we propose a third
approach where we partition two stages (SA and ST) into a tree of smaller and,
thus, faster components. With this third proposal the switch is much faster
without the area overhead of the initial approach.

The remaining of the paper is organized as follows. In Section 2 we describe
the related work. Then, in Section 3 we describe the basic switch architecture
we will use as the starting point for our proposals. In Section 4 we introduce
the different switch architectures proposed in the paper where several small
arbiters are used instead of a single and complex arbiter. In Section 5 we
present an evolved architecture which minimize the area overhead required by
the initial proposal. Then, in Section 6 and Section 7 we evaluate the new switch

3

architectures and conclude the paper in Section 8.

2. Related Work for CMP Switches

We can find in the literature, and in real implementations and prototypes,
two different switch architectures. The first one is a single stage switch. In this
architecture, a flit crosses the entire switch and reaches the input port of the
next switch in one cycle, typically. This is the usual case for MPSoC systems [7].
On the other hand, we may find pipelined switches for high-end MPSoC and
CMP systems. This is the case for the Intel Polaris chip [10]. In this paper we
focus on pipelined switch designs for CMP systems.

During the last years many efforts have been done in order to reduce the
latency of NoC switches for CMP systems. Initially, the knowledge and es-
tablished techniques from the off-chip network domain (from high-performance
interconnects) were applied to the emerging NoC field [22]. First, NoC switches
were designed using well-known routing algorithms (e.g. DOR routing) and
switching techniques (e.g. wormhole switching). Also, tied with wormhole, vir-
tual channels were advocated in order to time multiplex the physical channel
and, therefore, reduce the blocking induced by wormhole switching. All these
techniques forced the switch to become complex and slow. Different efforts have
been made to reduce the complexity and latency. For example, in [21] different
techniques are applied and a one-cycle switch is achieved, or in [17] the output
port is predicted rather than computed in order to minimize latency.

One of the main contributors to latency in a switch is the arbiter algo-
rithm that schedules how flits in the input buffers are dispatched to the out-
put ports. Indeed, the design of a fast arbiter algorithm is key to achieve a
high-performance low-latency switch. Several scheduling algorithms have been
proposed, like PIM [1], PPA [4], DRRM [5], iSLIP [19], etc. These algorithms
are iterative and approximate a maximum size matching by finding a maximal
size matching, that means that the arbiter obtains the maximum performance –
assuming the performance as the number of flits that could traverse the switch
– not taking into account the delay introduced. However, as remarked in [29],
these algorithms are slow and impractical for a high speed switch and, ad-
ditionally, may cause unfairness. To overcome this issue, other non-iterative
algorithms have been developed [25, 29]. The main property of these schemes
is their speed and simplicity at the expense of some loss in performance (lower
matching rates) when compared with previous iterative arbiter schemes. How-
ever, this lower matching capability is not a burden in real traffic conditions, as
shown in [20].

In order to reduce the latency of the switch, the complexity of the arbiter can
be further reduced by making use of a logic synthesis principle [18] that performs
an area-performance trade-off. When delay constraints are loose, area-efficient
netlists can be achieved, but when more tight delay constraints are needed,
high performance can be obtained at the cost of area. Then, by minimizing the
complexity of an arbiter we can relax delay constraints thus achieving higher
performance. In fact, in [22], the authors remark the need of reducing the

4

complexity of the crossbar from previous works [6], arguing that smaller switch
modules achieve faster switches. Similarly, Gilabert et al. [9] propose a de-
coupled crossbar for each virtual channel rather than a shared crossbar for all
the virtual channels. Decoupling resources in a switch relaxes delay constraints
thus improving area and power consumption. In our case, we will relax area
constraints in order to minimize latency.

Other interesting studies are those that discuss the possibility of replacing
virtual channels by physical parallel ports. This has been inherited from the off-
chip domain [26]. Carara et al. [2, 3] reuse this concept for NoCs. In particular,
they take advantage of the abundance of wires in current and expected deep
sub-micron technologies. Carara et al. based their work in spatial division mul-

tiplexing (SDM) introduced by Leroy et al. [16] and Lane Division Multiplexing
(LDM) technique introduced by Wolkotte et al. [28]. SDM and LDM basically
increase the number of wires between switches to assign different bandwidth
resources to each channel at the cost of increasing the critical path. Carara’s
contribution is to simplify SDM and LDM obtaining a reduction in the critical
path and then obtaining better performance by replicating channels rather than
using virtual channels.

Our switch is highly related with other low latency designs as those pre-
sented in [14]. In that paper, a low latency switch that supports adaptivity is
presented. Its main characteristic is that it exploits the properties of a 2D-mesh
in order to perform adaptivity. Another similar proposal, presented in [12], sim-
plifies the switch by exploiting the properties of the ring topology. The same
author evolved the proposal into a low latency switch for a mesh network [13].
Finally, another low latency switch highly related with our proposals is the one
presented in [15] where an adaptive switch is presented. In this case, X direc-
tion is decoupled from the Y direction, thus reducing the latency of the whole
switch.

3. Basic Switch Architecture

In this section we describe the switch design used throughout this paper.
Figure 1 shows the main components of the switch. The switch is a pipelined
input buffered wormhole switch with five stages: IB, RC, SA, ST, and link
traversal (LT). Notice that the fifth stage does not belong to the switch itself.

