
A Time Synchronization Circuit with Sub-microsecond

Skew for Multi-hop Wired Wearable Networks

Fardin Derogarian1a, João Canas Ferreiraa, Vı́tor M. Grade Tavaresa

aINESC TEC and Faculty of Engineering, University of Porto (FEUP)

Abstract

This paper describes and evaluates a fully digital circuit for one-way master-
to-slave, highly precise time synchronization in a low-power wearable system
equipped with a set of sensor nodes. These sensors are connected to each
other in a mesh topology, with conductive yarns used as one-wire bidirectional
communication links. The circuit is designed to perform synchronization in
the MAC layer, so that the deterministic part of the clock skew between
nodes is kept constant and compensated with a single message exchange.
In each sensor node, the synchronization circuit provides a programmable
clock signal and a real-time counter for time stamping. Experimental results
from a fabricated ASIC (in a CMOS 0.35 µm technology) show that the
circuit keeps the one-hop average clock skew below 4.6 ns and that the skew
grows linearly as the hop distance to the reference node increases. The sub-
microsecond average clock skew achieved by the proposed solution satisfies
the requirements of many wearable sensor network applications.

Keywords:
Body area networks, Wearable sensor network, Time synchronization
protocol, CMOS ASIC

1. Introduction

Time synchronization, with appropriate accuracy, is required in many
distributed data acquisition systems, because information about the rel-
ative time occurrence of events is generally of importance. Environment

1Corresponding author: Fardin Derogarian, Rua Dr. Roberto Frias, 4200 - 465, Porto, Portugal.
Email: mpt09020@fe.up.pt, Tel: +351 968 726 403

Preprint submitted to Microprocessors and Microsystems April 15, 2015

monitoring, localization, coordinated node sleep/wake-up scheduling mech-
anisms, , and data fusion [1, 2] are just a few of such applications that are
critically dependent on precise synchronization. As an example, the Body
Area Network (BAN) described in [2], which is used in gait analysis for
evaluation and diagnosis of mobility impairments, requires that inertial and
electromyography (EMG) measurements collected by different nodes be time
stamped with an error below 0.5 ms.

Since sensor networks, either wired or wireless, are distributed data ac-
quisition systems with limited resources, the design challenge is to preserve
performance while maintaining a precise synchronization between the sensor
nodes with minimum complexity. The synchronization method then ensures
that time keeping at all nodes of the network proceeds with a small and
bounded difference relatively to a reference clock.

Usually each Sensor Node (SN) is equipped with an independent clock
generator based on a quartz crystal. The frequency tolerance of this kind of
oscillators fall in the range of a few parts per million (ppm). However, the
oscillators will operate independently at each node, with different frequency
and phase. The shifts and skews, even if slight, will accumulate in time,
preventing synchronization. A synchronization method, such as a network
protocol or dedicated hardware, is then necessary to establish synchroniza-
tion with an acceptable accuracy [3, 4, 5, 6]. In fact, time synchronization
problems have been studied in all areas of networking [3, 1, 7], and typically
the main challenge has centered on overcoming the non-deterministic delay
effects with the limited resources available. In general, the delay associated
with data transfer between two nodes has four components:

• Send time: time for assembling a message and handing it over to the
Media Access Control (MAC) layer;

• Access time: time for accessing the communication channel;

• Propagation time: delay due to signal propagation between nodes;

• Receive time: time for receiving and processing the message at the
receiver.

Except for propagation time, these delay sources are generally non-deterministic.
Among the many synchronization methods, two-way message exchanges

between pairs of nodes are widely used to estimate the time delay and time

2

offset between two nodes [8, 9, 10]. In this approach, the delay and offset are
calculated by sending and receiving messages with timing information and
by measuring the round trip delay. A second approach uses only one-way
communication [11, 12]. In this case, the node that acts as a time reference
sends timing information to client nodes, which must then estimate the delay
and offset.

Reducing the clock skew, due to delay and offset, depends on the synchro-
nization and estimation method. Eliminating any non-deterministic (system-
atic) components of delay will increase the estimation accuracy and decrease
clock skew. This work, which is intended for wearable wired networks, uses
a timing message method with fixed length. The message carries the state of
the sender’s time counter at the exact moment of transmission. The receiver
node processes the message immediately, without buffering. In this way, the
delay between the sender and receiver will be mostly deterministic. The
only non-deterministic component that remains is related to the local clock
frequency differences between the sender and the receiver, because clock os-
cillators in each sensor are independent and their frequency exhibits small
but variable drifts.

This paper2 presents a fully digital circuit for one-way synchronization
based on this approach implemented in the MAC layer. The application
context is a wearable mesh network for clinical applications, with node con-
nections made with conductive yarns embedded in textile fabrics [2]. Under
these conditions, the ASIC implementation of the circuit has shown to be
capable of keeping the clock skew between neighboring nodes below 4.6 ns,
on average.

The rest of the paper is organized as follows: Section 2 provides the back-
ground and describes related work. Section 3 justifies the proposed synchro-
nization method and details the protocol. The organization and operation
of the synchronization circuit is described in Section 4. Section 5 presents
experimental results obtained with a small network of sensors. The main
conclusions are summed up in Section 6.

2. Background and Related Work

There are many synchronization methods described in the literature which
present different kinds of solutions, frequently employing application-dependent

2This paper is an extension of [13].

