
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2011

Measuring the Power Efficiency Of Subthreshold
FPGAs For Implementing Portable Biomedical
Applications
Shahin S. Lotfabadi
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by
an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Lotfabadi, Shahin S., "Measuring the Power Efficiency Of Subthreshold FPGAs For Implementing Portable Biomedical Applications"
(2011). Theses and dissertations. Paper 1567.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1567&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1567&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1567&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1567&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/1567?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1567&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

Measuring the Power Efficiency of Subthreshold FPGAs for

Implementing Portable Biomedical Applications

By

Shahin Sanayei Lotfabadi
Bachelor of Engineering, Ryerson University, 1998

A thesis

presented to Ryerson University

 in partial fulfillment of the requirements

for the degree of Master of Applied Science

in the program of

Electrical and Computer Engineering

Toronto, Ontario, Canada

© Shahin Sanayei Lotfabadi, 2011

ii

Author’s Declaration
I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the

purpose of scholarly research.

 Signature

I further authorize Ryerson University to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

 Signature

iii

Abstract

Measuring the Power Efficiency of Subthreshold FPGAs for

Implementing Portable Biomedical Applications

Shahin Sanayei Lotfabadi

Master of Applied Science

 Department of Electrical and Computer Engineering

Ryerson University, 2011

 Power is a significant design constraint for implementing portable applications.

Operating transistors in the subthreshold region can significantly reduce power consumption

while reducing performance. The low frequency nature of biosignals makes a FPGA operating

subthreshold region a good candidate. In this work, I investigate the feasibility of designing such

a device and the trade-off between power consumption and performance for FPGA routing

resources operating in the subthreshold region. For the 32nm Predictive Technology Model

studied in this work, it was observed a power reduction of 197.7 times (or power-delay-product

reduction of 3.3 times) for operating under a supply voltage of 0.4 volts (as compared to normal

operation in the saturation region using a 0.9V). Under a supply voltage of 0.4 volts, the FPGA

can operate at 2.0 MHz while allowing signals to propagate unregistered through 20 routing

tracks which meets the real-time requirement for processing 20000 samples per second.

iv

Acknowledgments

 I would like to express my deep gratitude to Professor Sridhar Krishnan and Professor

Lev Kirischian at Ryerson University and Professor Eric Peskin at the Center for Health

Informatics and Bioinformatics of New York University, for their knowledgeable guidance,

encouragement, and constant support.

 Finally, I would like to especially thank my family for their nonstop and warm support.

v

Contents

1 Introduction 1

 1.1 Motivation . 1

 1.2 Research objectives . 2

 1.3 Original contributions . 3

 1.4 Thesis organization . 4

2 Review 6

 2.1 Parametric Modeling . 7

 2.1.1 AR Modeling . 8

 2.1.2 Burg Algorithm . 10

 2.2 Threshold Voltage Effect . 12

 2.2.1 Body Effect . 13

 2.2.2 Subthreshold Leakage . 14

 2.2.3 Subthreshold Circuit Design . 14

2.3 Related Work . 15

3 FPGA Implementation of AR Burg Algorithm 17

 3.1 Implementation of Burg Algorithm . 18

 3.2 Previous Implementation of Burg Algorithm . 19

vi

 3.3 A Parameterized Architecture for Implementation of Burg Algorithm 21

 3.3.1 Data Capture Module . 22

 3.3.2 Memory Management Unit (MMU) . 23

 3.3.3 Functional Units (FUs) 24

 3.3.4 Output Buffer . 25

 3.3.5 Control Unit . 25

3.4 Results . 27

4 Subthreshold Circuit Design 34

 4.1 FPGA Architecture . 35

 4.2 Routing channel model . 36

 4.2.1 Multiplexers 36

 4.2.2 Buffers . 37

 4.2.3 Gate Boosting 38

 4.2.4 Transistors and Interconnect Models . 38

 4.3 Simulation Results . 39

5 Conclusion and Future Work 48

vii

List of Figures

 1.1 System Level Block Diagram of the Research . 3

 2.1 Signal-flow diagram of the AR model . 9

 2.2 The lattice structure of the recursion equations for forward and backward

 prediction errors . 11

 3.1 Block diagram of previous implementation for 3 stages using MathWorks®

 FPGA Design Solutions 19

 3.2 Block diagram of the first stage for Burg algorithm using MathWorks®

 FPGA Design Solutions . 20

 3.3 Block diagram for the implementation of the Burg algorithm 21

 3.4 Schematic symbol of the top-level module . 22

 3.5 Timing diagram of the design . 22

 3.6 Data flow of a Dual Port Ram . 23

 3.7 Block Ram timing diagram . 24

 3.8 The block diagram of the AR coefficients computation loop 25

 3.9 Flow chart of the control unit . 26

 3.10 Number of cycles vs. number of samples for various AR model orders 29

 3.11 Graph of Sample Rate vs. Minimum Operating Frequency. 30

 3.12 Comparison of power estimation for 32-bit and 64-bit floating point

 implementations . 32

 4.1 Island-Style FPGA Architecture . 35

viii

 4.2 Routing track and delay path model . 36

 4.3 A 4-to-1 multiplexer implemented with pass transistors 37

 4.4 A multistage buffer with 4X drive strength . 37

 4.5 (a) Potential problem with pass transistor; (b) Solution for voltage degrading of

 pass transistor . 38

 4.6 (a) A conventional inverter; (b) an inverter with swapped body biasing (SBB)

 voltage . 40

 4.7 Multistage buffers with variable threshold voltage . 41

 4.8 Power-Delay Products for various buffer sizes . 41

 4.9 Plot of Input vs. Output of the routing track using conventional buffers with

 0.4 V supply . 43

 4.10 Plot of Input vs. Output of the routing track using SBB buffers with 0.4 V

 supply . 43

 4.11 Plot of Input vs. Output of the routing track using conventional buffers with

 0.45 V supply . 44

 4.12 Plot of Input vs. Output of the routing track using SBB buffers with 0.45 V

 supply . 44

 4.13 Plot of Input vs. Output of the routing track using conventional buffers with

 0.5 V supply . 45

 4.14 Plot of Input vs. Output of the routing track using SBB buffers with 0.4 V

 Supply . 45

 4.15 Power-Delay Products vs. Supply Voltage for Models with SBB Buffers

 and Conventional Buffers . 46

ix

List of Tables

 3.1 A comparison of resource utilization between two implementation methods: The

 method using Simulink-to-FPGA tool and the one suggested in this thesis . . . 28

 3.2 Number of cycles required per frame for various model orders 28

 4.1 Parameters used to determine interconnect capacitance 39

 4.2 Average power dissipation and delay of both buffer types for various values of

 supply voltages . 42

x

 List of Acronyms

AR - Autoregressive

ARMA - Autoregressive moving-average

ASIC - Application-specific integrated circuit

DSP - Digital signal processing

ECG - Electrocardiogram

EDA - Electronic design automation

EEG - Electroencephalogram

EGG - Electrogastrogram

EMG - Electromyogram

FFT - Fast Fourier transform

FPGA - Field programmable gate array

HDL - Hardware description language

IP - Intellectual property

LMS - Least-mean-square

MA - Moving-average

RLS - Recursive least-squares

RLSL - Recursive least-squares lattice

STFT - Short-time Fourier transform

SBB - Swapped Body Biasing

VAG - Vibroarthrogram

VHDL - VHSIC hardware description language

VLSI - Very large scale integrated circuit

1

Chapter 1

Introduction

1.1 Motivation

 Digital signal processing has played a significant role in the diagnostic and research

activities in the health care field. Field Programmable Gate Arrays (FPGAs) are an important

platform for implementing a variety of digital applications due to their short time to market, re-

programmability and low non-recurring engineering costs. While FPGAs have been successfully

used in many applications including digital signal processing, aerospace, medical imaging,

computer vision, speech recognition, and ASIC prototyping, they have not been widely used in

portable applications. FPGAs are not widely used in portable applications primarily due to their

significant power consumption. In particular, previous studies [1], [2] have shown that

applications implemented on FPGAs can consume significantly more power than the same

applications implemented on ASICs. Portable applications, however, demand long battery life

and consequently require an ultra low power implementation platform.