We have designed a simple switch with five input and output ports. Thus,
four ports are intended to provide connectivity with the neighbouring switches
in the 2D mesh and the fifth port connects to the local computing core. Link
width is set to 8 bytes. Flit size is also set to 8 bytes. Input buffers can store four
flits. A Stop&Go flow control protocol has been deployed in order to control the
advance of flits between adjacent switches. Additionally, the routing (RC) stage
has been implemented to support the XY routing algorithm. Moreover, there
is an RC module for each input port. Note that although the RC module has
been designed to support the XY routing, each input port can forward packets
to any output port including itself due to the complete crossbar implementation.
Similarly, there is a switch allocator (SA) module for each output port. The

5

SA module determines when and which input port is connected to its requested
output port. Finally, each SA module has been designed using a round-robin
arbiter according to [25].

N - 1 N - 1 N - 1

DATA_IN_N-1

S&G_OUT_N-1

DATA_OUT_N-1

S&G_IN_N-1

DATA_OUT_0

S&G_IN_0

DATA_IN_0

DATA_0

S&G_OUT_0

DATA_N-1

S&G_N-1

S&G_0

Figure 1: Switch schematic.

The switch has been implemented using the 45nm technology open source
Nangate [30] with Synopsys DC. We have used M1-M3 metallization layers to
perform the Place&Route with Cadence Encounter.

Using the same architecture of the basic switch presented above, we have
designed an identical switch but with ten input/output ports. Thus, eight ports
are intended to provide connectivity with the four neighbouring switches in a
2D mesh (two ports per neighbouring switch) and the last two ports connect
the switch to the local computing core. In both switches, all input ports can be
connected to all output ports, thus full connectivity is implemented. Table 2
shows the area and latency of the basic switch architectures presented in this
section. The third column shows the latency of the slowest stage. This latency
sets the operating frequency of the switch and hence each single stage of the
switch is working at this frequency. Note that the 5-port switch is faster than
the 10-port switch. The fourth column in Table 2 shows the switch delay, that
is, the time that a flit remains in a switch when no contention is presented. This
delay is equal to the delay of a single stage multiplied by the number of stages
that has the switch pipeline.

In Table 1, it is shown that the SA stage is the slowest one. The SA stage
determines when and which input port is connected to an output port. Then,

6

the latency of the SA stage is highly related with the number of input/output
ports because as the number of input/output ports increases more complex is
the task of interconnecting these input/output ports. Then, as the number of
input/output ports increases the latency of the SA stage also increases, thus
reducing the operating frequency of the switch.

switch area (um
2) slowest stage (ns) switch delay (ns)

5 ports 12425.37 0.75 3.00
10 ports 27095.80 0.89 3.56

Table 2: Switch area and latency.

4. A Latency-Efficient Switch Architecture: Reducing the Arbiter

Complexity

In this section we present two switch architectures intended to reduce mes-
sage latency by reducing the critical path of the switch pipeline. Therefore, by
shortening the longest stage of the pipeline, clock frequency will be increased,
thus reducing the overall switch latency.

In our case, the switch allocator stage is the slowest stage. Thus, by reducing
the latency of the switch allocator, the latency of the whole switch will be
reduced because of a smaller clock cycle. Reducing the latency of a switch
allocator is not easy [11, 25, 29]. One first attempt is to reduce the complexity
of the algorithm implemented by the arbiter. The simplest arbiter algorithm is
the round robin policy. More complex arbitration techniques [11, 20] may be
used, although they are discarded due to their higher complexity, that translates
into higher arbitration latencies. The second attempt is to reduce the complexity
of the simplest round robin arbiter. Moreover, this is not trivial. Actually, a fast
and simple arbiter implementation is presented in [25], which could be taken as
an example of the fastest possible implementation that can be achieved because,
although better implementations may be carried out, the difference in latency
would not probably be significant.

Assuming that no faster implementation than the one presented in [25] can
be carried out, the only parameter that could be modified in order to reduce
the latency of this arbiter is the number of concurrent requests this arbiter
deals with. Indeed, the complexity and delay of the arbiter is proportional to
the number of simultaneous requests it can handle. In order to assess how the
arbiter delay varies with the number of requests, we have evaluated the area
and latency of the switch allocator with different number of requests. To do so,
we have synthesized four different arbiters with 2, 3, 5, and 10 requests.

Table 3 shows the area and latency for the different switch allocators syn-
thesized. As can be seen, the area and latency of the switch allocator increases
with the number of requests. Additionally, the area required grows faster than
the delay of the arbiter as shown in Figure 2. On the other hand, notice that
the delay value for the 5-request arbiter in Table 3 is lower than the delay of the

7

switch allocator of the switch presented in the previous section. The difference
in the latency is due to the extra control signals that compound the SA stage.

size area (um
2) critical path (ns)

2 request 95.00 0.344
3 request 142.13 0.383
5 request 348.89 0.433
10 request 564.37 0.525

Table 3: Area and latency of the arbiter for different number of requests.

2 4 6 8 10

0.2

0.4

0.6

0.8

1

Number of requests

ar
ea

 a
nd

 la
te

nc
y

gr
ow

th

area
latency

Figure 2: Area and latency of the arbiter growth with respect to the number of requests.