3

features [7]. One of the most used techniques is the so called master-slave
approach. In this method, one of the nodes (the master) serves as the time
reference, while the others (slaves), which are one hop away, synchronize their
clock with the master. By contrast, in peer-to-peer protocols each node can
directly get the timing information from many other nodes in the network
(which are also one hop away). Although peer-to-peer protocols are very
effective in failure elimination and do not demand the setting of a master
node—therefore being more flexible in this sense—they necessitate a more
complex control flow, which may impose overheads that cannot be met by
the available resources. However, for cases where the number of sensors is
large, the option for communication often relies on multi-hop connections in-
stead. In such situations, the synchronization must be performed by sender-
to-receiver or receiver-to-receiver approaches. In the former, the receiver
node synchronizes its clock with the sender and re-sends timing data to the
next node after synchronization; while in the latter, the sender broadcasts
timing messages and the receivers in its coverage area exchange messages
among themselves instead of interacting with the sender.

An alternative procedure that avoids exchange of information for synchro-
nization is to use a global reference that can be sensed simultaneously by all
nodes, such as ambient magnetic fields [14] or electrical fields [15] emitted
by power lines. The first approach is able to achieve an average synchroniza-
tion between all nodes in a multi-hop network of less than 1 ms; the second
approach is able to keep clock drifts to within 0.864 µs after 24 hours. The
main limitation of these approaches is the need to have additional modules
for sensing the power line fields; in addition, these fields are not stable nor
available everywhere.

The network time protocol (NTP) is another well-known time synchro-
nization protocol based on two-way message exchange [9]. NTP is one the
most used protocols, specially on the Internet, and it is known as an effective,
secure and robust protocol. NTP clients synchronize their local clocks to the
NTP time servers by statistical analysis of the round-trip time. To achieve
highly precise time synchronization, the time servers are equipped with or
synchronized to atomic clocks or GPS signals. The significant complexity
of NTP makes its implementation in sensor networks difficult. In addition,
the non-determinism in transmission time of WSNs can introduce large de-
lays. Therefore, NTP is suitable only for synchronization in Wireless Sensor
Networks (WSNs) with low precision demands.

If a clock source broadcasts its time, adjacent nodes will receive the same

4

timing message at approximately the same time. In this way, receiver nodes
can obtain timing information that is subject to very little delay variability.
This one-way method has been employed in the RBS protocol [11]. In this
approach, which can be used in both wired and wireless networks, a node
is selected as a time reference for all other nodes. Each node records its
local time immediately after receiving the message and compares it with the
received time. This protocol uses a sequence of synchronization messages
from the clock source node to estimate both offset and skew of the local
clocks relatively to each other. Implementation of the RBS protocol on IEEE
802.11 networks produces one-hop clock synchronization with 1.85 µs±1.28 µs
accuracy.

The precision time protocol (PTP), defined by IEEE standard 1588 [16],
is a hierarchical master-slave architecture for clock distribution and time
synchronization with highly precise synchronization [8]. In this protocol, the
clock server periodically sends synchronization messages. A client replies to
the server with a message including the reception time of the first message
from the server and the replying time. The server then estimates the delay
and offset and sends back this information to the client in another message.
The client in its turn uses the new information for local clock adjustments.
To avoid or minimize the effects of clock drift on time stamping, client nodes
periodically set their time to the server time. PTP is a highly precise synchro-
nization protocol, which can ensure clock skew values in the sub-microsecond
range.

An FPGA-based implementation of IEEE-1588 over Ethernet is proposed
in [17]. The FPGA is used to implement a compensation circuit for local
oscillator drift and to estimate time offset and delay with a Kalman filter. In
a 10 Mbps Ethernet, the time difference between reference and client nodes
is kept below 100 ns. The number and type of FPGA resources needed by
this implementation are not reported.

Another hardware-based implementation of IEEE-1588 is briefly described
in [18]. This design was synthesized for TSMC 65 nm technology, resulting in
an implementation that uses 15115 cells and runs at 550 MHz. The reported
synchronization accuracy is in the sub-microsecond range.

Although the aforementioned protocols are widely used to provide syn-
chronization in different kinds of networks, they are not hardware-aware pro-
tocols. In other words, their performance depends on the implementation
characteristics of different systems. The main challenge in synchronization
is the estimation of the non-deterministic delay of data transmission due to

5

the properties of the hardware. If it is possible to keep variations of the com-
munication and processing delay, at hardware level, to a minimum, then it is
possible to achieve synchronization with a simpler and more resource-efficient
method, as described next.

3. Synchronization Method

This section presents the proposed synchronization method, which is suit-
able for a hadrware implementation in wearable sensor networks. The idea
is based on eliminating the sources of non-deterministic delays during the
time information exchange, and by compensating the remaining determinis-
tic delays at the sender. Periodic exchange of time information is used to
compensate for the non-deterministic local clock drifts. With an appropri-
ately designed one-way method, it is possible to achieve, in this application
context, the synchronization accuracy of two-way methods with smaller hard-
ware cost. It is assumed from here on that all SNs belong to a wired network
and hold similar hardware. In particular, they have the same communica-
tion circuits and their local system clocks have the same nominal frequency
fc = 1/τ .

3.1. Principle of Operation

Clock Reference Node BS

2

3

4

7

8

9

5

6

Figure 1: A mesh network of SNs with BS as a base node

The limited availability of resources in sensor networks imposes the need
to reduce communication and processing as much as possible. To evaluate
a mechanism for synchronization of a wired wearable network, consider the
mesh network of SNs shown in Fig. 1. The BS is a server node for collecting
data and is also the clock reference. A routing protocol is used to setup the

6

network and route the packets from the sensors to the BS over paths with
minimum cost [19]. During network setup, each sensor determines which of
its neighboring nodes on the path to the BS has minimum cost and registers
it as its near-node. The setup defines a tree of paths from BS to all SNs as
shown by the bold lines in Fig. 1. Each SN keeps the real-time clock in syn-
chronization with its near-node by sending a request message and receiving
time information (e.g., SN3 synchronizes with SN2 and SN7 with BS).