 One way to extend the battery life of portable applications is to design digital systems

that operate in the subthreshold region. Previous works have shown that, by operating in the

subthreshold region, digital circuits often achieve minimum power-delay product thus

2

minimizing their overall energy consumption [3]. Operating circuits in the subthreshold region,

however, does significantly reduce their performance. This reduction in performance limits the

applicability of subthreshold design in many applications. Performance reduction, however, has

significantly less impact on biomedical applications due to the low frequency nature of

biosignals. In this research, I investigate the feasibility of designing a specialized FPGA that

operates in the subthreshold region in order to reduce the power consumption of biomedical

applications while still maintaining real-time signal processing capabilities.

 This research is based on a case study of the Burg algorithm [4], a widely used signal

processing algorithm in biomedical applications. I first implemented a scalable RTL

implementation of the Burg algorithm targeting Autoregressive (AR) modeling applications [5],

[6], which is not possible using automated tools such as C-to-FPGA [22], Stateflow diagram to

VHDL (SF2VHD) [23], or Simulink-to-FPGA [24].

 Based on the design, the maximum operating frequency that guaranties the real-time

processing of biosignals is calculated. This maximum operating frequency is then used as the

performance constraint in the design of FPGA routing resources that operate in the subthreshold

region. The power efficiency of the subthreshold design is then measured by determining the

minimum supply voltage that is required to meet the real time performance constraint. These

performance and power consumption figures are compared to the performance and power

consumption of the conventional FPGA routing resources to quantify power efficiency.

1.2 Research Objectives

 The objective of this research is to employ Burg algorithm [4], a widely used signal

processing algorithm in biomedical applications, and to investigate subthreshold circuit design

for an FPGA that result in reduction of its power-delay product and ultimately longer battery life

3

of the device. Figure 1.1 indicates the overview of the design. This design assumes that non-

stationary biomedical signals have already been converted into stationary frames through an

adaptive segmentation filter. The AR modeling generates processes stationary signals to generate

coefficients which could co-relate to the physiological sources of the signal.

 Figure1.1: System Level Block Diagram of the Research

This design is capable of storing parameters generated by AR modeling for up to 24 hours

collection of non-stationary signals on a hand held device. The design is also facilitated with the

capability to select the number of stages of the filter and hence increase number of parameters

generated per input frame. Hence the design caries the same flexibility of a microprocessor based

designs, and offers better energy efficiency.

1.3 Original Contributions

The main contributions of this research are described as follows:

Autoregressive Modeling

 Proposing the architecture for a generic Burg-lattice algorithm that can programmed to

set the desired stages of the model and to generate AR coefficients.

4

 Using the proposed model to reduce the area and increase performance of design.

 Developing the required software using Very High Speed Description Language

(VHDL), simulating and implementing the design on a Xilinx Virtex 5 FPGA

(XC5VLX110-3FF676C).

Subthreshold Circuit Design

 Developing an HSPICE simulation model for the FPGA routing track to find the power-

delay product.

 Investigating the performance of the circuit in subthreshold region and the effect of

transistor sizing to achieve the desired performance.

1.4 Thesis Organization

This thesis consists of five chapters:

 Chapter 1 introduces the significance of biomedical signal analysis and suggests a design

methodology as well as subthreshold design to improve power efficiency of the design. It

also states the objectives of the research, the contribution of the author and how the thesis

is organized.

 Chapter 2 starts with a review the method of processing biomedical signals presented in

this thesis and advantages of this method of implementation. It provides an overview of

parametric modeling, particularly AR modeling and the advantages of Burg-lattice

algorithm for hardware implementation. It also presents a review of subthreshold circuit

design and a study of the power-delay product for this application.

5

 Chapter 3 presents the design specification and design methodology including details of

the architecture implementation, simulation, synthesis, and place and route. It also

provides a discussion of advantage of sequential design versus structural designs offer by

automated tools such as Simulink-to-FPGA.

 Chapter 4 presents the architecture of routing tracks of an FPGA designed for biomedical

signal processing. It also presents simulation of an HSPICE model of this architecture to

determine minimum power consumption of the routing track while performance

constraint is met.

 Chapter 5 presents a discussion of the acquired results of this research project and offers

conclusion and future work for the thesis.

6

Chapter 2

Review

 The main focus in this research is to investigate ways to reduce total power consumption

of biomedical applications. As it was discussed earlier low power consumption is a crucial factor

in designing devices to process biosignals. For example the battery life of a permanent pacemake

lasts 5-15 years and a surgical procedure is required to replace the battery. Hence reduction in

power consumption for such devices results in longer battery life that eliminates the burden of a

surgical procedure for a patient to replace the battery. In this research it is shown that parametric

modeling that is often considered for feature extraction can also be used to compress the

biomedical signal. This reduces the size of required memory and ultimately results in less power

consumption. Selecting an appropriate algorithm that is less computationally extensive may also

optimize the dynamic power consumption of a device. However, in chapter 3, it will be shown

that a significant amount of power consumed by a device is static. To reduce the static power

consumption of a device subthreshold circuit design is investigated in this research. A review of

parametric modeling and subthreshold circuit design is presented in the following sections.

7

2.1 Parametric modeling

 Signals and systems can be concisely and efficiently represented using parametric

modeling technique. Parametric modeling is a technique to find the parameters of a mathematical

model which describes a signal or a system [4]. The aim of the parametric modeling is to

analysis the biosignal of interest, because modeling of biomedical signals provides parameters

which could co-relate to the physiological sources of the signal. In parametric modeling the

present value of the output is the sum of linear combination of several past output values and

present and past values of the input as it shown in the following equation [4]:

 (2.1)

where =1, is the input to the system, and is the output of the system. The transfer

function of the equation 2.1 can be obtained applying z-transform:

 (2.2)

In most cases the system can be fully characterized by parameters and , and not by the gain

[4]. Hence from these two parameters it can be determined if the system is an all-pole system, an

all-zero system or a pole-zero system. The main modeling methods are: AR (Autoregressive),

MA (Moving average), and ARMA (Autoregressive moving-average) modeling. If the values for

in Equation (2.2) are all equal to zero, an autoregressive models is formed [4]. In this research

we are interested in AR modeling because of the following properties of an AR model:

 Biomedical signals such as speech signal have an underlying autoregressive structure.

8

 Any signal can be modeled as an AR process provided that an appropriate model order is

selected.

 There are efficient algorithms available to compute the solution of a linear system of

equations to estimate parameters of the model.

2.1.1 AR Modeling

 The autoregressive (AR) spectral estimation method has a better predictive power and

result in higher resolution spectral estimation in comparison with the Fast Fourier Transform

(FFT) method. The autoregressive (AR) modeling is also computationally efficient and requires

less memory for implementation. These advantages have convinced researchers to use parametric

spectral analysis methods in biomedical signal processing [4], [5], [6].

