
Anytime System Level Verification via Parallel Random
Exhaustive Hardware In the Loop Simulation I

Toni Mancinia, Federico Maria, Annalisa Massinia, Igor Melattia, Enrico Troncia

aComputer Science Department, Sapienza University of Rome, Italy

Abstract

System level verification of Cyber-Physical Systems has the goal of verifying that the
whole (i.e., software + hardware) system meets the given specifications. Model checkers
for hybrid systems cannot handle system level verification of actual systems. Thus,
Hardware In the Loop Simulation (HILS) is currently the main workhorse for system
level verification. By using model checking driven exhaustive HILS, System Level Formal
Verification (SLFV) can be effectively carried out for actual systems.

We present a parallel random exhaustive HILS based model checker for hybrid systems
that, by simulating all operational scenarios exactly once in a uniform random order,
is able to provide, at any time during the verification process, an upper bound to the
probability that the System Under Verification exhibits an error in a yet-to-be-simulated
scenario (Omission Probability).

We show effectiveness of the proposed approach by presenting experimental results
on SLFV of the Inverted Pendulum on a Cart and the Fuel Control System examples in
the Simulink distribution. To the best of our knowledge, no previously published model
checker can exhaustively verify hybrid systems of such a size and provide at any time an
upper bound to the Omission Probability.

IThis paper is an extended and revised version of [1]
Email addresses: tmancini@di.uniroma1.it (Toni Mancini), mari@di.uniroma1.it

(Federico Mari), massini@di.uniroma1.it (Annalisa Massini), melatti@di.uniroma1.it (Igor Melatti),
tronci@di.uniroma1.it (Enrico Tronci)

Preprint submitted to Elsevier October 11, 2015

Contents

1 Introduction 3
1.1 Motivations . 4
1.2 Main Contribution . 5
1.3 Summary of Experimental Results . 6
1.4 Paper Outline . 7

2 Background and Preliminaries 7
2.1 Modelling the Operational Environment 7
2.2 Modelling the Property to be Verified . 9
2.3 Modelling the System Under Verification (SUV) 10
2.4 System Level Formal Verification (SLFV) 10
2.5 Parallel HILS Based Deterministic SLFV 11

2.5.1 Disturbance Trace Generation and Splitting 11
2.5.2 Computation of Optimised Simulation Campaigns 12

3 Omission Probability 12

4 Enabling Omission Probability Computation: Random Exhaustive SLFV 15

5 Proof of Results 18

6 Experimental Results 20
6.1 Experimental Setting . 20

6.1.1 Case Studies . 20
6.1.1.1 Inverted Pendulum on a Cart (IPC) 20
6.1.1.2 Fuel Control System (FCS) 22

6.1.2 Computational Infrastructure . 22
6.2 Disturbance Trace Generation and Splitting 23
6.3 Computation of Optimised Simulation Campaigns 23
6.4 Execution of the Simulation Campaigns 24
6.5 Overall Verification Time and Scalability 27

6.5.1 Estimation of Sequential Verification Time 27
6.5.2 Speedup and Efficiency . 27

6.6 Omission Probability . 28
6.7 Completion Time Estimation . 28

7 Related Work 28

8 Conclusions 32

A List of Acronyms 35

2

1. Introduction

The cost for fixing a design error in a system becomes larger and larger as the design
proceeds from the requirement analysis to the implementation (see, e.g., [2, Chapter
1]) since the later in the design phase an error is detected the more reworking it may
trigger. The above observation has motivated the development of methods and tools to
verify correctness of a system already in the early phases of its design, namely during the
requirement analysis or during the functional specification phases. The goal of all such
approaches is to catch design errors well before the system implementation begins.

Of course, all such approaches are model based, that is they work on a model de-
scribing the system behaviour since no system implementation exists in the early design
phases. Accordingly, System Verification is carried out by simulating a system model
and analysing its behaviour under a suitable set of simulation scenarios.

For example, in a digital hardware setting, model based approaches have been used
since a long time. In fact, even before considering going to silicon, a heavy simulation ac-
tivity is performed, aimed at verifying that the system model (defined, e.g., using Verilog,
VHDL or SystemC1) meets the system requirements for most (possibly all) uncontrollable
inputs (that is, primary inputs and faults the system is expected to withstand).

Along the same line of reasoning, in a purely software setting, before generating low
level code, model based approaches are used to verify that the software model (defined,
e.g., using AADL [3, 4]) meets the given requirements.

If all possible simulation scenarios are considered, then we can prove correctness of the
system (i.e., absence of simulation scenarios violating the system requirements), otherwise
we can only show that the system design is faulty (by exhibiting a simulation scenario
violating the system requirements). In other words, a simulation campaign that does not
consider all possible simulation scenarios can only show that the system design has a bug.
To show correctness of the system design we need an exhaustive simulation campaign,
that is one considering all possible simulation scenarios. A verification approach able to
show system correctness is usually referred to as formal verification. One of the most
successful techniques to carry out formal verification is Model Checking (see, e.g., [5]).

The need for model checking stems from the high cost that a bug may have for certain
systems. This is the case for mission critical systems, that is, systems for which a system
malfunctioning may entail loss of money, as well as for safety critical systems, that is,
systems for which a system malfunctioning may entail loss of human lives. Examples
of mission critical systems are: decision support systems, satellites, processors (e.g., the
infamous P5 FDIV bug costed about $475 million to INTEL). Examples of safety critical
systems are: railway interlocking, avionics control software.

Many Cyber-Physical Systems (CPSs) are indeed mission or safety critical systems.
Accordingly, in this paper we focus on formal verification techniques for CPSs.

A CPS consists of hardware (e.g., motors, electrical circuits, etc) and software com-
ponents. Thus, in order to verify a CPS design, we need methods and tools that can
model and effectively support simulation of hardware as well as software components.

From a formal point of view, CPSs can be modelled as hybrid systems (see, e.g., [6] and
citations thereof). Many Model Based Design software tools offer support for modelling

1http://www.mentor.com/products/fv/hdl_designer/

3

http://www.mentor.com/products/fv/hdl_designer/

and simulation of CPSs. Well known examples are Simulink2, VisSim3 and Modelica4.
All such tools take as input a (mathematical) model of the behaviour of the CPS along
with a simulation scenario and provide as output the time evolution (trace or simulation
run) of the system at hand.

System Level Verification of CPSs aims at verifying that the whole (i.e., software
+ hardware) system meets the given specifications. System Level Formal Verifica-
tion (SLFV) has the goal of exhaustively verifying that the above holds for all possible
operational scenarios.

For digital circuits, formal verification is usually carried out using model checking
techniques (e.g., see [7]). Unfortunately, model checkers for hybrid systems cannot handle
SLFV of real world CPSs. Thus, Hardware In the Loop Simulation (HILS) is currently
the main workhorse for system level verification of CPSs, and is supported by model
based design tools (e.g., the previously mentioned Simulink, VisSim and Modelica).

In HILS, the actual software reads/sends values from/to mathematical models (sim-
ulation) of the physical systems (e.g., engines, analog circuits, etc.) it will be interacting
with. Notwithstanding the word hardware, in HILS the only hardware present is the one
devoted to support the system simulation, that is: computational and communication de-
vices. This is because HILS is used in a model based design setting to validate the system
design before any hardware is built (the whole goal of model based design). For exam-
ple, Simulink, VisSim, Modelica, ESA Satellite Simulation Infrastructure SIMULUS5 all
provide simulation software supporting HILS, where the only hardware involved is just
the computer on which the simulator is actually running.

Simulation can be very time consuming. Accordingly, in order to reduce system design
time, Opal-RT6 and dSpace7 among others provide modelling and simulation software
along with FPGA-based hardware to support real-time simulation. We note that in all
cases the only hardware present in HILS is the one supporting the simulation itself.

1.1. Motivations

SLFV is an exhaustive HILS where all relevant simulation scenarios are considered.
Using a parallel model checking driven approach, exhaustive HILS enables formal ver-
ification of actual systems. Examples of such systems are the Inverted Pendulum on a
Cart (IPC) and the Fuel Control System (FCS) in the Simulink distribution (see Sec-
tion 6.1.1).

Considering that parallel exhaustive HILS based SLFV may take days of computation
(e.g., see [8]), from a practical point of view it would be very useful to have available
at any time during the verification process, quantitative information about the degree
of assurance attained. Such an information would enable us to evaluate if it is worth to
continue the verification activity, or instead stop it since the degree of assurance attained
can be considered adequate for the application at hand (graceful degradation).

2http://www.mathworks.com
3http://www.vissim.com
4http://www.modelica.org
5http://www.esa.int/Our_Activities/Operations/gse/ESA_operations_software_licensable_

products_-_overview
6http://www.opal-rt.com/about-hardware-loop-simulation
7https://www.dspace.com/en/inc/home.cfm

4

http://www.mathworks.com
http://www.vissim.com
http://www.modelica.org
http://www.esa.int/Our_Activities/Operations/gse/ESA_operations_software_licensable_products_-_overview
http://www.esa.int/Our_Activities/Operations/gse/ESA_operations_software_licensable_products_-_overview
http://www.opal-rt.com/about-hardware-loop-simulation
https://www.dspace.com/en/inc/home.cfm

The above considerations suggest looking for a HILS based model checking approach
satisfying the following requirements: (i) it is parallel, in order to make exhaustive HILS
computationally feasible; (ii) it is exhaustive, since our focus is SLFV; (iii) it is any time,
to support graceful degradation.

The work in [9] presents a Propositional Satisfiability (SAT) based model checker
for finite state systems which returns, at any time during the verification process, the
coverage (i.e., the fraction of operational scenarios verified so far). Unfortunately, while
coverage measures the amount of verification work done, it does not provide any in-
formation about the degree of assurance attained by the verification process. This is
because formal verification aims at finding hard to find errors, i.e., errors that were not
detected while verifying operational scenarios designed by experts. As a result, formal
verification addresses the search of errors that we are unlikely to consider. For this rea-
son, we can model the problem as an adversary system, that is a system where, knowing
our verification strategy, the adversary places the error in operational scenarios we are
less likely to visit. In such a framework, any deterministic ordering of the operational
scenarios would not increase the degree of assurance until the end of the verification. In
fact, the adversary would choose to place the single error in the last scenario picked by
the verification procedure.