To minimize the effects of non-deterministic delays due to the buffering
of messages, the synchronization protocol ought to be implemented at a
protocol layer below the network layer. In the approach discussed here, the
timing information is then processed directly in the MAC layer without any
buffering. By avoiding buffering, the delay between SNs will be only caused
by the signal propagation and the data sampling process at the receiver node.
In this case, the need for a two-way message exchange can be eliminated. To
better understand why this simplification can be made, consider the time
diagram depicted in Fig. 2(a), which represents a two-way message exchange
in a PTP [16] synchronization procedure. Equation (1) and Eq. (2) show the
delay and offset estimation for this case.

delay =
(T2 − T1) + (T4 − T3)

2
(1)

offset =
(T2 − T1)− (T4 − T3)

2
(2)

In a BAN, the nodes are so close that it can be assumed that all prop-
agation delays are equal (and very small). Assuming then that the non-
deterministic delays can be neglected, for a synchronized network it can be
shown that Eqs. (1) and (2) simplify to:

delay = s× τ (3)

offset = 0, (4)

where s is the number of clock cycles required to send a message and τ is
the system clock period. Since the propagation delay is small and successive
clock skew increases are much smaller than τ , Eqs. (3) and (4) will hold for
a long period of time, showing that Eqs. (1) and (2) will not provide extra
information. Thus, having in mind that the non-deterministic components
have been minimized, so the two-way message exchange is not necessary.

7

M S M S

Sync

Delay Response

SyncDelay Request

𝑇1

𝑇2

𝑇3

𝑇4

𝑇1

𝑇2

(a) (b)

Request

Figure 2: Timing diagram: a) precision time protocol, b) One-way protocol

Now, for the sake of demonstration that a one-way – master-to-slave –
message exchange is sufficient for synchronization, let us take the timing
digram shown in Fig. 2.b. The master node sends the Sync message at time
T1 and the receiver gets it at a time T2 given by

T2 = T1 + s× τ + d` + Sr(t), (5)

where d` is the signal propagation delay from sender to receiver, and Sr(t)
is the delay due to the phase difference between sender and receiver clocks.
The average value of Sr(t) satisfies the condition

〈Sr(t)〉 =
1

2
× τd = τ, (6)

where τd is the data rate period and, for this system, τd = 2 × τ . The
propagation delay d` is almost constant and usually in the range of a few
nanoseconds for wearable systems with conductive yarns, thus negligible in
most cases. The clock offset value is given by the term s×τ . In the approach
proposed here, the master node adds the offset value to the Sync message,
so that CS(t), the clock skew between sender and receiver, is

CS(t) = T2 − (T1 + s× τ) = d` + Sr(t). (7)

The average value of CS(t) is then

〈CS(t)〉 = d` + 〈Sr(t)〉 = d` +
1

2
τd. (8)

8

To reduce the average clock skew, the term 1
2
τd in Eq. (8) can be removed

by using s′ = s+ 1 instead of s. In this case, the last two equations become

CS(t) = T2 − (T1 + s′ × τ − τ) = d` + Sr(t)− τ (9)

〈CS(t)〉 = d` + 〈Sr(t)〉 − τ = d` (10)

For a multi-hop connection with h hops between any arbitrary SN and
the BS, Eqs. (9) and (10) generalize to

Ch
S(t) = h (dl + Sr(t)− τ) (11)

〈Ch
S(t)〉 = h× d`, (12)

because of the accumulation of clock skews at each intermediate node.
The average clock skew given by Eqs. (10) and (12) is the minimum that

can be achieved without further data processing, which dramatically sim-
plifies the hardware needed. Because d`, the delay due to electrical signal
propagation, is smaller than the system clock period, it cannot be compen-
sated by this approach. However, this value is much smaller than the clock
period needed in typical BAN applications, which means that the one-way
method can effectively accomplish a precise synchronization.

The approach proposed in this work then achieves the minimum clock
skew using a one-way method based on accounting for the fixed clock offset
between nodes, without calculations or data processing. Because the whole
process is implemented in hardware at the MAC level, the value of s is fixed:
it depends on the transmitter and receiver circuits, and on the length of
the timing message. Therefore, the addition of a suitable constant offset
s′ × τ = (s + 1)× τ (with the value of s to be determined for each network
according to the specifications of the sensor nodes) can be used to achieve
high-quality synchronization in wired, wearable sensor networks.

Equations (10) and (12) assume that local clock oscillators of both nodes
have the same frequency. However, the actual frequency of each one will be
different. Clock frequency drift of each oscillator is unavoidable and may
change with external conditions and aging. After k clock cycles, the time
difference due to frequency mismatch is

∆tM,S = k (τM − τS) , (13)

where τS = 1/fS and τM = 1/fM are the system clock periods of master and
slave nodes, respectively.

9

In order to keep Eqs. (10) and (12) valid over time, it is necessary to have
a procedure for updating and synchronizing the nodes periodically, since
otherwise the frequency differences may accumulate to produce a clock offset
that cannot be canceled by the method just described.

3.2. General Protocol Operation

The aim of the proposed synchronization protocol is to ensure that a
globally synchronized clock signal Clk-sync is available at every sensor node.
The main purpose of this signal is to be used for synchronized sampling. In
addition, each node maintains a counter that can be used to time stamp the
acquired signals.