AR modeling can be classified as a time-series analysis which is based on modeling a signal as a

linear combination of its past values and the present input to a system whose output is the

given signal.

 (2.3)

The AR transfer function can be found applying the z-transform to the above equation as follow:

 (2.4)

In many biomedical signals, a hypothetical input is considered since the input is actually

unknown. Hence, a linear combination of past values of the output can be used to predict the

approximate value of current output . Therefore the equation 2.3 may be written for

approximate predicted output as:

9

 (2.5)

The error in the predicted value can be determined as:

 (2.6)

Figure 2.1 indicates the signal flow diagram of the AR model.

 Figure 2.1: Signal-flow diagram of the AR model

 There are various techniques that can be used to compute model coefficients (or poles),

directly or iteratively. Iterative methods are more computationally intensive to achieve a desired

degree of convergence with respect to the direct methods [14]. The most commonly used

approaches for direct estimation of model parameters are: the autocorrelation method, the

covariance method, the square-root (Cholesky decomposition) method, and the Burg method. In

these methods the objection is to solve the normal equations, a set of equations for the

predictor coefficients , 1 . Autocorrelation or covariance methods computationally

intensive and require large storage. Square-root (Cholesky decomposition) method has less

10

computation compared with the two previous methods; however the more computationally

efficient method with less storage requirement can be achieved by using Levinson-Durbin

algorithm. This recursive method provides solution of the set of normal equations [14]. The Burg

algorithm is a popular method to process biomedical signals in which the AR parameters satisfy

the Levinson-Durbin recursion. Using Burg algorithm the estimate of autoregressive (AR) model

can be computed to fit the model to the input data. This algorithm involves by minimizing least

squares of the forward and backward prediction errors.

Obtaining the solution of AR parameters of order M using Burg algorithm, it is possible to add

one more stage without affecting the earlier computations for previous stages. This is an

advantage of Burg method over the Levinson-Durbin algorithm which makes it more suitable for

hardware implementation using Field Programmable Logic Arrays (FPGA) or Very Large Scale

Integrated Circuit (VLSI) design [14].

2.1.2 Burg Algorithm

 The Burg algorithm is based on minimizing least squares of the forward and backward

prediction errors. The cost function is given as [4]

 (2.7)

where is the order of filter, and are forward and backward predication errors

respectively, and N is the length of the input data. The forward and backward prediction error

updates are recursively using the lattice structure as follow:

 (2.8)

11

) (2.9)

where is the reflection coefficient of Burg algorithm that can be calculated as:

 (2.10)

Figure 2.2 indicates the lattice structure of the recursion equations for one stage of Burg

algorithm to update forward and backward prediction errors.

 Figure 2.2: The lattice structure of the recursion equations for forward and backward prediction errors

Knowing the reflection coefficient, the AR model parameters for iteration can be computed by

following relationship:

 (2.11)

The value for the initial AR parameter is always equal to 1, and the parameter can be

calculated using following matrix operation:

12

 (2.12)

The least square lattice structure provides stability for real-time estimation of the AR

coefficients. Hence a recursive AR model allows for estimation of the AR model coefficients in

real time which allows predicting ahead. Burg algorithm is not an adaptive algorithm, since it

does not update parameters on sample-by-sample basis (but on block-by-block basis). Equation

(2.10) suggests that with increase in system order, the length of data required for calculating

reflection coefficient decreases and the number of calculated AR coefficients increases. Hence

hardware implementation of the Burg algorithm cannot be accomplished by a structural design

approach since the architectures of adjacent stages are not exactly the same. In order to overcome

this problem, a sequential data-flow design is suggested in this work as it will be discussed in

next chapter.

2.2 Threshold Voltage Effects

 AR modeling with Burg algorithm helps to reduce dynamic power consumption.

However, as it will be shown in chapter 3 that dynamic power consumption only accounts for

about 20% of the total power consumption for this design. Hence reducing static power

dissipation can significantly increase the battery life of the device. To accomplish this task the

effect of threshold voltage on power-delay product (PDP) of a device is investigated in this

research. The threshold voltage is the gate voltage at which an inversion layer is formed in a

MOS transistor. Threshold voltage is not constant; it increases with the source voltage and

13

channel width, and decreases with the body voltage and the drain voltage. Threshold voltage is

also depends on the type and thickness of the oxide used in the process, and is directly related to

the temperature of a CMOS device.

2.2.1 Body Effect

 The transistor is a four-terminal device with gate, source, drain, and body as an implicit

terminal. Applying a voltage between the source and body increases the amount of charge

required to invert the channel and hence increases the threshold voltage . Equation 2.13

shows how threshold voltage can be modeled:

) (2.13)

where is the threshold voltage when source and body have the same voltage. is the

surface potential that can be calculated as it is shown in equation 2.14. is the body effect

coefficient that depends on doping level , and oxide capacitance as it is shown in

equation 2.15:

 (2.14)

 (2.15)

For a small voltage applied to the source and body, the relationship between the threshold voltage and

can be simplified to (2.16):

 (2.16)

14

where depends on the body effect coefficient and the surface potential.

2.2.2 Subthreshold Leakage

 The transistors leak a small amount of current even when the gate voltage is less than the

threshold voltage. This leakage is significant for processes less than 90 nm. In this subthreshold

region of operation, current drops off exponentially as gate voltage falls below (weak

inversion). This region can be used for low power circuit design at the cost of reduced

performance [3]. Subthreshold regime can be used for low power circuits at the cost of

performance reduction as it will be discussed later in this chapter.

2.2.3 Subthreshold Circuit Design

 In subthreshold region, total power consumption reduces with decreasing supply voltage.

Delay, on the other hand, increases. Consequently, the power-delay product (PDP) should be

used to find the minimum energy operating point for the supply voltage. According to [3], the

minimum energy operating point typically occurs at a supply voltage close to 300-500 mV and to

reduce both switch capacitance and leakage, all transistors should be initially designed as

minimum width. Once the minimum energy operating point is determined, transistor sizing

should then be used to trade power to improve performance. In this work, we observe that in the

design of FPGA routing tracks, with minimum width transistors, the delay of a track in the

subthreshold region is mainly caused by the wiring capacitance and the slow response of the

multistage buffers. The issue is examined in detail in chapter 4.

15

2.3 Related Work

Subthreshold circuit design for low power application has been investigated previously. It

has been shown in [7] that operating in the subthreshold region minimizes energy per operation

and that the minimum energy-delay product occurs at supply voltage of 3Vt. In [8] an analysis of

operating both CMOS and pseudo NMOS logic families in the subthreshold region and a

comparison with normal operation in strong inversion region is presented. The results of this

research reveal operating in subthreshold region reduces the energy per switching of an 8X8

carry save array multiplier by a factor of two. In [9] different leakage components have been

modeled to estimate and reduce the leakage power for low-power applications. In [27] the

leakage power consumption of the components which make up the FPGA fabric is studied. They

found that about 55% of the total leakage power is consumed by the interconnect multiplexes,

26% by the LUTs and 19% by the flip-flops and other components with the assumption that the

leakage of SRAM cells are optimized by using high threshold voltage, and thick oxide

transistors. It has been shown in [28] that the used multiplexers in the interconnect fabric are less

than 5% of the total multiplexers and the unused multiplexers cause a significant portion of the

FPGA leakage power.