To provide a formally sound information about the degree of assurance attained by
the verification process, approaches have been proposed which verify the operational sce-
narios in a random order. In particular, the work in [10] presents a Monte-Carlo based
model checker for finite state systems that provides, at any time during the verification
process, an upper bound to the probability that the System Under Verification (SUV) ex-
hibits an error in a yet-to-be-simulated scenario (Omission Probability). The Omission
Probability (OP) provides indeed the information we are looking for. Unfortunately,
while Monte-Carlo based approaches guarantee randomness (thereby enabling OP com-
putation) they are not exhaustive (within a finite time).

To the best of our knowledge, no model checker is available, neither for finite state
systems nor for hybrid systems, which, at the same time, is both random and exhaustive,
thereby enabling effective anytime SLFV. In this paper we advance the state of the
art by presenting a parallel random exhaustive HILS based model checker along with
experimental results showing its effectiveness.

1.2. Main Contribution

Our System Under Verification (SUV) is a Hybrid System (e.g., see [6] and citations
thereof) whose inputs belong to a finite set of uncontrollable events (disturbances) mod-
elling failures in sensors or actuators, variations in the system parameters, etc. We focus
on deterministic systems (the typical case for control systems) and model nondetermin-
istic behaviours (such as faults) with disturbances. Accordingly, in our framework, a
simulation scenario is just a finite sequence of disturbances and a simulation campaign
is a finite sequence of simulation instructions (namely: save a simulation state, restore
a saved simulation state, remove a saved simulation state, inject a disturbance, advance
the simulation of a given time length).

A system is expected to withstand all disturbance sequences that may arise in its
operational environment. Correctness of a system is thus defined with respect to such
admissible disturbance sequences. In our setting, the set of admissible disturbance se-
quences (disturbance model) can be defined as the language accepted by a suitable Finite

5

State Automaton, which in turn can be defined using the modelling language of any finite
state model checker.

In such a framework we address Bounded SLFV of safety properties. That is, given
a time step τ (time quantum between disturbances) and a time horizon T = τh we
return PASS if there is no admissible disturbance sequence of length h and time step τ
that violates the given safety property. We return FAIL, along with a counterexample,
otherwise. Therefore, SLFV is an exhaustive (with respect to admissible disturbance
sequences) HILS. In other words, we are aiming at (black box) bounded model checking
where the SUV behaviour is defined by a simulator (Simulink in our examples).

In such a setting, our main contribution can be summarised as follows. We present
an anytime parallel random exhaustive HILS based model checker that effectively conju-
gates exhaustiveness with randomness, thereby enabling the computation of the Omission
Probability.

While a simulation run for digital hardware takes order of milliseconds on a normal
desktop computer, in our setting a simulation run takes order of seconds since it entails
heavy numerical computations aimed at solving a system of many Ordinary Differential
Equations (modelling the hardware components of the CPS). Indeed (see Section 6)
simulation of operational scenarios takes almost 100% of the overall verification time.
Resting on such observation we build on the SLFV approach discussed in [8]. In partic-
ular:

1. From the disturbance model we generate all admissible simulation scenarios and
evenly split them into disjoint sets (slices).

2. For each slice, we compute a highly optimised simulation campaign that exploits
simulator save/restore/remove commands in order to save on the simulation time
while scheduling execution of all simulation scenarios exactly once and in a uniform
random order. This guarantees exhaustiveness and allows us to compute, at any
time during the verification process, an upper bound to the OP.

3. We run simulation campaigns in parallel. This guarantees a very efficient paral-
lelism, since no communication among processes is needed. This step is supported
by simulation tools (Simulink in our case study).

We also show that, thanks to the fact that we have first generated all admissible
simulation scenarios, attaining point 2 above (i.e., anytime OP computation) can be
done in a not-too-complicated (from both technical and computational points of view)
and non-invasive way, by simply introducing a new module into the workflow of [8] that
seamlessly interoperates with the others.

1.3. Summary of Experimental Results

We implemented our approach and present (Section 6) experimental results on two
case studies, namely the Inverted Pendulum on a Cart (IPC) and the Fuel Control
System (FCS) examples in the Simulink distribution. Overall, we compute optimised
simulation campaigns under four operational environments (disturbance models), which
entail from 3 208 276 to 35 641 501 simulation scenarios.

Each processor (actually, a core of a 8-core machine) runs an instance of our (ran-
dom) simulation campaign computation algorithm and takes as input a slice of our set of

6

simulation scenarios. We present experimental results with 16, 32, 64 machines totalling
128, 256, 512 parallel processes. Our approach takes negligible time to generate an opti-
mised simulation campaign for a given slice, with respect to the time needed to actually
execute the simulation campaign (e.g., minutes vs. hours, see Section 6).

Our experimental results show that, by exploiting parallelism, our random exhaustive
simulation campaigns effectively counteract the simulation time overhead due to ran-
domisation. The above ensures feasibility of our parallel random exhaustive approach
for actual systems, such as the Inverted Pendulum on a Cart (IPC) and Fuel Control
System (FCS) examples in the Simulink distribution.

As for the Omission Probability (OP), the worst case scenario is when just one error
trace is present. Our experimental results (Section 6.6) show that, even in such a case,
our upper bound to the OP decreases about linearly with respect to the coverage, that
is the fraction of scenarios simulated. This is the best one can hope to obtain in our
setting.

Finally, simulation of scenarios in random order allows us to use the coverage as a
reliable estimator for the completion time of the whole verification task. Our experimen-
tal results show that the error in the completion time estimation decreases quickly with
respect to coverage.

1.4. Paper Outline

Section 2 gives background notions to make our paper self-contained. Section 3
presents our formal framework, by formalising the notion of OP and by providing an
upper bound for it, computable from the number of the yet-to-be-simulated traces in each
slice. Section 4 outlines our algorithm which enables the computation, from a sequence
(slice) of disturbance traces, a highly optimised simulation campaign which simulates the
input traces in uniform random order and exploits the save/restore/remove capabilities of
the simulator. Section 5 is devoted to the formal proofs of our results. Finally, Section 6
presents experimental results assessing effectiveness of our approach.

2. Background and Preliminaries

In this section we give some background notions. Unless otherwise stated, all def-
initions are based on [11, 8, 12]. Throughout the paper, we use R≥0 for the set of
non-negative reals, R+ for the set of strictly positive reals, and Bool = {0, 1} for the set
of Boolean values (0 for false and 1 for true). N+ denotes the set of positive natural
numbers.

2.1. Modelling the Operational Environment

Our System Under Verification (SUV) is a Discrete Event System (DES), namely a
continuous time Input-State-Output deterministic dynamical system [11] whose inputs
are discrete event sequences. A discrete event sequence (Definition 1) is a function u(t)
associating to each (continuous) time instant t ∈ R≥0 a disturbance event (or, simply,
disturbance). Disturbances, encoded by natural numbers in the interval [0, d] (for a given
d ∈ N+), represent uncontrollable events (e.g., faults). We use event 0 to represent
the event carrying no disturbance. As no system can withstand an infinite number of
disturbances within a finite time, we require that, in any time interval of finite length,

7

SUV
1

0
monitor
outputM

o
n
it
o
r

0

1

2

3
u(t)

t

u(t)

t(a) (b) (c)

Figure 1: (a) A discrete event sequence (d = 3); (b) Our SUV embedding a monitor; (c) The SUV
monitor output.

a discrete event sequence u(t) differs from 0 only in a finite number of time points
(Figure 1a).

Definition 1 (Discrete event sequence). Let d ∈ N+. A discrete event sequence over
the natural interval [0, d] is a function u : R≥0 → [0, d] such that, for all t ∈ R≥0, the
set
{
t̃ ∈ R≥0 | 0 ≤ t̃ ≤ t and u(t̃) 6= 0

}
has finite cardinality. We denote with Ud the set

of discrete event sequences over [0, d] (following control engineering notation for input
functions to dynamical systems, see e.g. [11]).

In Definition 2 and Definition 3 we specify the concepts of restriction and concatena-
tion, respectively, for functions belonging to Ud.

Definition 2. Let Ud be the set of discrete event sequences over the interval [0, d]. Given
a function u ∈ Ud and two real numbers 0 ≤ t1 < t2, we denote with u|[t1,t2) the function

u|[t1,t2) : [t1, t2)→ [0, d], such that u|[t1,t2)(t) = u(t) for all t ∈ [t1, t2). We denote U [t1,t2)
d

the restriction of Ud to the domain [t1, t2).

Definition 3. Assume that t1, t2, t3 ∈ R≥0 such that t1 < t2 < t3. If ω ∈ U [t1,t2)
d and

ω′ ∈ U [t2,t3)
d , their concatenation, denoted as ωω′, is the function ω̃ ∈ U [t1,t3)

d defined as:

ω̃(t) =

{
ω(t) if t ∈ [t1, t2)

ω′(t) if t ∈ [t2, t3)

System level verification follows an Assume-Guarantee approach aimed at showing
that the SUV meets its specification (Guarantee) as long as the SUV operational envi-
ronment behaves as expected (Assume). In this work we focus on bounded system level
verification. As a consequence, we model (Definition 4) the SUV operational environ-
ment as the sequence of disturbances our SUV is expected to withstand within a finite
time horizon, and we bound the time quantum between two consecutive disturbances.

Definition 4 (Disturbance trace). Let h, d ∈ N+. An (h, d) disturbance trace δ is a
finite sequence δ : [0, h−1]→ [0, d]. Given τ ∈ R+ (time quantum), an (h, d) disturbance
trace δ is univocally associated to a discrete event sequence uτδ , defined as follows: for all
t ∈ R≥0, if there exists j ∈ [0, h− 1] such that t = τj, then uτδ (t) = δ(j), else uτδ (t) = 0
(no disturbance).