The simplest way to generate Clk-sync is to use an auto-reload counter:
when the value of a down counter (called TC in the following description)
reaches zero, an active transition of Clk-sync is generated and the counter is
reloaded with a predefined value (called TCPR). The value of TCPR in all
SNs must be the same.

Having all Clk-sync signals synchronized, is equivalent to saying that all
TC counters have to be synchronized. Counter TC is driven by the local
system clock, which exhibits some clock skew relatively to the system clock
of the other nodes. The procedure described in the previous subsection can
be used to keep the average value of the skew within bounds. For this, each
SN periodically updates its TC value with the TC value received from the
timing message.

The current time stamp at each SN is maintained by an up counter TS
(Time Stamping counter), which is driven by the synchronized clock signal
Clk-Sync. The time resolution of TS depends on the frequency of Clk-Sync,
which must be chosen according to the sensed phenomena: e.g., the EMG
signals of [2] have frequencies below 500 Hz, so a sampling rate of at least
1 kHz is necessary.

It should be noted that using Clk-sync for the TS counter only ensures
that it counts synchronously. It is still necessary to synchronize the contents
of TS at the start of the session with a timing message that includes the global
current value of TS. Because each SN synchronizes its Clk-sync periodically, it
is not necessary to do the same for TS : after a one-time TS synchronization,
time stamping will stay synchronized while the system is running.

The process is summarized in Fig. 3. After starting, a SN first updates
the TC counter for synchronization of the local Clk-sync signal; next, the TS

10

counter is synchronized only once. Counter TC must then be synchronized
periodically to compensate for the drift of the local system clock.

Start TC Sync TS Sync TC Sync

Figure 3: Sequence of MAC messages for clock synchronization generated by a SN.

The protocol defines that synchronization starts when the slave node
sends a timing Request message to the master node. Note that the same node
can act as a slave (to synchronize its own clock signal) and as a master for
several other nodes. The synchronization process executed in slave mode is
shown in Fig. 4. The node starts by checking the availability of the connection
to the master. If it is free, the slave node creates a Request in the MAC
layer and sends it to the master. The request message specifies whether the
request is for TC or TS synchronization. The slave node will then update
its counters with the information received in the Sync message from the
master node. The status of the received Sync message is saved in the Status
register, so that it can be used in higher level processing by a microcontroller
or microprocessor. For example, the value Status = CRC indicates that the
Sync message was received with a CRC error. So, the timing information in
the message is not valid and the receiver has to try again.

noLine is

free?

yes

Create and send MAC

 time request message

wait
time out

Status = timeout
receive

CRC?

Set TC

ok

wrong
Status = CRC

Status = ok

end

Start

Figure 4: Sending the Request and receiving Sync messages by slave node.

Master mode operation depends on the type of the Request message, as

11

shown in Fig. 5. When a time stamp value is requested, the master simply
replies with a message containing its own TS value. For a clock counter value
request (TC), the master replies with the value of the difference TC-Offset,
where Offset is the value used to compensate the deterministic part of delay
(the value denoted by s′ in Eq. (9)), which is fixed and equal for all sensor
nodes. For the prototype described in Section 5, this value is set by software
as part of the node’s initialization sequence.

TS

Request ?

TC

Start

end

Read TC and send

(TC-Offset)

send CRC

send MAC

reply header

Read and send

TS

Figure 5: Replying to a Request message with a Sync message (in master node).

4. The Synchronization Circuit

This section describes a synchronization circuit that is based on the
method just described. The circuit is part of the fully-digital sensor node
communication system, which has been implemented both in an Actel low-
power FPGA and in a CMOS ASIC.

Figure 6 shows the block diagram of the circuit including all necessary
modules to send and receive timing information. The three modules in gray
(Signal Detector, TX Line SW and Line Driver) do not belong to the syn-
chronization circuit, but they are involved in the communication process.
An 8-bit internal system bus connects the module to the system core, which
controls the time synchronization circuit, and reads or writes to the registers
(e.g., the real-time time stamp). A 16-bit bus is used to connect the internal
modules and to access the two counters TC and TS. The signal Clk-sync is
available at one of the output pins. The synchronization circuit also manages
a real-time time stamp that is available via the internal bus. The operation
of each module is described next.

12

TC-Counter

(16 bit)

TS-Counter

(16 bit)

Control

16

8

Signal

Detector

Sender

Receiver

Linesadd

data

6 4

Clk-sync

TX

Line

SW

Line

Driver

Figure 6: Block diagram of the circuit.

4.1. Control Module

The Control module manages all the activities related to time synchro-
nization. It is connected to the system core by the internal 8-bit bus and
also to the Signal Detector. All the register values can be read or written via
this module. The main operation of Control is shown in Fig. 7.

Operation
Start

Put Sender-Receiver in reply

mode to send

 reply TC or TS

Wait to end of MAC

end

request TC or TS

Put Sender-Receiver in

request send mode

Wait to end of MAC

Put Sender-Receiver in

reply receive mode

Wait to end of MAC receive

Update Status register

Figure 7: Operation of Control module.

Normally, this module is in sleep mode unless one of the following events
occurs:

13

1. Incoming timing message: The SNs use several kinds of MAC messages,
with timing synchronization being just one of them. The detection of a
timing request message from an adjacent SN is carried out by the Signal
Detector module. This module is responsible for determining the type
of the MAC message by decapsulating and processing the MAC header,
and forwarding the rest of incoming data to the destination module
(which is the synchronization circuit for timing messages). For timing
messages, the MAC header also determines whether the request is for
updating the TC or the TS counter. The Control module receives the
timing message directly from the Signal Detector module and creates
the appropriate reply message.