There also have been a number of studies to reduce the power consumption of the

interconnect fabric on the FPGAs. Some of these studies are focused on the subthreshold design

and body biasing techniques. In [10] a subthreshold FPGA that uses a low-swing dual-VDD

global interconnect fabric was implemented on a 90nm device. This implementation resulted in

4.7X energy reduction and 14X improvement in speed as compared to a subthreshold FPGA

using conventional interconnect. The energy reduction for this implementation was 22X as

compared to an FPGA with transistors operating in saturation region. In [11] a stack of half-

16

width transistors in conjunction with adaptive body biasing has been proposed to reduce the

leakage power for a switch block and a switch matrix on an FPGA. In [12] body biasing

technique is used at a coarse grained architecture level to reduce leakage power and a clock skew

scheduling scheme offered to improve performance. It required 3.35% area overhead to

implement clock skew control blocks which are placed at every configurable logic block (CLB).

None of the above studies, however, has investigated the performance requirement of biomedical

applications on FPGAs.

17

Chapter 3

FPGA Implementation of AR Burg Algorithm

 Biomedical signal processing involves the collection and analysis of signals generated by

human and other living organisms for medical diagnosis purposes. In portable applications, these

signals often need to be processed in real time. For example, Autoregressive (AR) modeling [4]-

[6] is a widely used feature extraction method that is used in biomedical applications to extract

key diagnostic features from a range of biomedical signals such as knee joint vibroarthrographic

(VAG) signals [5], pathological voice signals [13] and polysomnographic sleep data.

Extracting key features from signals also reduces the amount of memory that is required to

store these signals. For portable applications, AR modeling performed in real time can be used to

reduce their memory requirements. In particular, instead of directly storing VAG signals from

the output of an Analog to Digital Converter (ADC), AR modeling can be used to extracts key

features, called Autoregressive (AR) parameters, from the digitized version of these signals and

stores only the AR parameters [5], [13] in memory for later diagnostic use [5].

18

In particular, with 16 KHz sampling rate, 16 gigabits of memory is required to directly store

an uncompressed stream of biomedical signals (for an ADC with 12-bit output) for 24 hours.

Using a 32-stage AR model, the required memory can be reduced by a factor of 184 to around 90

megabits. This reduction in memory can be extremely important in the design of portable

medical devices for monitoring patient activities for an extended period of time.

 The AR Burg algorithm has been previously implemented by researchers. Majority of

researchers have used a microprocessor base design and some have attempt to use FPGAs or

design a custom Integrated Circuits (ASIC), with their attentions mainly focused on improving

performance. However, not much attention has been given to low power design. In this thesis a

parametric architecture has been designed, suitable to be implemented on an FPGA or an ASIC

chip, with the focus on reducing the total power consumption of the device. Although the low

frequency nature of biomedical signals (kilohertz range) makes microprocessors a cost-efficient

choice to implement AR Burg algorithm, the microprocessors in general provide less control

over the power consumption as compare to FPGAs or ASICs. One significant weakness in

processor-base design is that it requires an external (off-chip) memory device. Adding an extra

device obviously increases the total power consumption of the system. This problem is

diminished significantly for FPGAs and ASICs, because of their capability to facilitate an on-

chip memory of relatively decent size.

3.1 Implementation of Burg Algorithm

 As it was mentioned in previous chapter, the Burg algorithm is based on minimizing least

squares of the forward and backward prediction errors. These steps are computed using equations

2.8 to 2.10. Using these equations the reflection coefficient can be calculated and used to first

19

update the forward and backward prediction errors and then to find the AR Burg model

parameters with the aid of equation 2.11. The recursive nature of AR Burg implies that there

should be feed-backs in data path. The parameters should be stored to be used later to find the

next set of parameters, hence the design requires a memory management unit. It is also required

to allocated input and output buffers to read in and send out the data. These buffers can also be

used to adjust the data format as well as data rate to match the format and frequency of the units

it interfaces with. The Burg algorithm has been previously implemented using MathWorks®

FPGA Design Solutions. In the next section this methodology will be discussed.

3.2 Previous Implementation of Burg Algorithm

 The Burg algorithm has been previously implemented using Simulink® with Xilinx®

System Generator. This is a block level design methodology that generates a VHDL code which

produces a structural RTL level design. Figure 3.1 indicates the block diagram of this design

[25].

Figure 3.1: Block diagram of previous implementation for 3 stages using MathWorks® FPGA Design Solutions

20

As it can be seen from the design block diagram only 3 stages has been implemented which can

only generate 8 AR model coefficients. In this method each stage has one additional 40-bit data

bus with respect to previous stage. Figure 3.1 shows the block diagram of previous

implementation for 3 stages using MathWorks® FPGA Design Solutions If this method was

used to design an AR model of order 32 or higher, the last stage would have 32 or more 40-bit

data bus. Hence the number of required adders and multipliers to complete the computations

would increase respectively. Figure 3.2 indicates the design of the first stage of the design.

Figure 3.2: Block diagram of the first stage for Burg algorithm using MathWorks® FPGA Design Solutions

Figure 3.2 indicates that this methodology requires dedicated adders and multipliers for each

stage and the complexity of the design increase for each additional stage. This design is not

parameterized and does not provide flexibility to be able to change the model order or data bus

width. Hence it should be designed separately for every desired model order. The power

consumption of the device increases as the model order increases. The significance of the

limitations of this methodology was the motivation to design an appropriate architecture to

21

overcome these limitations. More importantly, the design should provide variables to find ways

to reduce the power consumption of the device. In the next section the architecture designed in

this project is presented.

3.3 A Parameterized Architecture for Implementation of Burg Algorithm

 Automated RTL code generators aid to reduce the time to market of a design, however

they do not provide an optimized design in terms of area, performance, and power consumption.

The alternative is to design a custom architecture. Figure 3.3 is the block diagram of the

implementation of the Burg algorithm introduced in this thesis.

 Figure 3.3: Block diagram for the implementation of the Burg algorithm

This architecture offers number of advantages. It is programmable; hence the data bus width and

the AR model order can be changed as needed without any limitation. By allocating appropriate

number of functional units, it can be configured as a pipelined architecture (temporal parallelism)

to minimize the design area, or as a full parallel architecture (spatial parallelism) to improve

performance at the cost of area, or a combination of both. The design also maximizes the reuse

22

of the resources. Finally, it can be mapped to any FPGA or ASIC. Thus this architecture (as it

was planned) provides required variables to investigate and determine ways to improve energy

efficiency of the design without having any impact on the performance.

 Figure 3.4 shows the schematic symbol of the top-level module which includes the IOs.

 Figure 3.4: Schematic symbol of the top-level module

The top-level module has a simple interface which requires a triggering signal (GetSample) only

to start the operation. A typical timing diagram for this design is shown in Figure 3.5.

 Figure 3.5: Timing diagram of the design

3.3.1 Data Capture Module

 This module was designed to read in the data and latch the input data to produce X(n) as

well as delayed version of the input data X(n-1) which are required for the computation of a new

set of AR coefficients. For non-stationary biosignals the design assumes that data is already

23

organized into frames by a Recursive Least Square Lattice (RLSL) filter. This stage of filtering is

required prior to computation of the AR coefficients to convert non-stationary biosignals into

stationary frames. For stationary biosignals the sampled data can be directly sent without passing

through RLSL filter.

3.3.2 Memory Management Unit (MMU)

 Each stage of the computation algorithm requires storage of the interim results. The final

AR coefficients are also needed to be stored in an on-chip memory before an external device (or

module) could read them out. The size of the memory should be adjusted depending on data bus

width and model order which in turn defines the number of computational stages. In this design

each memory unit is configure as dual port ram using block Rams of Virtex 5. In Virtex 5

FPGAs each block Ram can store up to 32K bits of data. Figure 3.6 depicts the data flow of a

dual port ram with 32K bits of storage capacity [26].