According to the delay numbers shown in Table 3, we could conclude that
implementing the SA stage by using arbiters with a small number of requests
would reduce the latency of that stage. However, that would also reduce the
connectivity among ports. For example, if 2-request arbiters are used, then an
output port could only receive requests from two different input ports. However,
in a 2D mesh, each output port may receive requests from up to 4 input ports
(3 ports connecting to other switches and one more port connecting to the local
core). Therefore, if the SA stage is implemented by assuming 2-request arbiters,
connectivity among ports will not be complete unless some additional changes
are introduced. In order to keep using 2-request arbiters we replicate some of
the output ports, thus guaranteeing that any input port can be connected to
one of the replicas of the required output port.

Figure 3 shows a proposal for interconnecting ports. Y ports have been
replicated three times in order to provide connectivity from both X ports and
from the local port. Other schemes are feasible. However, as this switch assumes
the use of the the DOR routing algorithm, replicating the Y port presents the
additional advantage of featuring more bandwidth in the Y dimension, which
usually gets congested when using DOR routing algorithm.

8

(a) north (b) south

(c) east (d) west

Figure 3: Ad-hoc switch connectivity proposal 1.

The connectivity scheme shown in Figure 3 guarantees that each output port
arbiter receives requests from only 2 input ports, thus reducing the complexity
of the switch allocator from a five-to-one configuration down to a two-to-one
configuration. However, the number of ports in the switch has been increased
from 5 to 9. Therefore, the complexity of the crossbar may considerably increase.
However, an efficient crossbar implementation similar to the one presented in [9]
can be deployed if each output port has its own independent crossbar. In this
way, our switch proposal will include a 2×1 crossbar at each output port instead
of a single 5×5 crossbar as shown in Section 3. Note that even in the case these
smaller crossbars were used in the basic switch architecture, this would only
save area, while no delay reduction would be achieved, as the bottleneck stage
was the switch allocator. From now on, the switch proposal shown in Figure 3
will be referred to as proposal 1.

Our switch architecture can be extended if X ports are also replicated and
3-request arbiters instead of 2-request arbiters are used in the Y ports. In this
way, the delay of the switch allocator stage will be slightly increased, but the
bandwidth for connecting to other switches will be noticeably improved as it
will be more balanced. Figure 4 shows the connectivity among ports for this
option. Now we can include two local ports in the switch in order to match the
number of input ports with the total number of requests the arbiters can deal
with. From now on, the switch proposal shown in Figure 4 will be referred to
as proposal 2.

9

(a) north (b) south

(c) east (d) west

Figure 4: Ad-hoc switch connectivity proposal 2.

It is noteworthy to mention that these proposals noticeably increase the
number of ports of the switch. However, as this switch is intended to be used
inside a chip, where interconnection bandwidth is not a major concern, the
only disadvantage of an increased number of ports is the additional buffering
required. Nevertheless, the philosophy of our switch is to trade transistors by
latency, which is the real concern in current chips.

Finally, note that these proposals are independent of the arbiter scheme se-
lected. That is, other arbiters can be used for deploying our proposal. In this
way, if better arbiter implementations arise, then they can be incorporated to
our architecture. Furthermore, our proposal is independent and orthogonal to
other switch architectures, including unpipelined switches since the SA function-
ality is reduced. Moreover, other techniques as look-ahead routing or predictive
routing are also compatible with our proposal.

5. A Latency-Efficient Switch Architecture: Reducing Area Over-

head

As we have seen, the proposal 1 and proposal 2 approaches lead to an increase
in the number of ports in the switch. In this new approach we embedded all
the replicas for a given port into the switch, thus going back again to a 5-port
switch architecture. In order to still rely on 2-request arbiter components, we

10

redesigned the crossbar and the arbiter together, and hence all the arbitration
decisions are followed by a crossbar module. The main idea of the new switch
architecture is to reduce almost all the switch operations to a sum of simple two-
to-one arbitration-crossbar decisions. To do this, we developed a simple and fast
two-to-one arbitration-crossbar (AC) module. Figure 5 shows the basic scheme
of the AC module. The new module is a simple two-to-one round robin arbiter
and a multiplexer used as a small crossbar. Furthermore, some extra control
signals are needed. Note that AC module has its output signals registered by
using flip-flops as it can be seen on the right part of the Figure 5, in order to
keep pipelined the new switch architecture, and hence, to work similarly to the
basic switch architecture previously shown. Keeping the functionality of both
switches identical allows a fair performance comparison as it will be shown later.
Table 4 shows the area and latency of the AC module when designed to obtain
minimum latency. Comments that the latency of the AC module is 0.48 ns.
This values is slower than the latency of a 5-request arbiter (which delay is 0.43
ns). However, these latencies are part of the whole latency of the respective
switches. Then, the latency of the switch presented in this section is smaller
than the latency of the basic 5-port switch, as it will be shown later.

ROUND -

 ROBIN

ARBITER

REQUEST 1

REQUEST 2

FLIT 1

FLIT 2

REQUEST

FLIT

ENABLE

ENABLE

D

Q

D

Q

CLK

Figure 5: Schematic of the AC module used to implement our new switch architecture.

switch area (um
2) critical path (ns)

AC Module 974.05 0.48

Table 4: Area and latency of the AC module.