Thus, a disturbance trace δ defines an operational scenario (namely, uτδ) for our
SUV. Figure 2d shows the discrete event sequence associated to a disturbance trace. We
represent our SUV operational environment as a finite set of (h, d) disturbance traces

8

0

1

2

3
Disturbance

Generator

Disturbance

Model

disturb. traces

0 2 1 0 0 1

0 2 1 0 3 0

0 2 3 0 1 0

…

…

…

… τ

t(a) (b) (c) (d)

Figure 2: (a) Disturbance model; (b) CMurphi-based disturbance generator; (c) Generated sequence of
disturbance traces (d = 3, h = 6); (d) The discrete event sequence associated to the trace in the black
rectangle in part (c), given time quantum τ .

∆ = {δ0, . . . , δn−1}, since Uτ∆ = {uτδ0 , . . . , uτδn−1
} (for a given τ ∈ R+) defines the

operational scenarios our SUV should withstand. Note that, by taking h large enough
(as in Bounded Model Checking (BMC)) and τ small enough (to faithfully model our
SUV operational scenarios), we can achieve any desired precision. On such considerations
rests the effectiveness of the approach.

As it is typically infeasible to define a SUV operational environment by explicitly
listing all its disturbance traces, we define an operational environment with a distur-
bance model which is in turn defined as the language accepted by a suitable Finite State
Automaton. The following example illustrates this point.

Example 1. Consider a disturbance model consisting of one disturbance (namely, a
fault) which is always recovered within 4 seconds. Let us assume that between two con-
secutive disturbances (faults) there must be at least 5 seconds and that disturbances can
arise only at time steps multiple of τ = 1 second (time quantum). We also assume that
the verification time horizon is set to 6 seconds.

In Figure 3a we show disturbance traces represented as strings of zeros (no distur-
bance) and ones (disturbance), with time flowing from left to right. The 8 strings termi-
nated by

√
denote all the disturbance traces accepted by the disturbance model (admissible

disturbance traces). The 14 strings terminated by ⊗ are the shortest non-admissible
sequences of disturbances, that is disturbance sequences that cannot be extended to ad-
missible disturbance traces.

Figure 3b shows the pseudo-code for a finite state automaton recognising such a lan-
guage.

We define a finite state automaton for a disturbance model using the modelling lan-
guage of a finite state model checker (namely, CMurphi [13]), along the lines of [8].

2.2. Modelling the Property to be Verified

Along the lines of [14], we model the property to be verified with a continuous-time
monitor which observes the state of the system to be verified and checks whether the
property under verification is satisfied (Figure 1b). The output of the monitor is 0 as long
as the property under verification is satisfied and becomes and stays 1 (sustain) as soon
as the property fails, thus ensuring that we never miss a property failure report, even
when sampling the monitor output only at discrete time points (Figure 1c). The use of
monitors gives us a flexible approach to model the property to be verified. In particular, it
is easy to model bounded safety and bounded liveness properties as monitors. Figures 8
and 9 show the Simulink/Stateflow representations of our two case studies (Inverted

9

000000
√

010000
√

000001
√

010001⊗
000010

√
01001⊗

000011⊗ 0101⊗
000100

√
011⊗

000101⊗ 100000
√

00011⊗ 100001
√

001000
√

10001⊗
001001⊗ 1001⊗
00101⊗ 101⊗
0011⊗ 11⊗

(a) Admissible disturbance traces (
√
) and

shortest disturbance sequences that cannot
be extended to an admissible disturbance
trace (⊗)

function disturbanceModel(h)
cnt← 0; /* counter */
t← 0; /* time */
while t ≤ h do

d← read(); t← t + 1;
if cnt > 0 then cnt← cnt− 1 ;
if d = 1 then

if cnt > 0 then return ⊗;
else cnt← 4 ;

return
√

;
end

(b) Finite state automaton recognising the
language of admissible disturbance traces
(disturbance model)

Figure 3: Example 1

Pendulum on a Cart and Fuel Control System, respectively), along with their property
monitors (see Section 6).

2.3. Modelling the SUV

Since the monitor output is all we need to carry out our verification task, we can
model our SUV along with the property to be verified as a DES with an embedded
monitor (Figure 1b). We call Monitored Discrete Event System (MDES) such a DES.

According to our black-box approach to SUV modelling, given a time quantum τ ∈
R+, Definition 5 formalises an (h, d) MDES as a function H associating, to each (h, d)
disturbance trace δ, a Boolean value H(δ) representing the output of the SUV monitor at
time T = τh (the time horizon), when the system (starting from its initial state) is given
as input the discrete event sequence uτδ (t) associated to δ. For any disturbance trace δ,
H(δ) is 1 (error) if and only if uτδ (t) violates the property under verification within time
horizon T = τh (with the SUV starting from its initial state).

Definition 5 ((h, d) Monitored DES). Let h, d ∈ N+. A (h, d) Monitored Discrete
Event System (MDES) is a function H : ([0, h− 1]→ [0, d]) → Bool mapping all (h, d)
disturbance traces to Boolean values.

2.4. System Level Formal Verification (SLFV)

Definition 6 formalises our bounded System Level Formal Verification problem.

Definition 6. A System Level Formal Verification (SLFV) problem is a tuple P = (h,
d, ∆, H) where: h, d ∈ N+, ∆ = {δ0, . . . , δn−1} is an (h, d) set of disturbance traces,
and H is a (h, d) MDES.

The answer to SLFV problem P is FAIL if there exists a disturbance trace δ in ∆ such
that H(δ) = 1 (in such a case also the counterexample δ is returned), PASS otherwise.

10

… … … ……

dist. traces
(slice 1)

… … … …

dist. traces
(slice c)

D
is

tu
rb

a
n

c
e
 m

o
d

e
l

D
is

tu
rb

a
n

c
e
 g

e
n

e
ra

ti
o

n
,
la

b
e

lli
n
g

 &
 s

p
lit

ti
n
g

S
a
fe

ty
 p

ro
p
e

rt
y

E
rr

o
r

c
h

e
c
k

P
A

S
S

 /
 F

A
IL

 +
 c

o
u

n
te

re
x
a

m
p

le

dist. traces
(slice (m-1)c+1)

machine m (c cores)

dist. traces
(slice k)

machine 1 (c cores)

 Sim. Camp
Computation

Sim.
Driversim

camp
output

function

SUV Simulator

M
o
n
it
o
r

 Sim. Camp
Computation

Sim.
Driversim

camp
output

function

SUV Simulator

M
o
n
it
o
r

 Sim. Camp
Computation

Sim.
Driversim

camp
output

function

SUV Simulator

M
o
n
it
o
r

 Sim. Camp
Computation

Sim.
Driversim

camp
output

function

SUV Simulator

M
o
n
it
o
r

… … … …

(a) (b) (c) (d) (e)

Figure 4: Parallel HILS based dSLFV [8]: k parallel processes are run on m multi-core machines (we
show a possible deployment with machines having c cores each, i.e., k = mc).

Note that, notwithstanding the fact that the number of states of our SUV is infinite
and we are in a continuous time setting, to answer a SLFV problem we only need to
check a finite number of disturbance traces. This is because we are bounding: (a) our
time horizon to T = τh, and (b) the set of time points at which disturbances can take
place, by taking τ as the time quantum among disturbance events.

2.5. Parallel HILS Based Deterministic SLFV

In the black-box parallel approach shown in [8], the MDES H defining our SUV
(plus the property to be verified) is defined using the modelling language of a suitable
simulator (e.g., MatLab and Stateflow for Simulink). The answer to a SLFV problem
(h, d, ∆, H) is computed by simulating each operational scenario δ in the operational
environment ∆, thus by performing an exhaustive (with respect to ∆) Hardware In the
Loop Simulation (HILS). The overall workflow is shown in Figure 4 and described in the
remainder of this section. We will refer to this approach as Deterministic SLFV (dSLFV),
where the word “deterministic” stems from the fact that the disturbance traces are
verified in a deterministic order.

2.5.1. Disturbance Trace Generation and Splitting

Our CMurphi-based trace generator (see Section 2.1 and Figure 4a) works in Depth-
First Search (DFS) mode, and, given the set of disturbances, produces a sequence ∆ of
n disturbance traces. Each generated trace δ in ∆ is annotated with labels and is of the
form δ = (l0, d0, l1, d1, . . . , lh−1, dh−1, lh), where δ = (d0, . . . , dh−1) is a sequence of
disturbances satisfying the disturbance model and l0, . . . , lh belong to a countable set of
labels L.

Labels are defined by an injective map λ from finite sequences of disturbances (in-
cluding the empty sequence) to L. Label l0 is common to all traces and it is associated

to the simulator initial state. Prefixes of disturbance sequences (d̂0, . . . , d̂p−1) common

11

to multiple disturbance traces in ∆ are followed by the same label l̂p = λ(d̂0, . . . , d̂p−1).
Figure 5a shows a short sequence of labelled disturbance traces.

Labels identifying common disturbance prefixes are essential in the efficient compu-
tation of optimised simulation campaigns. Note that, given that our CMurphi-based
generator runs in DFS mode, disturbance traces can be labelled at no additional compu-
tational cost during generation. Trace labelling during generation greatly increases the
efficiency of the simulation campaign optimiser, as shown in [8].

In the following, we will use δλ instead of δ (respectively, ∆λ instead of ∆) when we
want to emphasise that a trace δ is annotated (respectively, all traces in set ∆ are anno-
tated) with labels, or when we need such labels. In order to enable parallel verification
via k ∈ N+ processes, we evenly partition the sequence of labelled disturbance traces ∆λ

into k ∈ N+ sequences of disturbance traces ∆λ
0, . . . , ∆λ

k−1 (called slices).
The splitting process produces slices containing dn/ke traces each, except the last

slice, which may contain fewer traces if n is not a multiple of k.

2.5.2. Computation of Optimised Simulation Campaigns

In the next phase of the workflow in Figure 4, we use the k slices ∆λ
0, . . . , ∆λ

k−1 gen-
erated so far to compute, independently and in parallel, k highly optimised simulation
campaigns (Figure 4b). Such simulation campaigns can be simulated, again indepen-
dently and in parallel, using k simulators, each one running (e.g., on a different core of
a bunch of multi-core machines) a model for H (Figure 4c–d).