 Figure 3.6: Data flow of a Dual Port Ram

24

The timing diagram of the dual port rams are shown in figure 3.7 [26].

 Figure 3.7: Block Ram timing diagram

3.3.3 Functional Units (FUs)

 Equations 2.8 to 2.11 suggest that this implementation requires a combination of adders

(or subtarctors), multipliers, and dividers. For a pipelined architecture at least one adder, one

multiplier and one divider should be allocated. These functional units are designed to perform

either fixed point or floating point operations. For spatial parallelism the number of functional

units increases as the order of the AR model increases. Increasing the number of functional units

results in increase in power composition of the device. Hence in this research more attention is

given to a combination of both temporal and spatial parallelism. The objectives of this design

could be achieved by allocating three multipliers, three adders, and one divider. In fact the low

frequency nature of biosignals allows minimizing number of functional units without any

performance penalty.

25

3.3.4 Output Buffer

 This module was designed to send out the data and set the appropriate flag to indicate to

an external device (or module) that a new set of AR coefficients is available. The size of this

buffer also depends on the order of the AR model. The output clock can be adjusted to match the

external device (or module) when a different frequency boundary is required.

3.3.5 Control Unit

 This module generates all control signals required by other modules and controls data

traffic between them. It includes a Final State Machine (FSM) to generate the control signals as

well as multiplexors to select the appropriate data in or out of modules. The FSM has two main

loops to control functional units, data path, and memory units to implement equations 2.8 to

2.11. The two loops are quite similar except that the first loop occurs only once per frame, and

the second loop may repeat as many times as the order of AR model defines. Figure 3.4 shows

this loop.

 Figure 3.8: The block diagram of the AR coefficients computation loop

Figure 3.9 is the flow chart of the control unit which shows the sequence of activities based on

conditions occurs in the state machine.

26

 Figure 3.9: Flow chart of the control unit

27

The first iteration takes the sampled data and produces the first set of forward and backward

prediction errors as well as the first reflection coefficient. The loop from state 5 to state 10

consumes previously generated forward and backward prediction errors and the reflection

coefficient computed in first iteration to produce AR coefficients and update forward and

backward prediction errors as well as the reflection coefficient for next iteration. This loop stops

when it has completed the required cycles set by model order. This loop has a significant impact

on area reduction as compared with the structural design offered by automated software. The

area allocated for the second loop and for functional units remains fixed, hence increase in model

order does not cause an increase in resources. Therefore the power consumption remains

relatively fixed.

3.4 Results

 A comparison between previous implementation and the method suggested in this project

reveals a significant improvement in terms of area and performance. Improvements also made in

terms of flexibility and functionality of the design. In order to make an accurate comparison this

design was mapped into the same FPGA (XC2VP1006FF1704) used in previous implementation.

Previous implantation requires a 20 MHz operating clock frequency to generate coefficient for

an AR model of order 3. It will be shown that this design at maximum requires a 2 MHz

operating frequency to generate coefficient for an AR model of order 32. The design offers

flexibility to reduce the operating frequency for lower model orders. Table 3.1 indicates a

comparison of resource utilization between the two methods.

28

Resources Vs.

Implementation Method

AR

Order

Flip

Flops

LUTs

Occupied

Slices

Bounded

IOBs

Block

RAMs

18x18

Multipliers

Previous Design using

Simulink-to-FPGA
3 18% 20% 25% 11% 20% 32%

Current Design

3 6% 10% 12% 11% 17% 3%

Current Design

32 6% 10% 12% 11% 17% 3%

 Table 3.1: A comparison of resource utilization between two implementation methods: The method using

 Simulink-to-FPGA tool and the one suggested in this thesis

It can be seen that the implementation method suggested here improves resource utilization from

15% to 90%. The results are specifically significant in terms of using multipliers because in this

project the reusability of the resources has been increased. It should be also noted that the data

for higher order implementation of the method using Simulink® with Xilinx® System Generator

is not available; however the method suggested here requires the same resources for any model

order.

 According to (3.1) dynamic power consumption of an FPGA can be limited by

reducing the operating frequency:

 (3.1)

The variation of supply voltage and capacitive load that requires architectural change will be

discussed in next chapter.

 In order to find minimum operating frequency, cycle count for various numbers of

samples was extracted and collected in Table 3.2.

Number of samples 20 100 200 400 2000 8000

Number of Cycles for

AR8

 554 2474 4874 9674 48074 192074

Number of Cycles for

AR16

 1114 5014 9814 19414 98014 392014

Number of Cycles for

AR32

 2214 10014 19614 38814 196014 760414

 Table 3.2: Number of cycles required per frame for various model orders

29

It can be seen from table 3.2 that a fixed 14 cycle overhead is required for processing of each

frame. The number cycles increase linearly with an increase in AR model order or an increase in

the number of samples per frame. Figure 3.5 is a graphical representation of the data provide in

table 3.2:

 Figure 3.10: Number of cycles vs. number of samples for various AR model orders

Note that biomedical signals are analog signals of relatively low frequency that require

digitization. The bandwidth of biomedical signals is limited to a few tens to a few thousand

Hertz. According to Nyquist Sampling theorem a signal must be sampled at a rate at least twice

the rate of the highest-frequency component present in the signal. Hence the sampling rates for

the digital processing of biomedical signals range from 100 Hz to 20 kHz [4].

The actual data processed for AR modeling in this design is organized into frames of maximum

8000 samples. For real time operation, a maximum of 8000 samples must first be acquired and

stored in memory. These samples are then processed to generate the AR coefficients while a new

0

100000

200000

300000

400000

500000

600000

700000

800000

0 2000 4000 6000 8000 10000

N
u

m
b

e
r

o
f

C
yc

le
s

Number of Samples

AR Model of Order 32

AR Model of Order 16

AR Model of Order 8

30

frame of data is being sampled by an Analog to Digital Converter. The maximum operating

frequency required to process the data in real-time can therefore be calculated as:

 (3.2)

 (3.3)

 Referring to Table 3.2, for an AR model with order of 32 the design requires 760414

cycles. The above equation shows that for a maximum sampling frequency of 20 KHz (worst-

case design), to process 8000 samples per frame an operating frequency of 2MHz is required.

Figure 3.6 shows that the operating frequency and sampling frequency are linearly related. This

figure can be used to predict the operating frequency with respect to sampling frequency used for

any type of biosignals.

 Figure 3.11: Graph of Sample Rate vs. Minimum Operating Frequency

0

500

1000

1500

2000

2500

0 5 10 15 20 25

M
in

im
u

m
 O

p
e

ra
ti

n
g

Fr
e

q
u

e
n

cy
 (

K
H

z)

Sample Rate (KHz)

AR Model of Order 8

AR Model of Order 16

AR Model of Order 32

31

The operating frequency can be reduced to half by doubling the processing module. Since it was

shown that this design requires relatively small area of an FPGA, it is feasible to place two units

to reduce the frequency of operation. According to equation 3.1 adding additional units will not

increase dynamic power consumption because increase in overall switching capacitors due to

increase in area will be compensated by reduction in frequency. This leads to next issue which is

measuring the total power consumption of the design.