2. Local command : The request procedure for either TC or TS can be
started by the node’s microcontroller with a command sent via the SPI
port to the Control module. The latter sets up the synchronization
module for sending and receiving timing information, and starts the
transmission. After sending the message, the Control module sets up
the Sender-Receiver module to directly receive the MAC reply message.

4.2. TC-Counter and TS-Counter Modules

The TC-Counter module shown in Fig. 8.a generates the clock signal
Clk-sync for time stamping and to be used as a synchronized clock by other
parts of the SN. Whenever the 16-bit down counter TC reaches zero, it is
reloaded with the value of the 16-bit TCPR register. The periodic Reload
signal is used to drive the clock generation circuit Clock gen, which produces
the reference clock signal Clk-sync. As mentioned before, this clock signal
is used as input clock for the TS-Counter module, and is also available for
use as clock reference in other parts of the SN. The output of this module
is a pulse signal with duration of 1 or 32 system clock cycles. The wider
pulses are necessary for some circuits. For example, when Clk-sync is used
as an external interrupt of a microcontroller, a short pulse width may not be
sufficient to generate a valid interrupt.

The wearable system from [2] is designed to capture EMG signals using a
1 kHz sampling frequency. To generate the Clk-sync reference for the EMG
signal sensing part from a 20 MHz system clock , the TC counter must have
at least a 16 bits, which is the length chosen for the current implementation.
Therefore, the value of TCPR must be in range 1–65535 (33–65535 for the

14

wide pulse mode). The frequency fsync of Clk-sync is given by

fsync =
fs

1 + TCPR
, (14)

where fs is the frequency of system clock. For fs = 20 MHz , the value of
fsync is in the range from 300 Hz to 10 MHz.

TCPR

(16 bit)

TC

16 bit

8data bus

Clk-sync Clock

gen Reload

TS

(16 bit)

16

(a)

(b)

Figure 8: Counters: a) TC-Counter, b) TS-counter

Figure 8(b) shows the TS-Counter module. This module includes TS
and generates a time stamp that can be read by the system, or even written,
via a 16-bit internal bus. As for TC, other SNs are able to obtain the value
of TS for updates of their own TS counter. The time interval between TS
overflows is:

Tov =
65536

fsync
. (15)

In fact, TS does not count the time ticks continuously, instead is peri-
odically reset every time interval Tov (when overflow occurs). However, this
will happen simultaneously in all nodes, which means that the information
on relative event occurrence, between nodes, is always preserved. The BS
can keep the absolute time counting for all events.

4.3. Sender-Receiver Module

In our context, synchronizing two SNs is equivalent to ensuring that their
TC-Counters have identical values at the same time. This ideal situation
cannot be guaranteed at all times, but a small bound on the difference be-
tween the counters may be enough for practical purposes. This is achieved by
an exchange of special messages between the nodes. All processing of timing

15

messages is performed by the Sender-Receiver module. It may operate in
one of three different modes:

• Request for timing information (Fig. 9): start the synchronization pro-
cess by sending a request message;

• Reply to a Request (Fig. 10): reply to a timing request message;

• Reception of timing message (Fig. 11): receive timing information in
response to a request message.

4.3.1. Timing Request Message

In order to illustrate the operation of Sender-Receiver module, we will
consider the situation where node SN3 in Fig. 1 needs to synchronize its TC
value with its near-node SN2.

The process is started by the upper layers of the control software of node
SN3 by sending a command (via the internal bus) instructing the Control
module to activate the request mode. The Control modules instructs the
Sender-Receiver module to start communication with SN2. The configura-
tion of the module in this mode is shown in Fig. 9.

The Control module generates both the EN req and Mac sel signals: the
first enables the request mode and the second specifies that the request con-
cerns the value of TC. Based on the request type (which could be TC or TS),
the Mac Request module generates the appropriate MAC message, which
must then be encoded for transmission. The line encoding scheme used in
our implementation is non return to zero inverted (NRZI). Therefore, the
output of mac request is encoded before driving the line. The module TX
SW (Fig. 6) forwards the MAC message to the line connected to SN2. At
the end of the process, the Control module changes the configuration of the
Sender-Receiver module to reception mode and waits for a reply from SN2.

out
Mac request

NRZI

encoder

Sender-Receiver

Control

EN_req

Mac_sel

EN

CLK-DR

Figure 9: Configuration of Sender Receiver to send a request.

16

4.3.2. Timing Reply Message

When the Signal Detector module of SN2 detects the timing message
request, it forwards the incoming data to the synchronization circuit. The
Control module enables the reply mode by asserting the EN rep (Enable-
reply) signal. In this mode, node SN2 must send the value of its TC counter
to SN3, after performing an adjustment to account for the offset between the
nodes. The configuration of the Sender-Receiver module is the one shown
in Fig. 10. In that figure, B-TCTS is a 16-bit register for buffering the
sampled value of TC in node SN2 at the start of reply processing. The 16-
bit register Offset is used to memorize the offset value, which will be used to
compensate for the skew introduced by the communication delay. The value
of Offset can be managed by the upper software layers through the Control
module. Module Sub is a serial subtracter that is used to subtract Offset
from the TC value buffered in B-TCTS. According to Eq. (5), the Offset
value must be added to the TC value that is sent back to SN3. However, TC
is a down-counter, so the Offset value must be subtracted instead. It should
be noted that a 1-bit serial subtractor can be used to perform the subtraction
of two 16 bit values, since communication is serial and the subtraction can
be performed during transmission.