The answer to the SLFV problem is FAIL if one of the simulation campaigns raises
the simulator output function to 1 (in this case the disturbance trace δ which raised the
error is returned as a counterexample, see Figure 4e). The answer is PASS otherwise.

Each simulator accepts four basic commands: store, load, free, run. Command
store(l) stores in memory the current state of the simulator and labels with l such a
state. Command load(l) loads into the simulator the stored state labelled with l. Com-
mand free(l) removes from the memory the state labelled with l. Command run(e, t)
(with e ∈ [0, d] and t ∈ R+) injects disturbance e and then advances the simulation of
time t. A simulation campaign is thus a sequence of simulator commands.

The simulation campaign χi (0 ≤ i < k) computed from input slice ∆λ
i steers the

simulator as to execute all disturbance traces in ∆λ
i according to their order in the slice

(this is the reason why we refer to this approach as Deterministic SLFV).
Each disturbance trace is executed as if starting from the simulator initial state.

However, by using commands store and load, the optimiser avoids revisiting simulation
states as much as possible (as in explicit model checking). Using command free the
optimiser removes from the simulator memory states that will never be needed in the
remaining part of the simulation campaign. This is needed since each state may require
many KB of memory (150–300 KB in the case studies presented in this paper).

Figure 5b shows the optimised simulation campaign computed from the sequence of
labelled disturbance traces in Figure 5a, in the simple case where we ignore any limit on
number of states that can be kept simultaneously stored in the simulator memory.

3. Omission Probability

This section formally defines the notion of Omission Probability (OP) (Definitions 7
and 8) and provides an upper bound for it, which can be computed anytime during the

12

a0b2c1d0e0f1g
a0b2c2h0i0j0k
a0b2c2h0i3m0n
a0b2c3p1q1r0s
a0b2c3p2v2w0x
a0b3y0z0α1β0λ

(a) A sequence of labelled disturbance
traces (labels in red, disturbances in
blue).

store(a)
load(a) run(0,1) store(b) run(2,1) store(c) run(1,3) run(1,1)
load(c) run(2,2) store(i) run(0,2)
load(i) free(i) run(3,2)
load(c) run(3,1) store(p) run(1,1) run(1,2)
load(p) free(p) free(c) run(2,1) run(2,2)
load(b) free(b) free(a) run(3,3) run(1,2)

(b) Optimised simulation campaign which simulates
the sequence of disturbance traces in (a) in their nat-
ural order.

Figure 5: Labelled disturbance traces and optimised simulation campaign.

parallel verification process from the number of the yet-to-be-simulated traces in each
slice (Theorem 1).

Notation 1 (Set of permutations of a set). Let ∆ = {δ0, . . . , δn−1} be a finite non-empty
set. We denote with Perm(∆) the set of permutations of elements of ∆:

Perm(∆) = {(θ0, . . . , θn−1) | (∀i ∈ [0, n− 1] θi ∈ ∆) ∧ (∀i, j ∈ [0, n− 1] i 6= j → θi 6= θj)}

If ∆̂ = (δ0, . . . , δn−1) ∈ Perm(∆) we write also ∆̂(i) for δi.

A Random Sequence Generator (RSG) models the extraction of a random permuta-
tion from a given finite non-empty set (which, in our case, will be the set of admissible
disturbance traces ∆). This is formalised in Definition 7.

Definition 7 (Random Sequence Generator). Let ∆ be a finite non-empty set. A Ran-
dom Sequence Generator (RSG) for ∆ is a probability space (Ω,F ,Pr), where:

• Ω (the space of outcomes) is the set of permutations of ∆, that is Ω = Perm(∆).

• F (the space of events) is the set of subsets of Ω, that is: F = 2Ω = {E | E ⊆ Ω}.

• Pr : F → [0, 1] is a probability measure such that, for all ω ∈ Ω, Pr(ω) = 1
|∆|! .

That is, permutations of ∆ are extracted with uniform probability. Since Ω is
countable (actually finite), the probability of any event E ∈ F is defined as Pr(E)
=
∑
ω∈E Pr(ω).

Let (∆0, . . . , ∆k−1) be a partition of ∆ into k ∈ N+ disjoint non-empty sets. For
any 0 ≤ i < k, let (Ωi,Fi,Pri) be an RSG for ∆i. A Random Sequence Generator for
(∆0, . . . , ∆k−1) is a probability space (Ω,F ,Pr), where: Ω = ×k−1

i=0 Ωi, F = ×k−1
i=0 Fi and,

for each event E0 × · · · ×Ek−1 ∈ F (Ei ∈ Fi for each 0 ≤ i < k), P (E0 × · · · ×Ek−1) =∏k−1
i=0 Pri(Ei).

Note that, by Definition 7, a RSG for a partition (∆0, . . . , ∆k−1) of ∆ models the
extraction of k permutations of, respectively, ∆0, . . . , ∆k−1. For all 0 ≤ i < k, the
extracted permutation of ∆i is chosen uniformly among all possible permutations of ∆i.
Also, the k permutations are extracted independently from each other.

13

Definition 8 defines the probability of omitting the simulation of a trace δ̄ ∈ ∆
containing an error (i.e., H(δ̄) = 1) when the verification process has already examined
qi disturbance traces, where qi ∈ {0, . . . , |∆i|}, from a random permutation of slice ∆i,
for all 0 ≤ i < k. Thus qi represents the state of advancement of the computation on
the i-th slice ∆i. Hence (q0, . . . , qk−1) defines the state of advancement (stage) of the
computation on all slices. We denote this probability as Omission Probability (OP).

Definition 8 (Omission Probability). Let (h, d, ∆, H) be a System Level Formal Ver-
ification (SLFV) problem and (∆0, . . . , ∆k−1) be a partition of ∆ into k ∈ N+ disjoint
non-empty sets. Let (Ω,F ,Pr) be an RSG for (∆0, . . . , ∆k−1), and (q0, . . . , qk−1) a tuple
such that qi ∈ {0, . . . , |∆i|} for each 0 ≤ i < k.

The Omission Probability (OP) for (∆0, . . . , ∆k−1) at stage (q0, . . . , qk−1), is defined
as:

OPH(|∆0|, . . . , |∆k−1|, q0, . . . , qk−1) = Pr

({
(ω0, . . . , ωk−1)

∣∣∣∣ ∀i ∈ [0, k − 1] ωi ∈ Ωi ∧
AB((ω0, . . . , ωk−1), (q0, . . . , qk−1))

})
where:

• AB is defined as A((ω0, . . . , ωk−1), (q0, . . . , qk−1))∧B((ω0, . . . , ωk−1), (q0, . . . , qk−1))

• A (After) is: A((ω0, . . . , ωk−1), (q0, . . . , qk−1)) = ∃i ∈ [0, k−1] ∃j ∈ [qi, |∆i|] H(ωi(j)) =
1;

• B (Before) is: B((ω0, . . . , ωk−1), (q0, . . . , qk−1)) = ∀i ∈ [0, k − 1] ∀j ∈ [0, qi −
1] H(ωi(j)) = 0.

In Definition 8, formula A (After) states that there exists a yet-to-be-simulated trace
δ̄ (some trace j ≥ qi of some slice i) containing an error, i.e., such that H(δ̄) evaluates
to 1. Formula B (Before) states that none of the already simulated traces contains an
error, i.e., function H evaluates to 0 for all of them.

The following Theorem 1 gives an upper bound to the OP, after having simulated qi
randomly extracted traces from slice ∆i (for each 0 ≤ i < k). In particular, Theorem 1
provides a bound to the probability of omitting the simulation of a trace δ̄ ∈ ∆ containing
an error when the verification process has already examined qi disturbance traces from
the (the permutation of) slice ∆i (for all 0 ≤ i < k). Importantly, the bound provided
does not depend on H, i.e., it is independent of the system model. The proof of the
theorem is in Section 5.

Theorem 1. Let (h, d, ∆, H) be a SLFV problem and (∆0, . . . , ∆k−1) be a partition of
∆ into k ∈ N+ disjoint non-empty sets. Let (Ω,F ,Pr) be a Random Sequence Generator
for (∆0, . . . , ∆k−1) and (q0, . . . , qk−1) a tuple such that qi ∈ {0, . . . , |∆i|} for each
0 ≤ i < k. We have:

OPH(|∆0|, . . . , |∆k−1|, q0, . . . , qk−1) ≤ 1−min

{
qi
|∆i|

∣∣∣∣ 0 ≤ i < k

}
(1)

Note that the construction of the slices ∆0, . . . ,∆k−1 from ∆ is non-deterministic (i.e.,
any partitioning of ∆ would work), whereas, for each slice, the selection of a permutation

14

is a probabilistic process, modelled as a RSG. Accordingly, Theorem 1 bounds the OP
using the worst case distribution, i.e., the distribution yielding the greatest OP. From
this stems the min function in the right member of the inequality in Theorem 1.

Finally, we observe that, from Theorem 1, it follows that OPH(|∆0|, . . . , |∆k−1|, |∆0|, . . . , |∆k−1|) =
0, that is, our verification task terminates after max{|∆i| | 0 ≤ i < k} parallel steps,
having simulated all traces in ∆.

4. Enabling Omission Probability Computation: Random Exhaustive SLFV

Our disturbance trace generator (see Section 2.1) produces a sequence of disturbance
traces ∆λ, whose order is deterministically chosen by the employed algorithm (in our case,
Depth-First Search (DFS)). As a consequence, no information about the Omission Prob-
ability (OP) can be inferred during the verification process if the simulation campaign
computed from each slice verifies the sequence of disturbance traces therein according to
their order (as done by the Deterministic SLFV (dSLFV) approach of Section 2.5), or
according to any deterministic order, as argued in Section 1.1.

From Section 3 it follows that it is possible to enable OP computation (and hence,
graceful degradation during the computationally very expensive simulation phase) by
simulating the disturbance traces within each slice in an order uniformly chosen at ran-
dom.