Figure 6 shows the basic scheme of the new switch architecture. This new
switch architecture is referred as proposal 3. Note that the extra control sig-
nals are omitted to clarify the schematic. However, these extra control signals
constitute a control module similar to the control module of the basic switch
presented in Figure 1. In Figure 6, we can be seen that the new switch ar-
chitecture is composed of four stages plus the link traversal stage, similarly to
the basic switch architecture. The first and second stages of the new switch

11

architecture are identical to the basic switch, that is, the input buffer stage and
the routing computation stage. However, the new switch architecture combines
the SA and ST stages in the basic switch architecture and converts them into
two new identical stages built on the simple AC module shown in Figure 5.
Note, however, that the functionality of this new switch architecture is identi-
cal to the functionality of the basic switch architecture before introducing new
input/output ports as it is was in the proposals 1 and proposal 2 in Section 4.

Figure 6: Schematic of the new switch architecture proposed.

As it can be seen in Figure 6, each request of each routing computation
module is managed by a different AC module. That forces the routing com-
putation stage to have its output signals registered in order to implement a
pipelined switch. Notice that this means that each routing computation mod-
ule is replicating the information as many times as requests it may forward to
output ports. In order to minimize the impact of this redundancy, the switch
has been optimized to implement only XY DOR routing. That means that the
Y direction ports (north and south) input ports can only handle two output
ports (local port or Y direction ports). However, the redundancy of data at the

12

output of the routing computation module is extra hardware resource when the
communication between nodes is performed using unicast messages. But, this
redundancy is necessary when transmitting broadcast/multicast messages since
each request of an output port of a broadcast/multicast message can be dealt
independently. Then, the redundancy of the information at routing compu-
tation output is optimum to perform broadcast/multicast techniques without
introducing huge modifications in the switch. In fact, only a few changes to
support broadcast/multicast in the RC stage are needed. In [23, 24] it is shown
that these changes does not introduce any latency penalty in a switch.

To reduce the impact of the buffer redundancy at the output of the RC
modules, the new switch architecture presents another important modification
with respect to the basic switch. As is has been explained before, AC has
registered output signals. Similarly, the output signals of the RC module are
registered. That allows the input buffer to be reduced from five – as in the basic
switch architecture – to 2, and the round trip time is still being fulfilled. The
reduction of the size of the input buffer allows the new switch architecture to
compensate the increase of the number of register – and hence an increase in
area – produced by the necessity of register the outputs of each stage.

Finally, note in Figure 6 that the fourth stage of the output ports west
and east, only handle one request form the previous stage, and hence when
transmitting a message through the X direction only 3 stages are needed. It
is maintained in order to keep the same functionality and behaviour in each
output port, so how, to keep the same behaviour as the basic switch.

6. Evaluation of the Architecture Proposals 1 and 2

In this section we analyze the benefits of the proposed switch architecture
over the basic ones presented in Section 3. To do so, we present the area and
latency metrics as well as a thorough performance comparison of the different
characteristics introduced by proposal 1 and proposal 2.

6.1. Area and latency

Table 5 shows the area and latency of the switches proposed in Section 4.
Remember that our proposals have nine and twelve ports rather than the five
or ten that featured the basic architectures in Section 3. Obviously, as the
number of ports increases (and hence the number of input buffers) the area of
the proposed switches increases as well. However, note that both proposals have
a shorter critical path than the basic switch architectures presented in Section 3.
This means that both proposals have a higher operating frequency. Then, if we
compare proposal 1 with a 5-port basic switch (as both of them have the same
number of links in the X direction) we obtain that proposal 1 has a reduction of
latency of 10.67% while there is an increase in area of 59.99%. Comparing our
switch proposal 2 with a 10-port basic switch we obtain a reduction of latency
of 20.22% with a small increase in area of 2.88%.

The huge difference when comparing the area increase in both cases is due to
the fact that when comparing proposal 2 with a 10-port basic switch the number

13

switch area (um
2) critical path (ns)

proposal 1 19880.00 0.67
proposal 2 27876.33 0.71

Table 5: area and latency of the proposed switches.

of extra ports added is just two while in the first case the number of ports is
almost doubled. Additionally, decoupling resources allows the synthesis tools
to relax its constraints and then the increase in area produced by increasing
the number of input buffers could be reduced by decreasing the area of the SA
and ST stages. This behaviour is more evident when comparing proposal 2
with a 10-port basic switch. Nevertheless, remember that the purpose of our
architecture is reducing latency at the expense of increasing area, if required.

Also, note that the critical path of the proposed switches is not decreased
according to the expected reduction of the critical path of the arbiter. This is
due to the fact that in our proposed switches the critical path is now set by the
IB stage instead of the SA stage. However, the critical path of the proposed
switches is higher than the critical path of the IB stage of a basic 5-port switch
– shown in Table 1. This is due to the higher number of ports and the control
signals that conform the architecture of the IB stage in the proposed switches.