 As it was mentioned before, this design was implemented on a device of Virtex II Pro

family of Xilinx FPGAs (XC2VP1006FF1704) to compare this design with previous

implementation method. In order to study the total power consumption of the design a more

advanced device from Virtex 5 family (XC5VLX110-3FF676C) was selected. Two variation of

the design was placed and routed on this device in separate steps to investigate the power

consumption for a 32-bit single precision floating point implementation versus a 64-bit double

precision floating point implementation. I used XPower Estimator tool included in ISE Design

Suite provided by Xilinx to measure the power consumption of the design. Figure 3.7 shows the

total power consumption for the 32-bit floating point and the 64-bit floating point

implementations over a range of operating frequencies from 0 Hz to 10MHz. As shown, for both

implementations, reducing operating frequency proportionally reduces power consumption,

which is the result of reduction in dynamic power dissipation as dynamic power scales

proportionally with clock frequency [3]. Figure 3.7 also shows that both implementations still

consume a significant amount of static power even when operating at very low frequencies.

32

 Figure 3.12: Comparison of power estimation for 32-bit and 64-bit floating point implementations

The graphs for both implementations linearly increase for operating frequencies over 1 MHz,

however 64-bit floating point implementation has higher slope. Nevertheless what is significant

in this figure is the large amount of static power consumption as compared to dynamic power

consumptions. This experiment indicates that although it is possible to reduce the amount of

dynamic power consumption of an FPGA by applying low power design techniques, yet a

significant amount of static power is consumed by the device. This is true because most FPGAs

available in the market are SRAM based, and the SRAM cells require power to maintain their

values whether they are utilized in the design or not. All other transistors used in routing track

architecture and logic blocks also introduce leakages power. One viable remedy for this problem

is reducing the power supply as it has been practiced in at least past two decades. Latest

technologies are now utilizing 0.9 volts supply voltage. However, the decrease in power supply

1140

1160

1180

1200

1220

1240

1260

0 2 4 6 8 10 12

Es
ti

m
at

e
d

 P
o

w
e

r
(M

ili
W

at
ts

)

Clock Frequency (MHz)

32-bit Floating Point
Implementation of
AR model of order 32

64-bit Floating Point
Implementation of
AR model of order 32

33

is limited by the threshold voltage of a transistor (typically 0.4 volts). Hence further power

reduction requires investigation in subthreshold regime. In next chapter a study of subthreshold

design and power-delay product for an FPGA is presented.

34

Chapter 4

Subthreshold Circuit Design

 The main focus in this research is to investigate ways to reduce total power consumption

for implementation of biomedical applications. The results of the study of power consumption on

our FPGA implementation in previous chapter indicated that a significant amount of power

consumed in an SRAM based FPGA is static power. Reducing static power dissipation can

significantly improve battery life of a device. To accomplish this task, the effect of threshold

voltage on the power consumption of FPGAs is investigated in this work. Threshold voltage is

the gate voltage at which an inversion layer is formed in a MOS transistor. Threshold voltage is

not constant; it increases with the source voltage and channel width, and decreases with the body

voltage and the drain voltage. Threshold voltage also depends on the type and thickness of the

oxide used in the process, and is directly related to the temperature of a CMOS device [3].

 In order to conduct this research a Simulation Program with Integrated Circuit Emphasis

(SPICE) model was designed and simulated. The results of this simulation are discussed in this

chapter.

35

4.1 FPGA Architecture

 As in most commercially available SRAM based FPGAs, we assume an Island-style

architecture consist of arrays of logic blocks connected together and separated by horizontal and

vertical programmable routing channels. Figure 4.1.depicts an island-style FPGA in which logic

block are surrounded by routing channels.

 Figure 4.1: Island-Style FPGA Architecture

The routing channels consist of pre-fabricated wiring segments. The horizontal and vertical

channels are connected through programmable switches which are called switch blocks [16].

There are multiple wire segments between the switch blocks depends on the architecture of

particular FPGA. In this architecture, most of the area of an FPGA is consumed by the routing

channels which are also responsible for most of the circuit delay. To investigate power-delay

product of an FPGA, it is required to make an accurate simulation model of the routing channels.

In next section the architecture of the routing channel will be discussed in details.

36

4.2 Routing Channel and Delay Path Model

 Figure 4.2 depicts the routing channel structure adapted in this research. Each routing

track is assumed to be connected to a set of multiplexor 4-to-1 in series with a multistage buffer

at both ends. For the conventional routing architecture, for each logic block one isolation buffer

is placed to electrically isolate the routing tracks from the input connections of a logic block

[16]. Each logic block was modeled as a buffer driving a capacitive load. Wiring capacitors were

also considered and placed.

 Figure 4.2: Routing track and delay path model

4.2.1 Multiplexers

 Multiplexers are implemented in form of a binary tree of pass transistors with SRAM

cells controlling the selection of the input data. All transistors are of minimum width size. The

schematic of a 4-to-1 multiplexer is shown in Figure 4.3 [16].

37

 Figure 4.3: A 4-to-1 multiplexer implemented with pass transistors

4.2.2 Buffers

 Multistage buffers and isolation buffers are widely used in FPGAs to drive a larger load

and to electrically isolate the routing tracks from the input connections of logic blocks. Isolation

buffers are simple made of two COMS inverter with minimum-width size transistors connected

in series. Multistage buffers however require higher drive strengths that can be accomplish by

chaining buffers of gradually increasing size. The multi stage buffers used here are 4X of

minimum strength. Figure 4.4 depicts schematic diagram of such buffers.

 Figure 4.4: A multistage buffer with 4X drive strength

38

4.2.3 Gate Boosting

 An nMOS pass transistor degrades a logic high value by a threshold voltage [16]. The

structure of multiplexers used in this work is organized in a binary tree of pass transistors. The

logic high value appears at the output of a multiplexer can be significantly degraded (depends on

the number of stages of the multiplexer). We boost the gate voltage of a pass transistor by a

value equal to threshold voltage. The boost in voltage is applied to pass transistors at each stage

of the multiplexer to compensate the voltage drop caused by each pass transistor. Figure 8(a)

shows for a supply voltage of 0.9 volts and a threshold voltage of 300 to 400 millivolts the

output could be reduced to logic low value where a logic high value is expected. Boosting the

gate voltage of the pass transistor by a threshold voltage overcomes the problem as it is shown in

Figure 8(b) [16].

a) Pass transistor degrades a logic high value b) Gate boosting to solve voltage degrading of pass transistor

Figure 4.5: (a) Potential problem with pass transistor; (b) Solution for voltage degrading of pass transistor

4.2.4 Transistors and Interconnect Models

 In this work, 32nm technology was used. Accurate and customizable model files for

NMOS and PMOS transistors that are compatible with HSPICE circuit simulators, were taken

from the Predictive Technology Model (PTM) website [17] (which is developed by the

39

Nanoscale Integration and Modeling (NIMO) Group at Arizona State University). This website

also provides RLC values for interconnects by setting the appropriate values as it is shown in

Table 4.1.

Metal Type Cu

Width of the Trace 0.064μm

Separation Between Traces 0.064μm

Length of the Trace 30μm

Thickness of the Trace 0.14μm

Height From Ground 0.14μm

Dielectric Constant 2.2

 Table 4.1: Parameters used to determine interconnect capacitance

The wiring capacitance for the routing track model was found to be 4.63fF for a wire length of

30μm that is the equivalent to the length of a side of a tile (a square area containing a logic block

and the area occupied by routing tracks). The information related to area of a tile was taken from

Intelligent FPGA Architecture Repository (IFAR) website [18]. A typical FPGA has 2 or 4 of

such blocks hence the total wiring capacitance is adjusted accordingly.