To protect and check the validity of the data at the receiver node, the
CRC5 module generates a 5-bit cyclic redundancy check, which is concatened
to the outgoing data. A multiplexor controlled by Send-Receive Control
selects, in order, the Mac reply, Sub and CRC5 modules to build the full
reply message at the output, which goes through the NRZI encoder before
being sent to node SN3.

EN_rep

16

Offset

(16 bit)

B-TCTS

(16 bit)

out

8

Sub

(1 bit)

CRC5

m

u

x

Mac reply
NRZI

encoder

Sender-Receiver

Control

Figure 10: Configuration of Sender-Receiver for reply to a timing information request.

17

4.3.3. Reception of Timing Messages

As mentioned previously, node SN3 changes the configuration of the
Sender-Receiver module after sending the timing request message. The con-
figuration for reception is shown in Fig. 11. In this case, register B-TCTS
acts as a Serial-In-Parallel-Out buffer to receive the TC value. After the
CRC5 module confirms the validity of the received data, the value buffered
in B-TCTS is loaded to the TC.

16 B-TCTS

(16 bit)

Line

CRC5

Sender-Receiver

Control

EN_rec

CRC-Check

Figure 11: Configuration of Sender Receiver to receive timing message.

The process for updating TS is the same as the one used for TC, with the
only difference that, in the reply step, the value of TS will be sent without any
adjustment. As mentioned in Section 3, TS counters inherit synchronization
from Clk-sync signals; exchanging TS values is necessary only for time stamp
alignment.

4.4. Implementation characteristics

The ASIC version of the circuit has been fabricated in a 0.35 µm CMOS
technology and is shown in Fig. 12. The main parameters of the ASIC are
summarized in Table 1. The hardware was described at the RTL level using
Verilog HDL. The Actel Libero IDE and the ModelSim simulator were used
for functional validation, because the circuit was first prototyped on a Actel
FPGA IGLOO nano. Although both ASIC and FPGA versions of the circuit
share a single HDL description, there are some differences at the chip level.
Nevertheless, the synchronization circuit for both versions is the same. Since
the FPGA is equipped with an internal RAM, this block is used in the circuit;
the ASIC version includes an embededd 2K SRAM block. Since the RAM
block is not used by the time synchronization module both implementations
have the same synchronization performance. It should be noted that the
FPGA version supports system clock frequencies up to 40 MHz, less than the
ASIC’s system clock frequencies, which can go up to 70 MHz.

18

For the ASIC version, which was synthesized with Synopsys Design Com-
piler from the same HDL source, the standard-cell physical synthesis and
post-layout simulation were done with Cadence Encounter and NCSim, re-
spectively. The label TS in the figure indicates the approximate area oc-
cupied by the synchronization circuit. It uses 971 cells (765 combinational
gates and 206 flip-flops), a number which is significantly smaller than the
15115 cells required by the hardware implementation of the more complex
IEEE-1588 protocol reported in [18].

Table 1: Main characteristics of the ASIC.

Parameter Value

Technology 0.35 µm

Logic cells (Core) 5130

Logic cells (TS) 971 (19 %)

Area (Core) 0.687 mm2

Area (TS) 0.138 mm2

Embedded RAM 2 KB

Supply voltage 3.3 V

Clock frequency up to 70 MHz

Data rate up to 35 Mbps

2.4 mm

2.4 mm

TS

2K RAM

Core

Figure 12: CMOS ASIC (0.35 µm) microphotograph with indication of the synchronization
circuit (TS)

19

5. Experimental Results

This section presents experimental results obtained with the ASIC version
of the circuit. The system clock frequency of each node is 20 MHz, which
results in a data rate of 10 Mbps. With this system clock frequency, the
synchronized clock can be set in the range 305 Hz–10 MHz. The network of
SNs used for the measurements is composed by the nodes BS, SN2, SN3,
SN4, SN5 and SN6 of Fig. 1.

5.1. Physical Layer Signaling

The physical layer signals generated during message exchange (request
and reply) for synchronization of the TC are shown in Fig. 13. As mentioned
before, the line between the nodes is bidirectional, so the reply message
appears on the same line immediately after the request message. The least
significant bit (LSB) of the adjusted TC value is sent first; the message trailer
consists of the CRC check bits.

For the evaluated setup, the entire process, from sending the request
message to the end of the reply message, takes 5.2 µs. To keep network
nodes synchronized, it is necessary to exchange timing messages periodically,
which requires the utilization of system resources, such as channel time, and
should be take into account. For an interval between timing messages of 1 ms
only 0.52 % of the channel time will be used for synchronization, a very small
percentage of the total traffic on the network.

P
ream

b
le

T
C

 req
u
est

P
ream

b
le

F
sy

n
c

C
R

C
5

T
C

L
S

B

M
S

B

Request Sync

Figure 13: Physical layer signals during timing message exchange between SN2 and BS.

20

Figure 14 presents part of a logic simulation showing the TS synchro-
nization of SN3 and SN4 for a scenario in which Clk-sync is configured to
operate at 81 kHz. The simulation shows precisely when the changes of the
TS counter occur. This internal information cannot be obtained by observ-
ing the external IC signals. The final TS value can be read via the SPI
port, but its instantaneous value is not externally accessible. In the figure,
L indicates the state of the communication line between the two nodes. For
each of the nodes, the simulation shows the Clk-sync signal and the contents
of the TS counter.

TC Sync TS Sync

Figure 14: Simulation showing synchronization of Clk-sync signal and TS counter.