6.2. Effects of the partial connectivity on performance

In this section we analyze the performance penalty suffered when reducing
the connectivity among the ports of a switch. For that purpose, we analyze two
switches: the switch described in proposal 1 and the same switch but allowing
that any input port can reach any output port, that is, full switch connectivity.
Figure 7(a) and Figure 7(b) show the latency and throughput for a 4×4 network
using both switches. Uniform traffic is used, and message size set to four flits.
In both cases, switches are modelled with the same delay (one cycle per stage).
As can be seen, there is a small loss in performance when full connectivity is
not allowed. Notice, however, that this loss is small and it will be compensated
when comparing both switches with its real frequency, as we will analyze later.

6.3. Effects on the increased number of ports

In this section we analyze variations in network performance when moving
from the 5-port basic switch to the 9-port proposed architecture (proposal 1).
The purpose of these experiments is to analyze the effect of a larger number
of ports. Network size is 16 switches. These results do not take into account
the operating frequency of each switch. Figure 8 shows the latency and the
throughput for different injected uniform traffic rates. All the messages injected
into the network are 4-flit long. Figure 8 shows that the performance of the
ad-hoc switch is better than the basic switch. Our proposal obtains a higher
throughput and a lower latency over the whole traffic range. This is due to the

14

0 0.2 0.4 0.6 0.8 1
15

16

17

18

19

20

21

22

23

injected traffic (flits / cycle / node)

la
te

nc
y

(c
yc

le
)

proposal 1:full connectivity
proposal 1

(a) latency

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

injected traffic (flits / cycle / node)

th
ro

ug
hp

ut

proposal 1:full connectivity
proposal 1

(b) throughput

Figure 7: Latency and throughput for proposal 1. Full connectivity for proposal 1 is also
considered.

0 0.2 0.4 0.6 0.8 1
15

20

25

injected traffic (flits / cycle / node)

la
te

nc
y

(c
yc

le
)

basic 5 ports
proposal 1

(a) latency

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

injected traffic (flits / cycle / node)

th
ro

ug
hp

ut

basic 5 ports
proposal 1

(b) throughput

Figure 8: Performance comparison between a basic 5-port switch and proposal 1. All messages
are 4-flits long.

fact that by increasing the number of ports we reduce the contention in each
switch and increase the traffic bandwidth in the Y direction.

Figure 9 shows the latency and throughput of the same switches when the
traffic injected into the network is made of 70% messages of 4 flits and 30%
messages of 20 flits. Note that introducing longer messages makes the network
performance worse (higher latency and lower throughput). Furthermore, dif-
ferences between switches are reduced. However, despite the reduction of the
difference in performance, the same conclusions as before can be obtained. From
now on, all results presented will be taken when the traffic injected is made of
4-flit long messages.

Figure 10 shows the latency and the throughput for different injected uniform
traffic rates for a 10-port basic switch and our switch proposal with twelve
input/output ports (proposal 2). As before, the performance of the proposed
switch is better than the basic switch for the same reasons explained above.

15

0 0.2 0.4 0.6 0.8 1
15

20

25

30

injected traffic (flits / cycle / node)

la
te

nc
y

(c
yc

le
)

basic 5 ports
proposal 1

(a) latency

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

injected traffic (flits / cycle / node)

th
ro

ug
hp

ut

basic 5 ports
proposal 1

(b) throughput

Figure 9: Performance comparison between a basic 5-port switch and proposal 1. Traffic is
70% 4-flit messages and 30% 20-flit messages.

0 0.5 1 1.5 2
14

16

18

20

22

24

26

28

injected traffic (flits / cycle / node)

la
te

nc
y

(c
yc

le
)

basic 10 ports
proposal 2

(a) latency

0 0.5 1 1.5 2
0

5

10

15

injected traffic (flits / cycle / node)

th
ro

ug
hp

ut

basic 10 ports
proposal 2

(b) throughput

Figure 10: Performance comparison between a basic 10-port switch and proposal 2.

6.4. Effects of the increased switch frequency

The previous evaluations were focused on the impact of the connectivity
pattern provided by the different switch architectures. Indeed all the switches
were modelled at the same clock frequency. In this section we provide the real
difference when switches are composed, each one using its maximum operating
frequency. Figure 11 shows the latency in nanoseconds for different injection
traffic rates for a 4× 4 mesh network. Note that now the differences in perfor-
mance described before are exacerbated as the proposed switches now work at
higher operating frequencies. Note that differences are remarkable both for low
injected traffic rates and for high injected traffic rates. For low injection traffic
rates the reduction of the net latency is 11.37% and 15.41% as it can be seen in
Figure 11(a) and Figure 11(b) respectively.

7. Evaluation of the Architecture Proposals 3

In this section we analyze the benefits of the proposed switch architecture
in Section 5 over the basic ones presented in Section 3 and proposal 1 presented

16

0 0.5 1 1.5
10

11

12

13

14

15

16

17

18

19

injected traffic (flits / ns / node)

la
te

nc
y

(n
s)

basic 5 ports
proposal 1

(a) Basic 5-port architecture versus proposal
1

0 0.5 1 1.5 2 2.5 3
10

12

14

16

18

20

22

24

injected traffic (flits / ns / node)

la
te

nc
y

(n
s)

basic 10 ports
proposal 2

(b) Basic 10-port architecture versus pro-
posal 2

Figure 11: Performance comparison for the different switch architectures when switch fre-
quency is considered.

in Section 4. To do so, we present the area and latency metrics as well as a
thorough performance comparison of the different characteristics introduced by
the new architecture.