4.3 Simulation Results

 The performance and power consumption of the routing track shown in Fig. 6 were

measured over a range of supply voltages. Two types of buffers are considered – the

conventional and the Swapped Body Biasing (SBB) [19] buffers – for implementing the 4x

buffers shown in the figure.

 According to (2.16), the threshold voltage can be adjusted by applying a body bias

voltage [3]. In a conventional inverter, the substrate bias voltage is set to zero for both nMOS

40

and pMOS transistors as it is shown in Fig. 4.6(a). Setting to zero forces the pn junction

between the source and body as well as pn junction between the drain and body to be reverse

biased. This causes a reduction in the leakage current which is the driving current in the

subthreshold region. Hence the performance of the transistor is degraded in subthreshold

operations [20], [21].

 As shown in Fig. 4.6(b), the source-to-body and drain-to-body pn junctions are forward

biased (by applying) in an SBB inverter in order to increase the subthreshold current.

Typically, in both the subthreshold and saturation regions, the SBB inverters introduce less

propagation delay than the conventional inverters.

 Figure 4.6: (a) A conventional inverter; (b) An inverter with swapped body biasing (SBB) voltage

Using the SBB technique, the conventional 4x buffers shown in Figure 4.2 were substituted by

SBB buffers at the output of each multiplexer. Figure 4.7 depicts the structure of this buffer,

which is designed by connecting an SBB inverter (to reduce the propagation delay) to a

conventional inverter of size 4x (to provide the desired drive strength).

41

 Figure 4.7: Multistage buffers with variable threshold voltage

 The PDP graph of the various buffer sizes shows that the optimum size of the secondary

stage inverter is four times the minimum size transistors as it is shown in Figure 4.8. Hence the

secondary stage inverter of size 4X is used to build the buffers.

 Figure 4.8: Power-Delay Products for various buffer sizes

 The average power dissipation and the delay of both buffers for various supply voltages

in subthreshold region, near subthreshold region, and saturation region were extracted using the

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35

P
D

P
 (

μ
J

)

Buffer Size

42

SPICE model. These measurements are shown in Table 4.2. In this table subthreshold region is

marked with (*).

Supply

Voltage (V)

Average Power (μW) Delay (nS)

Conventional

Buffer

SBB

Buffer

Conventional

Buffer

SBB

Buffer

0.9 29.58 93.068 0.40 0.14

0.8 19.665 53.161 0.58 0.27

0.7 11.668 30.513 0.92 0.54

0.6 5.5642 9.0586 1.81 1.10

0.5* 1.5643 1.9623 4.56 3.48

0.45* 0.54538 0.64034 12.96 8.59

0.4* 0.1303 0.14963 41.93 24.5

0.35* 0.024716 0.02836 143 75.5

 Table 4.2: Average power dissipation and delay of both buffer types for various values of supply voltages

 In this table delay is measured as the difference between the time that the output reaches

50% of its final value and the time that the input reaches 50% of its final value [3]. It should be

also mentioned that the wiring resistance for the routing track model in this project was

measured as 73.66 Ω; however the wiring resistance was not considered for the delay path

modeling of the routing track. This was due to the fact that at low frequency the capacitive

reactance is significantly larger than the resistance of the circuit. Hence the impedance of the

circuit is predominantly capacitive and the wiring resistance can be ignored. For example for our

model the total wiring capacitance is 4.63 fF for 30 μm of the routing track. This capacitance at

our target frequency of 20 KHz results in a capacitive reactance of approximately 1720 MΩ,

43

which is much greater than the 73.66 Ω wiring resistances. Therefore the wiring resistance of the

routing tracks can be ignored for measurement of the delay of the circuit. Figures 4.9 through

4.15 are the HSPICE plots for delay measurements of routing tracks with conventional buffers

and SBB buffers for subthreshold supply voltages of 0.4V, 0.45V, and 0.5V.

 Figure 4.9: Plot of Input vs. Output of the routing track using conventional buffers with 0.4 V supply

 Figure 4.10: Plot of Input vs. Output of the routing track using SBB buffers with 0.4 V supply

44

 Figure 4.11: Plot of Input vs. Output of the routing track using conventional buffers with 0.45 V supply

 Figure 4.12: Plot of Input vs. Output of the routing track using SBB buffers with 0.45 V supply

45

 Figure 4.13: Plot of Input vs. Output of the routing track using conventional buffers with 0.5 V supply

 Figure 4.14: Plot of Input vs. Output of the routing track using SBB buffers with 0.5 V supply

46

 In the table 4.2 power and delay figures are shown for supply voltages ranging from 0.9

volts to 0.35 volts below which the outputs of both circuits (with conventional buffers and SBB

buffers) become distorted for the 2.0 MHz operating frequency. The model with SBB buffers has

lower power-delay product for supply voltages of less than 0.6 volts as it is shown in Figure

4.15.

 Figure 4.15: Power-Delay Product vs. Supply Voltage for Models with SBB Buffers and Conventional Buffers

 Note that this simulation is conducted for only one routing track; however the several

routing tracks typically are chained together to connect a signal from its source to its destination

on an FPGA. Since the routing tracks investigated in this work are buffered at each end, a linear

delay model can be used to calculate the delay of a set of chained routing tracks as shown in

Equation 4.1 [16], where is the intrinsic delay of the buffer, is the equalized

pull-up/pull-down resistance of the buffer and is the total capacitances that are needed to

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1

P
D

P
 (

μ
J

)

Supply Voltage (V)

Model with

Conventional

Buffer

Model with

SBB Buffer

47

be driven by the buffer. Note that the delay values shown in Table 4.2 corresponds to the sum for

.

 (4.1)

As shown, the total routing delay increases linearly with a factor of M. For example, with a

supply voltage of 0.35 V and SBB type buffers, the delay for a single track is 75.5 ns. Hence the

total routing delay for 20 tracks would be 1510 ns which is greater than the 500 ns clock period

(2.0 MHz). Using a supply voltage of 0.4V reduces the delay for a single track to 24.5 ns, thus

the delay for 20 tracks would be 490 ns. Consequently, a signal with a 10 ns logic delay can still

meet the timing constraint of 2.0 MHz operating frequency. Finally, as shown in Table III, using

SBB buffers with 0.4V supply voltage improves the power consumption of the circuit by a factor

of 197.7 and the power-delay product by a factor of 3.3, as compared to using the conventional

buffer at the 0.9 V supply voltage.

48

Chapter 5

Conclusion and Future Work

 The main focus in this research was to investigate ways to reduce total power

consumption of biomedical applications, since low power consumption is a crucial factor in

designing devices to process biosignals. It was shown that parametric modeling that is often

considered for feature extraction can also be used to compress the biomedical signal. This

reduces the size of required memory and ultimately results in less power consumption. The AR

Burg algorithm has been previously implemented by researchers. Majority of researchers have

used a microprocessor base design and some have attempt to use FPGAs or design a custom

Integrated Circuits, with their attentions mainly focused on performance. However, not much

attention has been given to low power design. In this thesis a custom architecture has been

designed, suitable to be implemented on an FPGA or an ASIC chip, with the focus on reducing

the total power consumption of the device. The estimated power consumption extracted from the

design revealed that a significant amount of power consumed by a device is static. To reduce the

static power consumption of a device subthreshold circuit design was investigated in this

research. Interconnect power dominates the total power consumption of an FPGA hence the

power efficiency of the routing resources is crucial for low-power applications. In this thesis

power requirement for implementing a computationally intensive algorithm used for processing

49

biosignals on an FPGA was investigated. A model for routing tracks of an FPGA was suggested

which is able to operate in the subthreshold region while still meeting the timing constraint. In

particular, it is shown that using SBB buffers, it is possible to achieve power reduction by a

factor of 197.7 and power-delay product reduction by a factor of 3.3 as compared to normal

operation in the saturation region using a 0.9 volt supply voltage. The power reduction can

significantly increase the battery life of portable devices utilizing FPGAs for biomedical

applications.