Here we show how we can add support to OP computation in the workflow of Figure 4
in a not-too-complicated and non-invasive way, by introducing an additional step, in
the parallel portion of the workflow, which implements a Random Sequence Generator
(RSG).

The new workflow, which we refer to as Random Exhaustive SLFV (rSLFV), is shown
in Figure 6. All slices are given as input, in parallel, to instances the new Random Se-
quence Generator module, shown as Algorithm 1. The Random Sequence Generator
module reads a sequence of disturbance traces and computes a random permutation of
it, uniformly chosen among all possible permutations, thus implementing a RSG (Def-
inition 7). We argue that the introduction of the new Random Sequence Generator
module is non-too-complicated for what concerns both its implementation (Algorithm 1)
and its computational viability (see Section 6.3). It is also non-invasive, as it seamlessly
interoperates with the dSLFV workflow of Section 2.5.

As the input sequence can be too large to be kept in main memory, the Random
Sequence Generator module implements a disk-based multi-round algorithm (shown as
Algorithm 1) which takes efficiency into account by using, in each round, as much main
memory as possible and by reading/writing the input/output trace files sequentially.

Let n = |∆λ| be the number of disturbance traces in the input sequence. Given
parameter z ∈ N+ for the maximum number of disturbance traces which can be simulta-
neously stored in main memory, the algorithm, at each round r ≥ 1, selects the z traces
which will have output positions in the interval [(r − 1)z, min(n, rz − 1)].

The above selection is performed by computing the first z elements of a random per-
mutation of the traces not yet in the output file ∆λ

rnd, chosen uniformly among all possible
permutations. Such a permutation prefix is computed by function rndPermPrefix() (Al-
gorithm 1, from line 20). Function rndPermPrefix() performs a swap-based computation
of a permutation of integers [0, |∆λ

in| − 1] (uniformly chosen at random) and interrupts

15

Algorithm 1: Random Sequence Generator

Input: ∆λ, a file holding a labelled sequence of disturbance traces
Output: ∆λ

rnd, a file holding a random permutation of disturbance traces,
uniformly chosen among all possible permutations

1 param z, max # of traces that can be kept in RAM

2 ∆λ
rnd ← a new empty file;

3 ∆λ
tmp ← ∆λ; /* input of 1st round */

4 r← 1; /* round counter */

5 while ∆λ
tmp is not empty do

6 ∆λ
in ← ∆λ

tmp; /* tmp file of prev. round */

7 ∆λ
tmp ← a new temp file; /* next round input */

8 if z > |∆λ
in| then z← |∆λ

in| ;

9 selected pos← rndPermPrefix(|∆λ
in|, z) ; /* selected pos is a mapping from

[0, z − 1] to [0, |∆λ
in| − 1] */

10 selected traces← empty array of z elements;
11 p← 0;

12 foreach δ ∈ ∆λ
in do

13 if ∃i selected pos[i] = p then selected traces[i]← δ ;

14 else append trace δ to ∆λ
tmp ;

15 p← p + 1;

16 for i← 0 . . . z− 1 do
17 append trace selected traces[i] to ∆λ

rnd;
18 r← r + 1;

19 return ∆λ
rnd;

20 function rndPermPrefix(n, z)
Input: n, positive integer
Input: z, positive integer (z ≤ n)
Output: result, the first z elements of a permutation of [0,n− 1] uniformly

chosen at random
21 result← array of z elements;
22 perm← empty associative array;
23 for i← 0 . . . z− 1 do
24 j← random index between i and n− 1;
25 if exists v s.t. 〈i, v〉 ∈ perm then value i← v ;
26 else value i← i ;
27 if exists v s.t. 〈j, v〉 ∈ perm then value j← v ;
28 else value j← j ;
29 put (i, value j) into perm;
30 put (j, value i) into perm;
31 result[i]← value j;

32 return result;

33 end

16

… … … ……

dist. traces
(slice 1)

… … … ……

dist. traces
(slice c)

D
is

tu
rb

a
n

c
e
 m

o
d

e
l

D
is

tu
rb

a
n

c
e
 g

e
n

e
ra

ti
o

n
,
la

b
e

lli
n
g

 &
 s

p
lit

ti
n
g

S
a
fe

ty
 p

ro
p
e

rt
y

E
rr

o
r

c
h

e
c
k

P
A

S
S

 /
 F

A
IL

 +
 c

o
u

n
te

re
x
a

m
p

le

dist. traces
(slice (m-1)c+1)

machine m (c cores)

dist. traces
(slice k)

machine 1 (c cores)

 Sim. Camp.
Comput.

Sim.
Driversim

camp
output

function

SUV
Simulator M

o
n
it
o
r

RSG

 Sim. Camp.
Comput.

Sim.
Driversim

camp
output

function

SUV
Simulator M

o
n
it
o
r

RSG

… … … ……

 Sim. Camp.
Comput.

Sim.
Driversim

camp
output

function

SUV
Simulator M

o
n
it
o
r

RSG

 Sim. Camp.
Comput.

Sim.
Driversim

camp
output

function

SUV
Simulator M

o
n
it
o
r

RSG

Figure 6: Parallel HILS based rSLFV.

the computation as soon as the first z elements (see variable result) have been determined.
During its operation, function rndPermPrefix() represents the partially computed per-
mutation as an associative array perm, which, at any step of the function execution,
represents permutation π of [0,n− 1] such that, for each j ∈ [0,n− 1]:

π(j) =

{
v if (j, v) ∈ perm

j otherwise, i.e., 6 ∃v (j, v) ∈ perm

The main algorithm then appends the z randomly selected traces (as chosen by func-
tion rndPermPrefix()) to ∆λ

rnd (according to their output positions), and dumps all the
others to a temporary file, which becomes the input of the next round. Algorithm 1
terminates in dn/ze rounds.

The following theorem asserts that Algorithm 1, when applied to a sequence of dis-
turbance traces ∆λ, produces a uniformly chosen permutation over the set of all permu-
tations. The proof of the theorem is in Section 5.

Theorem 2. Let ∆λ be a file containing n disturbance traces. For any z ≥ 1, Algorithm 1
stores in file ∆λ

rnd a permutation of the traces in ∆λ extracted with uniform probability
among all possible permutations.

The k output randomised slices (computed in parallel by k instances of the Random
Sequence Generator algorithm from k input slices) are then given as input to k parallel
instances of the simulation campaign computation module described in Section 2.5.2
which compute k highly optimised simulation campaigns (Figure 6). As each simulation
campaign verifies the traces in its input slice according to the their order, the introduction
of the Random Sequence Generator module effectively enforces a random order in the
disturbance trace verification within each slice, satisfying the requirements stated in
Theorem 1 in order to compute, during simulation, an upper bound to the OP.

17

5. Proof of Results

Theorem 1. Let (h, d, ∆, H) be a System Level Formal Verification (SLFV) problem
and (∆0, . . . , ∆k−1) be a partition of ∆ into k ∈ N+ disjoint non-empty sets. Let
(Ω,F ,Pr) be a Random Sequence Generator for (∆0, . . . , ∆k−1) and (q0, . . . , qk−1) a
tuple such that qi ∈ {0, . . . , |∆i|} for each 0 ≤ i < k. We have:

OPH(|∆0|, . . . , |∆k−1|, q0, . . . , qk−1) ≤ 1−min

{
qi
|∆i|

∣∣∣∣ 0 ≤ i < k

}
(1)

Proof. If, for all δ ∈ ∆, H(δ) = 0, then the left member of (1) is Pr(∅) = 0 and the thesis
follows.

Otherwise, let E be a nonempty set containing error traces, that is E = {δ | δ ∈
∆ ∧ H(δ) = 1} 6= ∅. OPH(|∆0|, . . . , |∆k−1|, q0, . . . , qk−1) can be rewritten as (see
Definition 8):

Pr
({

(ω0, . . . , ωk−1)
∣∣∣ ∀i ∈ [0, k − 1] ωi ∈ Ωi ∧ ∀i ∈ [0, k − 1] ∀j ∈ [0, qi − 1] ωi(j) 6∈ E

})
(2)

because (∆0, . . . , ∆k−1) is a partition of ∆.
Consider any δ̄ ∈ E. Probability (2) is less than or equal to

Pr
({

(ω0, . . . , ωk−1)
∣∣∣ ∀i ∈ [0, k − 1] ωi ∈ Ωi ∧ ∀i ∈ [0, k − 1] ∀j ∈ [0, qi − 1] ωi(j) 6= δ̄

})
(3)

Given that δ̄ belongs to exactly one of ∆0, . . . , ∆k−1, say ∆ī, and given the definition
of Pr(ω0, . . . , ωk−1) in Definition 7, expression (3) is equal to:k−1∏

i=0
i 6=ī

Pr ({ωi ∈ Ωi})

× Pr
({
ωī ∈ Ωī | ∀j ∈ [0, qī − 1] ωī(j) 6= δ̄

})
which is equal to

Pr
({
ωī ∈ Ωī | ∀j ∈ [0, qī − 1] ωī(j) 6= δ̄

})
(4)

as, for each i 6= ī (0 ≤ i < k), Pr ({ωi ∈ Ωi}) = 1.
Probability (4) is the probability of picking a permutation ωī of ∆ī which does not

have δ̄ in the first qī positions, and evaluates to 1 − qī(|∆ī|−1)!
|∆ī|!

= 1 − qī
|∆ī|

which is less

than or equal to 1−min
{

qi
|∆i|

∣∣∣ 0 ≤ i < k
}

. The thesis follows. �

Theorem 2. Let ∆λ be a file containing n disturbance traces. For any z ≥ 1, Algorithm 1
stores in file ∆λ

rnd a permutation of the traces in ∆λ extracted with uniform probability
among all possible permutations.

Proof. We prove the following: (i) all traces in the input sequence (file ∆λ) will occur in
the output sequence (file ∆λ

rnd) exactly once (i.e., the algorithm computes a permutation);
(ii) for each δ occurring in ∆λ, the probability that δ occurs in ∆λ

rnd at any position is 1
n

(i.e., the computed permutation is uniformly extracted among all possible permutations).