At the beginning of the simulation, both Clk-sync (generated by TC)
and TS are out of synchronization. The synchronization of TC starts at
t = 205.7 µs, when node SN4 sends a Request message to SN3. The round
trip message takes 5.2 µs to complete (ending at t = 210.7 µs). The receiver
takes 50 ns (one system clock cycle) to check the validity of the message and
loads the receiver’s TC counter at t = 210.7 µs, resulting in a synchronized
Clk-sync at t = 220 µs.

To synchronize the time stamp TS, node SN4 sends a request at t =
232 ns. Node SN4 replaces its TS value with the value received from SN3
(which is 0x0012) at time t = 237.2 µs. So, after 237.2 µs both nodes are
synchronized. A further noteworthy aspect of the simulation is that during
the previous process node SN3 has synchronized its TS value with node SN2
at t = 224.5 µs (new value 0x0011).

5.2. One-Hop and Multi-Hop Clock Skew

The one-hop clock skew between SN2 and BS for various values of the
parameter Offset can be seen in Fig. 15. The oscilloscope signals shown in
the figure were generated by using the infinite time persist display mode.
The system clock of the BS is used as reference in all skew measurements.

21

The offset value for compensating the constant delay value was measured to
be s = 0x0030. The observed clock skew variation range is 50 ns, that is one
period of the system clock, as described by Eqs. (7) and (11). The measured
average one-hop clock skew is 54 ns, i.e., the sum of signal propagation delay
and Sr(t). The measurements confirm that the synchronization circuit is able
to keep the clock skew in the bounds defined by theoretical analysis.

BS

SN2

45ns

SN2

SN2

54ns

4ns

50ns

0x0030

0x002E

0x002F

Figure 15: Measured one-hop clock skew for Offset =0x002E, 0x002F and 0x0030.

By setting the Offset parameter to s′ = s − 1 = 0x002F, the Clk-sync
shifts one clock cycle to the left, causes the skew to decrease. In the setup
used for the measurements, the average clock skew is 4.6 ns, which is much
smaller than the the total clock skew variation of 54.6 ns. This value is the
minimum skew achievable by the proposed method and shows the feasibility
of minimizing the average clock skew by selecting appropriate values for the
offset. The effect of using the offset value 0x002E is also shown in the Fig. 15,
with one more clock period shift as expected. So, by changing the offset value
it is possible to shift the Clock-sync in both directions by an arbitrary value.
Regardless of the offset value and its effect, the peak-to-peak clock jitter is
50 ns.

The clock skew increases with the number of hops. Figure 16 depicts
the clock signal at different nodes (the offset value, 0x002F, is the same for
all the nodes). As can be seen, and as expected, the average clock skew
increases by almost 4.6 ns as the number of hops increases. In agreement

22

with Eq. (11), the clock skew variation range also increases: 50 ns at SN2,
100 ns at SN3 and SN5, and 150 ns at nodes SN4 and SN6. The comparison
between the measured and calculated values is shown in Fig. 17, confirming
the correct operation of the circuit.

BS

SN2

SN3

SN4

SN5

SN6

Figure 16: Measured multi-hop clock skew with Offset = 0x002F.

1 2 3 4 5 6

−100

−50

0

50

100

Sensor node identifier

de
la

y
(n

s)

Calculation
Measurement

Figure 17: Comparison between the measured and calculated values for multi-hop clock
skew with Offset = 0x002F.

Figure 18 depicts the measured current consumption of the circuit as

23

a function of the Clk-sync frequency from 305 Hz to 5 MHz. The current
increase linearly from 0.18 mA to 0.64 mA as the frequency increases. With
Clk-sync = 1 kHz the total current is almost 0.18 mA. Most of the current is
used to drive the Clk-sync pin that is available as an output of the ASIC.

Figure 18: The circuit current consumption for fsync up to 5 MHz

The measured value of 4.6 ns is due to the signal propagation from sender
output node to the input port of receiver node, an unavoidable inherent
characteristic of the communication path (I/O pads and connecting yarn).
In resource-limited systems, such as sensor networks, achieving a smaller
clock skew is difficult in practice, even if more sophisticated two-way meth-
ods are used, as it would require more processing and a more complex im-
plementation, Therefore, the low-overhead approach described here makes it
practical for many wearable systems to achieve a very-low skew in range of
sub-microsecond (4.6 ns for the wired, yarn-based application used for eval-
uation) with a one-way method and without any further processing.

6. Conclusion

The circuit described in this paper was designed for establishing time
synchronization between sensor nodes of a wearable system. The synchro-
nization is based on one-way master-to-slave message exchange implemented
in the MAC layer, in order to avoid the non-deterministic delays caused by
data processing and buffering in the higher levels of the protocol stack. By

24

directly sending and processing the timing information without buffering,
the proposed approach leads to an average clock skew of a few nanoseconds
and total skew in range sub-microsecond. The circuit generates two synchro-
nized values: a programmable clock signal and a real-time counter for time
stamping purposes.

Experimental evaluation with an ASIC implementation obtained an av-
erage one-hop clock skew of 4.6 ns, which is the time required for signal
propagation from sender output to the receiver input. Based on theoreti-
cal calculations, in a multi-hop network, the global average time skew grows
linearly with hop count; this is supported by the experimental results. The
low skew values provided by this approach satisfy the requirements of many
BAN applications. Even for networks whose nodes are 10 hops away from
the time reference node, the average global skew will typically be under 50 ns
with worst-case skew under 500 ns peak-to-peak. A value of 10 hops exceeds
the largest inter-node distance of many, if not all, existing wearable systems.
The proposed circuit achieves the best synchronization performance that
could be achieved by PTP, but with fewer timing messages and calculations,
less complexity, smaller size, and therefore leads to better energy efficiency.