 It should be noted that this work has only considered subthreshold design using 32 nm

technology for the routing tracks of an FPGA. In the future, subthreshold design should also be

investigated for Logic Blocks, Block RAMs, Functional Units, and other elements that make up

the architecture of an FPGA.

50

Bibliography

[1] F. Li, D. Chen, L. He, and J. Cong, “Architecture Evaluation for Power-Efficient FPGAs,”

in Proceedings of the 2003 ACM International Symposium on Field-Programmable Gate

Arrays, Monterey, CA, February 2003, pp. 175-184.

[2] J. Anderson, F. Najm, and T. Tuan, “Active Leakage Power Optimization for FPGAs,” in

Proceedings of the 2004 ACM Symposium on Field-Programmable Gate Arrays, Monterey,

CA, February 2004, pp. 33-41.

[3] N. H. E. Weste, D. M. Harris, CMOS VLSI Design: A Circuits and Systems Perspective 4th

Edition, Addison Wesley, MA, 2010.

[4] R. M. Rangayyan, Biomedical Signal Analysis: A Case-Study Approach, Wiley-IEEE Press,

NY, 2001.

[5] R. M. Rangayyan, S. Krishnan, G. D. Bell, C. B. Frank, and K. O. Ladly, “Parametric

Representation and Screening of Knee Joint Vibroarthrographic Signals,” IEEE

Transactions on Biomedical Engineering, Vol. 44, No. 11, November 1997, pp. 1068-1074.

51

[6] S. Tavathia, R. Rangayyan, C. Frank, G. Bell, K. Ladly, and Y. Zhang, “Analysis of Knee

Vibration Signals Using Linear Prediction,” IEEE Transactions on Biomedical

Engineering, Vol. 39, No. 9, September 1992, pp. 959-970.

[7] J. J. Burr and A. Peterson, “Ultra Low Power CMOS Technology,” in Proceedings of the

1991 NASA Symposium on VLSI Design, Moscow, ID, October 1991, pp. 4.2.1-4.2.13.

[8] H. Soeleman and K. Roy, “Ultra-Low Power Digital Subthreshold Logic Circuits,” in

Proceedings of the 1999 International Symposium on Low Power Electronics and Design,

San Diego, CA, August 1999, pp. 94-96.

[9] K. Roy, S. Mukhopadhayay, H. Mahmoodi-Meimand, “Leakage Current Mechanisms and

Leakage Reduction Techniques in Deep-Submicrometer CMOS Circuits,” Proceedings of

the IEEE, Vol. 91 No. 2, February 2003, pp. 305-327.

[10] B. H. Calhoun, J. F. Ryan, “A Sub-Threshold FPGA with Low-Swing Dual-VDD

Interconnect in 90nm CMOS”, in Proceedings of the 2010 IEEE Custom Integrated

Circuits Conference, San Jose, CA, September 2010, pp. 1-4.

[11] G. V. Leming, and K. Nepal, “Low-Power FPGA Routing Switches Using Adaptive Body

Biasing Technique,” in Proceedings of the 2009 IEEE International Midwest Symposium on

Circuits and Systems, Cancun, Mexico, August 2009, pp. 447-450.

[12] S. M. Bae, K. Ramakrishnan and N. Vijaykrishnan, “A Novel Low Area Overhead Body

Bias FPGA Architecture for Low Power Applications,” in Proceedings of the 2009 IEEE

Computer Society Annual Symposium on VLSI, Tampa, FL, May 2009, pp. 193-198.

[13] D. Ge, N. Srinivasan, and S. M. Krishnan, “Cardiac arrhythmia classification using

autoregressive modeling,” BioMedical Engineering Online, http://biomedical-

engineeringonline.com/content/1/1/5, November 2002.

http://biomedical-engineeringonline.com/content/1/1/5
http://biomedical-engineeringonline.com/content/1/1/5

52

[14] J. Makhoul, “Linear Prediction: A Tutorial Review,” Proceedings of IEEE, Vol. 63, No. 4,

April 1975, pp. 561-580.

[15] L. Griffiths, “A Continuously-Adaptive Filter Implemented as a Lattice Structure”, in

Proceedings of the 1977 IEEE International Conference on Acoustics, Speech, and Signal

Processing, Munich Germany, April 1977, pp. 683-686.

[16] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-Submicron FPGAs,

Kluwer Academic Publishers, 1999.

[17] Available online at http://www.eas.asu.edu/~ptm/, Accessed February 2011.

[18] Available online at http://www.eecg.utoronto.ca/vpr/architectures/ , Accessed February 2011.

[19] S. Narendra et. al, “Ultra-Low Voltage Circuits and Processor in 180nm to 90nm

Technologies with a Swapped-Body Biasing Technique,” in Proceedings of the 2004

International Solid-State Circuits Conference, San Francisco, CA, February 2004, pp.

8.4.1-8.4.3.

[20] J. Kao, S. Narendra, A. Chandrakasan, “Subthreshold Leakage Modeling and Reduction

Techniques,” in Proceedings of the 2002 IEEE International Conference on Computer

Aided Design, San Jose, CA, November 2002, pp. 141-148.

[21] J. Nyathi,B. Bero, "Logic Circuits Operating in Subthreshold Voltages," in Proceedings of

the 2006 IEEE International Symposium on Low Power Electronics and Design,

Tegernsee, Germany, August 2006, pp. 131-134.

[22] M. Diaby, M. Tuna, J. Desbarbieux, and F.Wajsburt, “High level synthesis methodology

from C to FPGA used for a network protocol communication,” in Proceedings of the 15
th

IEEE International Workshop on Rapid System Prototyping, 2004., pp. 103–108, June

2004.

http://www.eas.asu.edu/~ptm/
http://www.eecg.utoronto.ca/vpr/architectures/

53

[23] K. Camera, “SF2VHD: A stateflow to VHDL translator,” Master thesis, UC Berkeley,

2001.

[24] M. A. Shanblatt and B. Fould, “A Simulink-to-FPGA implementation tool for enhanced

design flow,” in Proceedings of the 2005 IEEE international conference on microelectronic

systems education (MSE’05), pp. 89–90, 2005.

[25] J. Beibei, “High-level FPGA implementation of adaptive signal segmentation and

autoregressive modeling techniques,” Master thesis, Ryerson University, 2009.

[26] “Virtex-5 FPGA User Guide V5.3,” Available online at

http://www.xilinx.com/support/documentation/user_guides/ug190.pdf , Accessed June 2011.

[27] T. Tuan and B. Lai. “Leakage power analysis of a 90nm FPGA,” In Custom Integrated

Circuits Conference, pp. 57-60, San Jose, CA, ,2003.

[28] S. Srinivasan, A. Gayasen, and T. Tuan, “Leakage control in FPGA routing fabric,” in

Proceedings of the Asia South Pacific Deign. Automation. Conference, Shanghai, China,

Jan. 2005, pp. 661–664.

http://www.xilinx.com/support/documentation/user_guides/ug190.pdf

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2011

	Measuring the Power Efficiency Of Subthreshold FPGAs For Implementing Portable Biomedical Applications
	Shahin S. Lotfabadi
	Recommended Citation