18

Point (i) is immediate: at each round, z traces are appended to ∆λ
rnd, all the others

are appended to ∆λ
tmp, which becomes the input of the next round. Also, the algorithm

terminates only if the ∆λ
tmp produced at the previous round is empty.

To prove point (ii), for any p, q in [0, n − 1], we compute the probability that trace
δ having position p in the input sequence (file ∆λ) will have position q in the output
sequence (file ∆λ

rnd).
We omit to prove that function rndPermPrefix(n,z) actually computes the first z

elements of a permutation of the integer interval [0, n− 1] uniformly selected at random,
as the function interrupts a well-known swap-based permutation algorithm as soon as
the first z elements have been determined.

Given that, at each round r ≥ 1, the main algorithm selects the z input traces
which will have output positions (r − 1)z to min(n, rz − 1), δ is selected only at round
rδ = d(q+ 1)/ze. Thus, the probability that δ, having input position p, will have output
position q is:

Pr

((
rδ−1⋂
r=1

¬Er

)
∩ Oq

′

rδ

)
(5)

where, for all r, ¬Er denotes the event “δ is not selected at round r” and Oq
′

rδ
denotes

the event “δ is the q′-th trace selected in round rδ,” where q′ = (q − z(rδ − 1)).
By the chain rule, (5) becomes:

Pr (¬E1)× · · · × Pr (¬Erδ−1|¬Erδ−2, . . .¬E1)× Pr
(
Oq
′

rδ
|¬Erδ−1, . . .¬E1

)
. (6)

For all 1 ≤ r ≤ rδ − 1:

Pr (¬Er|¬Er−1, . . .¬E1) =
n− z(r − 1)− 1

n− z(r − 1)
× · · · × n− z(r − 1)− z

n− z(r − 1)− (z − 1)

where, for all 0 ≤ i < z, the i-th factor is the number of ways we can choose a trace
different from δ out of n− z(r − 1)− i (where n− z(r − 1) is the number of traces still
not selected at the beginning of round r). The expression simplifies to:

Pr (¬Er|¬Er−1, . . .¬E1) =
n− zr

n− z(r − 1)

and the product Pr (¬E1)× · · · × Pr (¬Erδ−1|¬Erδ−2, . . .¬E1) is:

Pr (¬E1)× · · · ×Pr (¬Erδ−1|¬Erδ−2, . . .¬E1) =

rδ−1∏
r=1

n− zr
n− z(r − 1)

=
n− z(rδ − 1)

n
. (7)

As for Pr
(
Oq
′

rδ
|¬Erδ−1, . . .¬E1

)
, i.e., the probability that δ is the q′-th selected trace

in round rδ provided that it has not been selected in previous rounds, it can be computed
as:

n− z(rδ − 1)− 1

n− z(rδ − 1)
×· · ·×n− z(rδ − 1)− (q′ − 1)

n− z(rδ − 1)− (q′ − 2)
× 1

n− z(rδ − 1)− (q′ − 1)
=

1

n− z(rδ − 1)
(8)

19

Figure 7: Inverted Pendulum on a Cart (IPC) case study (from mathworks.com).

where, for all 0 ≤ i < q′ − 1, the i-th factor is the number of ways we can choose a trace
different from δ out of n− z(rδ − 1)− i (where n− z(rδ − 1) is the number of traces still
not selected at the beginning of round rδ). The last factor is the probability of selecting
δ (still unselected) out of n− z(rδ − 1)− (q′ − 1) traces.

By (7) and (8), probability (6) evaluates to 1
n , which is independent of p and q. �

6. Experimental Results

In this section we evaluate the effectiveness of our Random Exhaustive SLFV (rSLFV)
approach as follows. First, we evaluate the overhead due to the randomisation of distur-
bance traces needed to enable computation of Omission Probability (OP), by comparing
our rSLFV approach with the Deterministic SLFV (dSLFV) approach of [8]. Second,
we evaluate the behaviour of the coverage and the OP bound with respect to simulation
time. Third, we evaluate speed-up and efficiency of our parallel approach.

6.1. Experimental Setting

In this section we describe the case studies and the computational infrastructure we
used in our experiments.

6.1.1. Case Studies

We experiment with two case studies, using two models included in the Simulink
distribution, namely the Inverted Pendulum on a Cart (IPC) and the Fuel Control System
(FCS).

6.1.1.1. Inverted Pendulum on a Cart (IPC). The IPC is a control loop system where
the controlled system is an inverted pendulum installed on a cart (see Figure 7). The
controller (actually a control software) senses the angular position θ of the pendulum,
and computes the force F to be applied to the cart to move it left or right along the x
axis. The goal is to keep the pendulum in its upright (vertical) unstable position. The
physical constraint between the cart and the pendulum gives that both the cart and the
pendulum have one degree of freedom each (x and θ, respectively).

The controlled system consists of the cart and the pendulum, whereas the controller
consists of the control software computing F from the plant outputs (x and θ). Ac-
cordingly, our overall System Under Verification (SUV) model consists of the controlled

20

mathworks.com

Inverted Pendulum on a Cart

Monitor for property "After 2 seconds angle is in [-0.1, 0.1]"

Figure 8: Simulink block diagram for Inverted Pendulum on a Cart (from mathworks.com) with an
embedded property monitor.

system and the controller, whose Simulink block diagram is shown in the upper box of
Figure 8.

The system level property that we verify is that after 2 secs the pendulum is in
upright position, i.e., angle θ is always between [−0.1, 0.1]. The monitor checking for
this property is shown in the lower box of Figure 8.

We introduce disturbances by injecting irregularities in the cart rail. We model such
irregularities with a modification on the cart weight m with respect to its nominal value
of 0.455 kg. For this, we define three disturbances representing normal rail operation
(m = 0.455 kg), abnormal rail operation (m = 1.455 kg), and stressed rail operation
(m = 2.455 kg).

We consider two disturbance models for the IPC, D1
IPC and D2

IPC. Model D1
IPC has

a horizon of h = 90 and defines 3 208 276 disturbance traces. Model D2
IPC is defined

extending D1
IPC with more complex operational scenarios and defines 35 641 501 distur-

bance traces over a horizon of h = 200. For both models we set τ (quantum between
disturbances) to 0.1 second. A detailed description of D1

IPC and D2
IPC is not relevant

for the evaluation of our experiments below. We only observe that, in our setting, the
complexity of answering a System Level Formal Verification (SLFV) problem primarily
depends on the number of disturbance traces to be simulated. Thus, the worst case for
our approach is when all disturbance traces have to be simulated, i.e., when the answer
to the SLFV problem is PASS. Indeed, both D1

IPC and D2
IPC satisfy this requirement.

21

mathworks.com

6.1.1.2. Fuel Control System (FCS). The FCS is a controller for a fault tolerant gasoline
engine, which has also been used as a case study in [15, 16, 17, 18, 8, 12]).

The FCS has four sensors: throttle angle, speed, EGO (measuring the residual oxygen
present in the exhaust gas) and MAP (manifold absolute pressure). The goal of the
control system is to maintain the air-fuel ratio (the ratio between the air mass flow rate
pumped from the intake manifold and the fuel mass flow rate injected at the valves) close
to the stoichiometric ratio of 14.6, which represents a good compromise between power,
fuel economy, and emissions.

From the sensor measurements, the FCS estimates the mixture ratio and provides
feedback to the closed-loop control, yielding an increase or a decrease of the fuel rate.

The FCS sensors are subject to faults (disturbances), and the whole control system
can tolerate single sensor faults. In particular, if a sensor fault is detected, the FCS
changes its control law by operating the engine with a higher fuel rate to compensate.
In case two or more sensors fail, the FCS shuts down the engine, as the air-fuel ratio
cannot be controlled.

The control logic of the FCS is implemented by six automata, each one with a number
of states ranging from two to five. The signal flow is further subdivided into three
subsystems, which exhibit several different Simulink block types, involving arithmetic,
lookup tables, integrators, filters and interpolation [19] (see [20] for more details).

We verify one of the system level specifications for such a model, namely: the fuel air
model variable is never 0 for more than one second. Accordingly, our SUV consists of
the Simulink FCS model along with a monitor for the property under verification (such
a model is shown as Figure 9).

We consider two disturbance models for the FCS, D1
FCS and D2

FCS. Model D1
FCS

has a horizon of h = 100 and defines 4 023 955 disturbance traces. Model D2
FCS is

defined extending D1
FCS with more complex operational scenarios and defines 12 948 712

disturbance traces over a horizon of h = 200. For both models we set τ (quantum between
disturbances) to 1 second. A detailed description of D1

FCS and D2
FCS is not relevant for

the evaluation of our experiments below, and can be found in [8, 21]. We only observe
that, as it happens with our disturbance models for the IPC, for all disturbance traces
entailed by D1

FCS and D2
FCS, the property to be verified is satisfied. This yields the worst

scenario to answer our SLFV problem, as all traces need to be simulated.

6.1.2. Computational Infrastructure

We ran experiments on multiple Linux PCs, each one equipped with 2 Intel Xeon 3.0
GHz CPUs with 4 cores each and 8 GB RAM. We executed 8 processes (optimisation
and simulation) in parallel (one per available core) on each machine.

As, in a multi-core setting, the local disk may quickly become a performance bottle-
neck if heavily used by multiple processes, we have replaced it with 8 RAM disks of 500
MB each per machine, in order to store simulation states. Accordingly, we have used the
multi-core version of the dSLFV optimiser of [8] as presented in [12]. Given that, in our
case studies, the size of the simulation state files is of about 150–300 KB, this experi-
mental setting allowed our optimiser to count on the possibility, for each simulator, to
keep at most 1800 states simultaneously stored.

22

Figure 9: Simulink/Stateflow representation of the Fuel Control System (from mathworks.com) with an
embedded property monitor.

6.2. Disturbance Trace Generation and Splitting

Along the lines of [8], we use CMurphi to generate the set of labelled admissible
disturbance traces entailed by the disturbance model given as input.

Table 1 shows, for each of the four disturbance models we consider (two for IPC
and two for FCS) the number of entailed disturbance traces (column #traces), the time
needed by CMurphi to generate them (column gen. time) and the size of the file computed
by our generator to store them (column file size).