Acknowledgments

This work was financed by the ERDF – European Regional Develop-
ment Fund through the COMPETE Programme (Operational Programme for
Competitiveness) and by National Funds through the FCT — Fundação para
a Ciência e a Tecnologia (Portuguese Foundation for Science and Technol-
ogy) within project PROLIMB PTDC/EEA-ELC/103683/2008 and through
Ph.D. grant SFRH/BD/75324/201.

References

[1] P. Ranganathan, K. Nygard, Time synchronization in wireless sensor
networks: A survey, Intl. J. UbiComp 1 (2) (2010) 92–102. 2

[2] A. Zambrano, F. Derogarian, R. Dias, M. Abreu, A. Catarino, A. Rocha,
J. da Silva, J. Ferreira, V. Tavares, M. Correia, A wearable sensor net-
work for human locomotion data capture, in: 9th Intl. Conf. on Wearable
micro and nano technologies for personalized health; pHealth, 2012, pp.
216–223. 2, 3, 10, 14

25

[3] F. Sivrikaya, B. Yener, Time synchronization in sensor networks: a sur-
vey, IEEE J. Network 18 (4) (2004) 45–50. 2

[4] S. Lasassmeh, J. Conrad, Time synchronization in wireless sensor net-
works: A survey, in: Proc. IEEE SoutheastCon, 2010, pp. 242–245. 2

[5] Y.-C. Wu, Q. Chaudhari, E. Serpedin, Clock synchronization of wireless
sensor networks, IEEE J. Signal Processing 28 (1) (2011) 124–138. 2

[6] I.-K. Rhee, J. Lee, J. Kim, E. Serpedin, Y.-C. Wu, Clock synchronization
in wireless sensor networks: An overview, J. Sensors 9 (1) (2009) 56–85.
2

[7] B. Sundararaman, U. Buy, A. D. Kshemkalyani, Clock synchronization
for wireless sensor networks: A survey, Elsevier J. Ad Hoc Networks 3
(2005) 281–323. 2, 4

[8] K. Lee, J. Eidson, IEEE-1588 standard for a precision clock synchro-
nization protocol for networked measurement and control systems, in:
34th Annual Precise Time and Time Interval (PTTI) Meeting, 2002, pp.
98–105. 3, 5

[9] D. Mills, Internet time synchronization: the network time protocol,
IEEE J. Communications 39 (10) (1991) 1482–1493. 3, 4

[10] S. Ganeriwal, R. Kumar, M. B. Srivastava, Timing-sync protocol for sen-
sor networks, in: Proc. 1st Intl. Conf. on Embedded Networked Sensor
Systems, 2003, pp. 138–149. 3

[11] J. Elson, L. Girod, D. Estrin, Fine-grained network time synchronization
using reference broadcasts, in: Proc. 5th Symp. on Operating systems
design and implementation, SIGOPS, 2002, pp. 147–163. 3, 5

[12] C. Lenzen, P. Sommer, R. Wattenhofer, Optimal clock synchronization
in networks, in: Proc. 7th ACM Conf. on Embedded Networked Sensor
Systems, SenSys ’09, 2009, pp. 225–238. 3

[13] F. Derogarian, J. C. Ferreira, V. M. G. Tavares, A time synchronization
circuit with an average 4.6 ns one-hop skew for wired wearable networks,
in: 17th Euromicro Conf. on Digital System Design DSD, 2014, pp. 146–
153. 3

26

[14] A. Rowe, V. Gupta, R. R. Rajkumar, Low-power clock synchronization
using electromagnetic energy radiating from AC power lines, in: 7th
ACM Conf. on Embedded Networked Sensor Systems, ACM, 2009, pp.
211–224. 4

[15] M. Buevich, N. Rajagopal, A. Rowe, Hardware assisted clock synchro-
nization for real-time sensor networks, in: 34th IEEE Symp. on Real-
Time Systems RTSS,, 2013, pp. 268–277. 4

[16] IEEE 1588-2008 Standard for a Precision Clock Synchronization Proto-
col for Networked Measurement and Control Systems (2008). 5, 7

[17] W. Huang, Y. Jin, W. Wang, Y. Shi, Y. Zhou, Hardware-based solution
of precise time synchronization for networked control system, in: Intl.
Conf. on Electronics, Communications and Control ICECC,, 2011, pp.
4324–4328. 5

[18] J. W. Park, J. H. Hwang, W. Y. Chung, S. W. Lee, Y. S. Lee, Design
time stamp hardware unit supporting IEEE 1588 standard, in: Intl.
Conf. on SoC Design ISOCC, 2011, pp. 345–348. 5, 19

[19] F. Derogarian, J. C. Ferreira, V. M. G. Tavares, A routing protocol
for WSN based on the implemention of source routing for minumum
cost forwarding method, in: Proc. 5th Intl. Conf. on Sensor Tech. Appl.
SENSORCOMM, 2011, pp. 85–90. 7

27

	1 Introduction
	2 Background and Related Work
	3 Synchronization Method
	3.1 Principle of Operation
	3.2 General Protocol Operation

	4 The Synchronization Circuit
	4.1 Control Module
	4.2 TC-Counter and TS-Counter Modules
	4.3 Sender-Receiver Module
	4.3.1 Timing Request Message
	4.3.2 Timing Reply Message
	4.3.3 Reception of Timing Messages

	4.4 Implementation characteristics

	5 Experimental Results
	5.1 Physical Layer Signaling
	5.2 One-Hop and Multi-Hop Clock Skew

	6 Conclusion