7.1. Area and latency

Table 6 shows the area and latency of the switch proposed in Section 5,
proposal 3. Remark that the latency of the switch is 0.66 nanoseconds. This
value is the sum of the latency of the AC module (see Table 4 in Section 5) with
some extra control information generation.

When comparing proposal 3 with the the basic architecture of five-ports
presented in Section 3, remember that proposal 3 maintains the number of
input/output ports with respect to the basic architecture. However, despite
the number of ports is not increased, the area of the switch increases. This is
due to the redundancy of the data path inside the switch especially in stage 2.
Remember that each routing computation implements a flit size buffer for each
output port that can reach (see Figure 6. That means to increase the number
buffers –with flit size– in 24%. This increment force that the area of the new
switch architecture is incremented in a 22%. With respect to the operating
frequency we observe that there is a reduction of 12%.

switch area (um
2) critical path (ns)

proposal 3 15163.28 0.66

Table 6: area and latency of the proposed switches.

Comparing proposal 3 with proposal 1, we observe that both switches present
almost the same operating frequency but proposal 3 does not present a huge
increment in area as presented in proposal 1. Furthermore, proposal 3 does
not increase the number of input/output ports and hence does not increase the
complexity and the power consumption of the links.

17

7.2. Design Benefits of proposal 3

Another important benefit that the new switch architecture presents is its
simplicity in the design. As it can be seen in Figure 6, only three kind of module
are needed. Input buffers to perform the input ports, the routing computation
modules and the basic arbitration-crossbar module. This simplicity allows the
designer to have more control of the design constraint. First, the area of the
switch is highly correlated with the number of registers used in the input ports
and the rest of the modules. That number is fixed when the number of input
ports and the flit size are determined. then, fixing the parameters that fix the
area of the switch, the designer can only optimize the switch for power con-
sumption or latency. As it is mentioned before, the basic arbitration-crossbar
module with some extra control operations fix the critical path of the switch.
That means that, both the input buffer and the routing computation modules
can be designed for other purpose rather than minimum latency, as for example
minimum power consumption [9]. Then, there is a high correlated dependency
between the latency and power consumption of the basic arbitration-crossbar
module and the latency and power consumption of the switch, and hence, opti-
mizing the design of the switch for a concrete purpose means to design a simple
arbitration-crossbar module. Table 7 shows the area, critical path, and power
consumption for the proposal 3 switch using different design constraints. Ta-
ble 7 shows that the area of the switch has a fixed value (close to 14211 um

2)
which is not possible to decrease. This value is highly related with the flit size,
and the input buffer length that fix the number of registers which are the main
contribution to the whole switch area. Another conclusion is that the power
consumption is highly related with the clock frequency.

area (um
2) critical path (ns) power consumption (mW)

15163.28 0.66 32.07
14452.20 0.74 20.23
14258.58 0.83 16.12
14218.12 0.95 14.19
14211.58 1.02 12.56

Table 7: area and latency of the proposed switches for different design constraint.

Table 8 shows the critical path of the AC module when it is synthesized
for different latency constraints. Furthermore, the second column shows the
critical path of the switch created using the previous AC module previously
independently synthesized. This switch is different for the switches synthesized
which results are shown in Table 7. Those switches where globally synthesized.
The third column shows the difference in latency between the switch latency and
the AC module latency. It can be concluded that the difference between the
switch latency and the AC module is almost constant and hence, designing and
synthesising the AC module with a latency constraint is equivalent to design and
synthesize the whole switch with the same latency constraint plus the difference
constant defined. Note that designing and synthesising a simple and small

18

module is easier than designing and synthesising the whole switch, and the
values obtained can be more close to the design constraint.

critical path(ns) AC module critical path (ns) switch difference
0.48 0.66 0.18
0.55 0.71 0.16
0.70 0.85 0.15
0.81 0.96 0.15
0.86 1.01 0.16

Table 8: area and latency of the proposed switches for different design constraint.

7.3. Simulation Results

We analyze the effect on the performance of proposal 3 when it is compared
to the five-port basic switch. Figure 12 shows the latency and the throughput
of the basic 5-port switch and proposal 3 switch. Uniform traffic is used, and
message size set to four flits. Figure 12 shows that both switches have the
same performance when the operating frequency is not considered (latency is
measured in cycles). That means that both switches have the same functionality,
and hence, any improvement in the operating frequency in the proposal 3 switch
will be reflected in a reduction in a message latency. This conclusion is identical
when modifying the message size distribution of the simulation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
15

16

17

18

19

20

21

22

23

24

25

injected traffic (flits / cycle / node)

ne
tw

or
k

la
te

nc
y

(c
yc

le
s)

basic 5−port router
proposal 3

(a) latency

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

injected traffic (flits / cycle / node)

th
ro

ug
hp

ut
 (

fli
ts

 /
cy

cl
e

/ n
od

e)

basic 5−port router
proposal 3

(b) throughput

Figure 12: Performance comparison between a basic 5-port switch and proposal 3. All mes-
sages are 4-flits long.