We then split the generated sequences of disturbance traces into k slices, with k =
128, 256, 512 to enable parallel computation on, respectively, 16, 32, 64 (8-core) machines.
Splitting always takes negligible time.

6.3. Computation of Optimised Simulation Campaigns

Table 2 shows, for each of the disturbance models we consider, the time needed by
our Random Sequence Generator module to enable anytime OP computation during
the verification process (rSLFV) and the time needed to compute optimised simulation
campaigns with (rSLFV) and without (dSLFV) trace order randomisation.

Column #mach gives the number of machines we used in parallel. Column #slices
gives the overall number of slices in which the sequence of admissible disturbance traces
has been partitioned (one per available core, i.e., 8 slices per machine). Column #traces

23

mathworks.com

SUV dist. model #traces gen. time file size

IPC D1
IPC 3 208 276 0:9:58 4.6 GB

IPC D2
IPC 35 641 501 7:28:24 107 GB

FCS D1
FCS 4 023 955 0:28:39 3.5 GB

FCS D2
FCS 12 948 712 4:45:47 39 GB

Table 1: Disturbance trace generation.

per slice shows the number of traces in any single slice (except the last slice, which has
fewer traces when the overall number of traces is not a multiple of #slices). Column
group rSLFV shows the maximum overall time to compute the simulation campaign
starting from a slice. This time is split into two parts: the time needed to execute the
Random Sequence Generator module (column RSG) and the time needed to compute
the simulation campaign starting from the randomised slice (column sim. camp. comp.).
Column dSLFV shows the maximum time to compute the simulation campaign starting
from a slice when no RSG is performed, thus no anytime OP computation is enabled.
Column rSLFV overhead shows the difference between the rSLFV and dSLFV times.

It can be observed that our parallel approach to computation of optimised randomised
simulation campaigns is able to effectively exploit parallelism in order to handle distur-
bance models entailing tens of millions of operational scenarios.

Also, Table 2 shows that the random sequence generation phase makes the rSLFV
simulation campaign computation process longer than that for dSLFV (i.e., overhead is
positive). The difference is, however, negligible with respect to the whole verification
time, which takes many hours, even for the massively parallel simulation of operational
scenarios entailed by our smallest disturbance models, i.e., D1

IPC for the IPC and D1
FCS

for the FCS (see Section 6.4).

6.4. Execution of the Simulation Campaigns

Table 3 shows the execution time of the simulation campaigns generated by dSLFV
and rSLFV.

As the exhaustive simulation of the traces generated by disturbance models D2
IPC,

D2
FCS (entailing, respectively, 35 641 501 and 12 948 712 disturbance traces) would require

a prohibitively long time, from now on we restrict ourselves to the simulation of the
traces generated by D1

IPC and D1
FCS (which entail, respectively, 3 208 276 and 4 023 955

disturbance traces).
By enabling the computation of the OP during the simulation activity we have a quite

significant increase of simulation time. However, such an overhead can be drastically
reduced, or even neutralised, by using more parallel processes (higher values for k =
#slices). This behaviour is due to the fact that the rSLFV optimiser needs to compute a
simulation campaign under the restriction that the number of states that the simulator
can keep simultaneously stored is limited (to fit within the 500 MB of disk space available
to each simulator instance). For high values of k=#slices (e.g., k = 512), this is not a
big obstacle. On the other hand, for low values of k, the number of traces in each slice
is higher and they share shorter common prefixes on average. Hence, a fully-optimised

24

#mach. #slices #traces rSLFV dSLFV rSLFV
per slice RSG sim.camp.comp. total sim.camp.comp. overhead

1 8 401 035 0:0:21 1:8:52 1:9:13 0:8:53 1:0:20
2 16 200 518 0:0:11 0:11:57 0:12:9 0:4:36 0:7:32
4 32 100 259 0:0:5 0:6:33 0:6:38 0:2:23 0:4:14
8 64 50 130 0:0:3 0:2:50 0:2:53 0:1:14 0:1:39
16 128 25 065 0:0:2 0:1:23 0:1:26 0:0:38 0:0:47
32 256 12 533 0:0:1 0:1:19 0:1:21 0:0:20 0:1:1
64 512 6267 0:0:1 0:0:21 0:0:23 0:0:11 0:0:12

(a) Inverted Pendulum on a Cart (IPC), disturbance model D1
IPC: 3 208 276 traces with horizon

h = 90

#mach. #slices #traces rSLFV dSLFV rSLFV
per slice RSG sim.camp.comp. total sim.camp.comp. overhead

16 128 278 450 0:1:40 2:41:28 2:43:8 0:35:0 2:8:8
32 256 139 225 0:1:6 1:9:12 1:10:18 0:17:40 0:52:38
64 512 69 613 0:0:34 0:21:26 0:22:0 0:8:57 0:13:3

(b) Inverted Pendulum on a Cart (IPC), disturbance model D2
IPC: 35 641 501 traces with horizon

h = 200

#mach. #slices #traces rSLFV dSLFV rSLFV
per slice RSG sim.camp.comp. total sim.camp.comp. overhead

1 8 502 995 0:1:12 0:4:52 0:6:4 0:5:27 0:0:37
2 16 251 498 0:0:24 0:2:34 0:2:58 0:2:8 0:0:50
4 32 125 749 0:0:15 0:2:24 0:2:39 0:0:57 0:1:42
8 64 62 875 0:0:8 0:1:20 0:1:28 0:0:29 0:0:59
16 128 31 438 0:0:7 0:1:19 0:1:26 0:0:17 0:1:9
32 256 15 719 0:0:7 0:0:32 0:0:39 0:0:8 0:0:31
64 512 7860 0:0:6 0:0:5 0:0:11 0:0:4 0:0:7

(c) Fuel Control System (FCS), disturbance model D1
FCS: 4 023 955 traces with horizon h = 100

#mach. #slices #traces rSLFV dSLFV rSLFV
per slice RSG sim.camp.comp. total sim.camp.comp. overhead

16 128 101 162 0:0:45 0:20:36 0:21:21 0:8:18 0:13:3
32 256 50 581 0:0:24 0:15:35 0:15:59 0:4:31 0:11:28
64 512 25 291 0:0:14 0:6:43 0:6:57 0:2:4 0:4:53

(d) Fuel Control System (FCS), disturbance model D2
FCS: 12 948 712 traces with horizon h = 200

Table 2: Overhead of enabling OP (rSLFV) with respect to dSLFV in the computation of simulation
campaigns (time in h:m:s).

25

#mach. #slices min max avg approach

16 128 2:14:2 4:10:52 3:44:52 dSLFV
25:14:28 85:10:36 58:9:43 rSLFV
23:0:26 80:59:44 54:24:51 overhead

32 256 1:6:49 2:5:40 1:50:28 dSLFV
4:26:16 23:59:0 13:0:24 rSLFV
3:19:27 21:53:20 11:9:56 overhead

64 512 0:30:30 1:3:10 0:53:45 dSLFV
0:59:26 1:51:10 1:43:12 rSLFV
0:28:56 0:48:0 0:49:27 overhead

(a) Inverted Pendulum on a Cart (IPC), disturbance model D1
IPC

#mach. #slices min max avg approach

16 128 70:6:4 100:17:53 87:49:56 dSLFV
216:42:13 348:51:47 308:46:18 rSLFV
146:36:9 248:33:54 220:56:22 overhead

32 256 44:0:27 57:57:27 48:34:6 dSLFV
63:53:54 136:18:14 108:14:19 rSLFV
19:53:27 78:20:47 59:40:13 overhead

64 512 18:32:36 26:49:4 23:2:19 dSLFV
22:9:19 29:23:33 26:43:31 rSLFV
3:36:43 2:34:29 3:41:12 overhead

(b) Fuel Control System (FCS), disturbance model D1
FCS

Table 3: Parallel execution of simulation campaigns by dSLFV and rSLFV (time in h:m:s).

26

random order execution of them would need a too high number of simulation states
to be simultaneously kept stored. As a consequence, the optimiser is forced to post
free commands for many simulation states which would be needed again in yet-to-be-
simulated traces. Such traces will then be simulated from the simulator initial state, thus
yielding performance degradation.

6.5. Overall Verification Time and Scalability

In this section we evaluate the overall impact of enabling anytime OP computation
and the scalability of our parallel approach to SLFV.

Table 4 shows the overall time needed to carry out our SLFV tasks (IPC with dis-
turbance model D1

IPC and FCS with disturbance model D1
FCS) with k parallel processes,

for the values of k already used in the previous tables.
In particular, column gen. & comp. sim. camp. reports the sum of the disturbance

trace generation and splitting time, parallel randomisation (only for rSLFV) and parallel
simulation campaign computation time (from Table 2). Column simulation reports the
parallel simulation time when using k parallel processes (i.e., the maximum simulation
time over all the k = #slices slices as in column max of Table 3). Column overall
reports the overall time to carry out each dSLFV and each rSLFV task, as the sum of
the previous two columns.

We observe that our approach takes negligible time to generate optimised simulation
campaigns with respect to the time needed to actually simulate them (e.g., minutes vs.
hours).

6.5.1. Estimation of Sequential Verification Time

In order to evaluate the scalability of our parallel approach to SLFV, Table 4 also
reports (in the first two rows of each sub-table), the overall dSLFV and rSLFV times when
using only one parallel process (sequential time). Unfortunately, as for our case studies
a sequential simulation would be prohibitively long, we have estimated the sequential
simulation time to carry out both dSLFV and rSLFV as follows.

Let tavg
k be the average time to simulate a slice where k = #slices parallel processes

are used (row #slices = k, column avg, for either dSLFV or rSLFV). For any value of
k, the sequential simulation time could be estimated as k × tavg

k . As this value changes
a little bit for different values of k, Table 4 estimates sequential simulation time as
min{128tavg

128, 256tavg
256, 512tavg

512}. Such huge values (weeks of computation) make clear that
estimation is the only viable way to compute the simulation sequential times. Note
that in our computation we are slightly overestimating the sequential time, since we are
assuming that some traces of each slice must be simulated from the initial state. In an
actual 1-process execution of a simulation campaign, the optimiser may exploit stored
simulator states to avoid simulation of such traces from the initial state. As the time
to simulate a single trace is of a few seconds and the simulator can keep only a limited
number of stored states, this is negligible with respect to the value of the sequential
simulation time.