In order to analyze the effect of the operating frequency when comparing
the proposal 3 switch with the five-port basic switch, we have run several ap-
plications in GEMS/SIMICS over a directory coherence protocol. The network
is a 4x4 mesh network with two memory controllers. We have run SPLASH
applications: Barnes, cholesky, fft, fmm , lu, lunc, ocean, oceanc, radiosity,
radix, raytrace, volrend, watersnp, waterp. Alp benchmark applications: fac-
erec and speechrec. And scientific applications: em3d, tomcatv, and unstructed.
Figure 13 shows the execution time when running several application over a di-
rectory coherence protocol when using a basic five-port switch and proposal 3

19

switch. In all cases, proposal 3 switch obtains better results, being all of them
close to the difference in the operating frequency between switches: 12%.

Figure 13: Performance comparison between a basic 5-port switch and proposal 3 when run-
ning different applications over a directory coherence protocol.

Similarly, Figure 14 shows the execution time when running several applica-
tion over a directory coherence protocol when using a basic five-port switch and
proposal 3 switch. In all cases, proposal 3 switch obtains better results, being
all of them close to the difference in the operating frequency between switches:
12%.

Figure 14: Performance comparison between a basic 5-port switch and proposal 3 when run-
ning different applications over a token coherence protocol.

20

7.4. Results compared With X improved

In Section 5 has been explained that proposal 3 switch has an important
benefit. Reconfigurating the operation tasks along the pipeline of the switch
allows the switch to fulfil the routing tasks for the east and west ports in only 3
stages rather than 4 needed for the rest of ports. We implement this pipelined
reduce switch in our network simulator – referred as proposal 3 reduced pipeline.
Figure 15 shows the influence of reducing the pipeline depth in the X direction
when running the applications with a directory coherence protocol. Note that,
there are applications were the reduction in latency between proposal 3 and
proposal 3 reduced pipeline is considerable (up to 31% in Ocean). In average
this reduction is up to 19%. When comparing the proposal 3 reduced pipeline

with the basic 5-port switch this reduction increases up to 29% in average. In
those cases where the improved switch is not better than the canonical switch,
the differences are minimum.

Figure 15: Performance comparison between a basic 5-port switch and proposal 3 when run-
ning different applications over a directory coherence protocol.

Similarly, Figure 16 shows the influence of reducing the pipeline depth in
the X direction when running the applications with a token coherence protocol.
Note that, the difference between switches are not as high as in the directory
coherence protocol. In fact, the maximum difference between the proposal 3 and
proposal 3 reduced pipeline is 13%, but the mean reduction in latency is only
0.02%. The final reduction latency between proposal 3 reduced pipeline and the
basic switch is in mean 14%.

8. Conclusions and Future Work

In this paper we have proposed various new switch designs to reduce the
latency of the network. From the initial assumption of a 2D mesh topology and
the use of the Dimension-Order Routing (DOR) algorithm, we have redesigned

21

Figure 16: Performance comparison between a basic 5-port switch and proposal 3 when run-
ning different applications over a token coherence protocol.

a pipelined switch. In particular, at the first design presented the arbiter com-
plexity has been reduced. Multiple smaller arbiters are used in parallel and thus
exhibiting a lower latency. In order to build a full operational switch with such
smaller arbiters new ports have been added to the switch, and different internal
connections in the switch have been set. Based on such design style, different
switch architectures (with different arbiter complexities) have been proposed.

Results show a clear reduction in switch latency. The new architecture with
arbiters with two or three requests is able to reduce the delay of a canonical
switch design by a range from 10% to 21%. This switch uses X ports, and thus,
increases the switch area up to 59.99%. Network latency is reduced in a range
from 11% to 15%.

Secondly, we have evolved this design in order to minimize the increment in
area. From the fact that smaller arbiters are faster we have mixed operations
tasks from the SA stage and the ST stage, creating a new switch that is mainly
formed by addition of a simple and small module that performs arbitration-
crossbar tasks. By introducing this module, we avoid the increment of new
input/output ports and hence, minimize the increment of area. Results show
that the increment of area is just 22% and there is a reduction in latency of
12%.

As future work we plan to analyze the impact of the new switch design when
using virtual channels. Furthermore, the impact of the new switch design with
other techniques as look-ahead routing should be done. Also, further evaluations
with real applications will be analyzed. It is expected that applications will take
profit of a faster switch.

22

Acknowledgement

This work was supported by the Spanish MEC and MICINN, as well as European Com-
mission FEDER funds, under Grants CSD2006-00046 and TIN2009-14475-C04. It was also
partly supported by the project NaNoC (project label 248972) which is funded by the Euro-
pean Commission within the Research Programme FP7.

References

[1] T. Anderson, S. Owicki, J. Saxe, and C. Thacker, High-speed switch scheduling for local-
area networks, ACM Trans. Computer Systems, vol. 1, no. 4 (1993) 319-352.

[2] E. Carara, N. Calazanz, F. Moraes, A new router architecture for High-Performance in-
trachip networks, Journal Integrated Circuits and Systems 3 (2008) 23-31.

[3] E. Carara, F. Moraes, N. Calazanz, Router architecture for high-performance NoCs,
SBCCI (2007) 36.

[4] H.J. Chao, C.H. Lam, and X. Guo, A fast arbitration scheme for terabit packet switches”,
Proc. GLOBECOM (1999) 1236-1243.

[5] J. Chao, Saturn: a terabit packet switch using dual round-robin”, IEEE Commun. Mag.
38 (2000) 78-84.

[6] A. chien, A cost and speed model for k-ary n-cube wormhole routers”, Hot Interconnects
(1993).

[7] M. Dall’Osso, G. Biccari, L. Giovannini, D. Bertozzim, L. Benini, Xpipes: a latency insen-
sitive parameterized Network-on-chip architecture for Multi-Processor SoCs, Proceedings
of the 21st International Conference on Computer Design (2003) 536–.

[8] W. J. Dally, B. Towles, Principles and practices of interconnection networks, Morgan
Kauffman 2003.

[9] F. Gilabert, M.E. Gomez, S. Medardonni, D. Bertozzi, Improved utilization of NoC chan-
nel bandwidth by switch replication for cost-effective Multi-Processor Systems-on-Chip,
NOCS (2010).

[10] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, S. Borkar, A 5-GHz mesh interconnect for a
teraflops processor, in IEEE Micro Magazine (2007) 51-61.

[11] Y. Huang, C.M Ko, H.C. Teng, Design and performance analysis of a reconfigurable
arbiter, in WSEAS Transactions on Electronics 4-5 (2008).

[12] J. kim, H. Kim, Router microarchitecture and scalability of ring topology in on-chip
networks, Network on Chip Architectures NoCArc (2009).

[13] J. kim, Low-cost router microarchitecture for on-chip network, Proceedings of the 42nd
Annual IEEE/ACM International Symposium on Microarchitecture (2009).

[14] J. Kim, D. Park, T. Theocharides, N. Vijaykrishnan, C. R. Das, A low latency router
supporting adaptivity for on-chip interconnects, Design Automation Conference (2005)
559-564.

[15] S. Konstantinidou, L. Snyder, The Chaos Router, IEEE Transactions on Computers 43
(1994).

[16] A. Leroy, P. Marchal, A. Shickova, F. Catthoor, F. Robert, D. Verkest, Spatial division
multiplexing: a novel approach for guaranteed throughput on NoCs, CODES-ISSS (2005)
81-86.

23

[17] H. Matsutani, M. Koibuchi, H. Amano, T. Yoshinaga, Prediction router: yet another low
latency on-chip router architecture, HPCA (2009) 367-378.

[18] S. Medardoni, D. Bertozzi, E. Macii, Power-optimal RTL arithmetic unit soft-macro
selection strategy for leakage-sensitive technologies, Proc. Int. Symp. on Low-Power Elec-
tronics and Design (2007) 159-164.

[19] N. McKeown, The iSLIP scheduling algorithm for input-queued switches, IEEE/ACM
Trans. Networking 7 (1999) 188-201.

[20] S. S. Mukherjee, F. Silla, P. Bannon, J. Emer, S. Lang, D. Webb, A Comparative Study
of Arbitration Algorithms for the Alpha 21364 Pipelined Router, in ASPLOS X (2002).

[21] Robert Mullins Andrew, The design and implementation of a low-latency on-chip net-
work, Proceedings of the 31st Annual International Symposium on Computer Architecture
(ISCA04) 2004.

[22] L.S. Peh, W.J. Dally, Low-latency virtual-channel routers for on-chip networks, In Inter-
national Symposium on High-Performance Computer Architecture (2001) 255-266.

[23] S. Rodrigo, J. Flich, A. Roca, S. Medardoni, D. Bertozzi, J. Camacho, F. Silla, J. Duato,
Addressing manufacturing challenges with cost-efficient fault tolerant routing, ACM/IEEE
International Symposium on Networks-on-Chip (2010).

[24] S. Rodrigo, J. Flich, A. Roca, S. Medardoni, D. Bertozzi, J. Camacho, F. Silla, J. Du-
ato, Fault-tolerant routing for next generation multicore chips, IEEE Transactions on
Computers (2011).

[25] E. S. Shin, V.J.III Mooney, G.F. Riley, Round-robin arbiter design and generation, In-
ternational Symposium on System Synthesis 15 (2002) 243-248.

[26] F. Silla, Routing and flow control in networks of workstations, PhD thesis (1999).

[27] J. C. Villanueva, J. Flich, J. Duato, H. Eberle, N. Gura, W. Olesinski, A performance
evaluation of 2D-mesh, ring, and crossbar interconnects for chip multi-processors, Inter-
national Symposium on Microarchitecture Proceedings of the 2nd International Workshop
on Network on Chip Architectures (2009) 51-56.

[28] P. T. Wolkotte, G.J.M. Smit, G.K. Rauwerda, L.T. Smit, An energy-efficient recon-
figurable circuit-switched Network-on-Chip, IEEE International Parallel and Distributed
Processing Symposium 19 (2005) 155a. 2005.

[29] S. Q. Zheng, M. Yang, Algorithm-Hardware codesign of fast parallel round-robin arbiters,
IEEE Transactions on Parallel and Distributed Systems 18 (2007) 84-95.

[30] The Nangate Open Cell Library, 45nm FreePDK, available online at
https://www.si2.org/openeda.si2.org/projects/nangatelib/.

[31] J. Rattner, Single-chip Cloud Computer: An experimental many-core processor from
Intel Labs, available online at
http://download.intel.com/pressroom/pdf/rockcreek/SCCAnnouncement.

[32] TILE-Gx Processors Family, available at
http://www.tilera.com/products/TILE-Gx.php.

24