6.5.2. Speedup and Efficiency

Sequential simulation time for both dSLFV and rSLFV is used in Table 4 to compute
the speedup and the efficiency of our parallel approach to SLFV, as typically done in

27

the evaluation of parallel algorithms. In particular, for each k = #slices, column speedup
shows the ratio t1/tk, where t1 is the estimated overall sequential verification time and
tk is the overall verification time when k parallel processes are used. Column efficiency
is computed by dividing the speedup by the number of parallel processes k = #slices.

Table 4 also shows the overhead (see bold values) due to randomisation of the veri-
fication task (which is the price to pay in order to enable anytime computation of OP),
both in terms of overall verification time increase and in terms of reduction of speedup
and efficiency. We observe that such an overhead is significant, but it can be drastically
reduced by increasing the number k of parallel processes.

6.6. Omission Probability

Figures 10a and 10c show how our upper bound to the OP decreases as a function of
the coverage (i.e., the ratio of admissible traces simulated) during the parallel execution of
the k simulation campaigns (IPC with disturbance model D1

IPC and FCS with disturbance
model D1

FCS), for k = 128, 256, 512. It can be observed that our OP bound is always
very close to the ratio of yet-to-be-simulated traces (curves named “100%−coverage”,
i.e., 100% minus coverage), which is the best one can do (using only one parallel process)
without any assumption on the number of error traces.

6.7. Completion Time Estimation

Figures 10b and 10d show that OP bound, computed during the parallel execution of
the simulation campaigns (IPC with disturbance model D1

IPC and FCS with disturbance
model D1

FCS), decreases nearly linearly in time. The same happens with the coverage,
which can thus be used as a reliable estimator for the completion time of the whole
verification process.

Figure 11 shows the error percentage (on the true completion time) made by a com-
pletion time estimation based on the coverage. For each value x of the coverage, the error
is computed as ((tx/x) − tc)/tc where tx is the time elapsed to reach coverage x and tc
is the true completion time. It can be observed that such a completion time estimation
becomes accurate quickly (e.g., when the coverage is ≥ 30%, the error is within 30%).

7. Related Work

A parallel exhaustive Hardware In the Loop Simulation based hybrid system model
checking similar to the one described in this work is presented in [8]. The main differences
of the present work with respect to [8] are the following. (i) Our simulation campaign
optimiser and the one in [8] both take as input the admissible disturbance traces (simu-
lation scenarios). However, the simulation campaigns computed in [8] schedule scenarios
according to their order, whereas in this work we introduce an intermediate step which
enables simulation of all scenarios, exactly once, in a uniform random order. (ii) During
the verification process, the approach in [8] only outputs the attained coverage, whereas,
in this work also the attained Omission Probability (OP) is computed, by exploiting the
randomisation of the order with which scenarios are scheduled.

The work in [9] considers a finite state (digital hardware verification) setting and
presents an algorithm to estimate the coverage achieved during SAT based bounded

28

#mach. #slices gen. &
comp. sim.

camp.

simulation overall speedup efficiency approach

1 1 0:56:11 458:40:0(∗) 459:36:11(∗) 1.00× 100.00% dSLFV
26:59:57 880:38:24(∗) 907:38:21(∗) 1.00× 100.00% rSLFV

+97.48%(∗) +0.00% +0.00% overhead

16 128 0:10:36 4:10:52 4:21:28 105.46× 82.39% dSLFV
0:11:24 85:10:36 85:22:0 10.63× 8.30% rSLFV

+1858.83% +89.92% +74.09% overhead

32 256 0:10:18 2:5:40 2:15:58 202.80× 79.22% dSLFV
0:11:19 23:59:0 24:10:19 37.55× 14.67% rSLFV

+966.57% +81.48% +64.55% overhead

64 512 0:10:9 1:3:10 1:13:19 376.04× 73.45% dSLFV
0:10:21 1:51:10 2:1:31 448.13× 87.53% rSLFV

+65.71% −19.17% −14.08% overhead

(a) Inverted Pendulum on a Cart (IPC), disturbance model D1
IPC

#mach. #slices gen. &
comp. sim.

camp.

simulation overall speedup efficiency approach

1 1 0:35:55 11242:31:28(∗) 11243:7:23(∗) 1.00× 100.00% dSLFV
3:4:56 13683:20:32(∗) 13686:25:28(∗) 1.00× 100.00% rSLFV

+21.73%(∗) +0.00% +0.00% overhead

16 128 0:28:56 100:17:53 100:46:49 111.56× 87.16% dSLFV
0:30:5 348:51:47 349:21:52 39.18× 30.61% rSLFV

+246.66% +64.88% +56.55% overhead

32 256 0:28:47 57:57:27 58:26:14 192.40× 75.16% dSLFV
0:29:18 136:18:14 136:47:32 100.05× 39.08% rSLFV

+134.08% +48.00% +36.08% overhead

64 512 0:28:43 26:49:4 27:17:47 411.89× 80.45% dSLFV
0:28:50 29:23:33 29:52:23 458.15× 89.48% rSLFV

+9.44% −11.23% −9.03% overhead

(b) Fuel Control System (FCS), disturbance model D1
FCS

Table 4: Overall performance overhead (including disturbance trace generation and splitting, trace
randomisation, computation of simulation campaigns and Simulink simulations) of rSLFV with respect
to to dSLFV (time in h:m:s).
(∗) Estimated value.

29

��

���

���

���

���

����

�� ��� ��� ��� ��� ����

�����

�����

�����

��������

��
�������������

(a) OP against coverage

��

���

���

���

���

����

�� ��� ��� ��� ��� ��� ��� ��� ��� ���

�����
�����

�����

������������

��
�������������

(b) OP & coverage against time

Inverted Pendulum on a Cart (IPC), disturbance model D1
IPC

��

���

���

���

���

����

�� ��� ��� ��� ��� ����

�����

�����

�����

��������

��
�������������

(c) OP against coverage

��

���

���

���

���

����

�� ��� ���� ���� ���� ���� ���� ���� ����

�����
�����

�����

������������

��
�������������

(d) OP & coverage against time

Fuel Control System (FCS), disturbance model D1
FCS

Figure 10: Omission Probability (OP) computation during the parallel execution of the simulation
campaigns.

model checking. Since computation paths are not selected uniformly at random, [9] does
not provide any information about the OP.

Random model checking is a formal verification approach closely related to our setting.
A random model checker provides, at any time during the verification process, an upper
bound to the OP. Upon detection of an error, a random model checker stops returning
a counterexample. Random model checking algorithms have been investigated, e.g., in
[10, 22, 23]. The main differences with respect to our approach are the following. (i) All
random model checkers generate simulation scenarios using a sort of Monte-Carlo based
random walk. As a result, unlike our algorithm, none of them is exhaustive (within a
finite time horizon). (ii) Random model checkers (e.g., see [10]) assume availability of
a lower bound to the probability of selecting (with a random-walk) an error trace. Of
course, being exhaustive, we do not have any such assumption.

The coverage yielded by random sampling a set of test cases has been studied by

30

����

��

���

����

����

�� ��� ��� ��� ��� ����

�����

����� �����

��������

(a) Inverted Pendulum on a Cart (IPC),
disturbance model D1

IPC

����

��

���

����

����

�� ��� ��� ��� ��� ����

�����

�����

�����

��������

(b) Fuel Control System (FCS), distur-
bance model D1

FCS

Figure 11: Completion time estimation error against coverage.

mapping it to the Coupon Collector’s Problem (CCP) (see, e.g., [24]). In CCP elements
are randomly extracted (uniformly and with replacement) from a finite set of n test
cases (disturbance traces in out context). Known results (see, e.g., [25]) tell us that the
probability distribution of the number of test cases to be extracted in order to collect
all n elements has expected value Θ(n log n), and a small variance with known bounds.
This allows us to bound the OP during the verification. Differently from such CCP-
based approaches, here we not only bound the OP, but also grant the completion of
our verification task within just n trials. This is made possible by the fact that we first
generate all disturbance traces.

Monte-Carlo based robustness analysis of Cyber-Physical Systems (CPSs) has been
investigated in [26]. We note that, within a finite time bound, we are exhaustive whereas
the approach in [26] is not. On the other hand, unlike our approach, [26] also evaluates
how robustly the given property holds.

Probabilistic (e.g., see [27, 28]) and, more specifically, simulation-based statistical
model checking approaches (e.g., see [29, 30, 31, 32, 33, 16, 15, 34]) are closely related
to our work. In particular, [16] addresses statistical model checking of Simulink models
and presents experimental results on the very same Simulink case study we use here.
The main differences between such approaches and ours are the following. (i) Prob-
abilistic model checking is a white-box approach (a model is available), whereas we are
in a black-box setting (only a simulator is available). Thus, only simulation-based sta-
tistical model checking approaches can be used in our context. (ii) Statistical model
checking is not exhaustive (within a finite time horizon), whereas we are. (iii) Both
probabilistic and statistical model checking use a stochastic model for the System Under
Verification (SUV), whereas in our setting the SUV is deterministic and disturbances are
nondeterministic. The probability measure in our context, as in random model checking,
stems from the randomisation of the verification process itself. (iv) None of the avail-
able simulation-based statistical model checking approaches addresses the problem of the
optimisation of the simulation campaign, which is an essential step to make our paral-
lel random exhaustive Hardware In the Loop Simulation (HILS) based model checking

31

viable.
Formal verification of Simulink models has been widely investigated, examples are

in [35, 36, 37]. Such methods however focus on discrete time models (e.g., Stateflow or
Simulink restricted to discrete time operators) with small domain variables. Therefore
they are well suited to analyse critical subsystems, but cannot handle complex system
level verification tasks (e.g., our case studies). This is indeed the motivation for the
development of statistical model checking methods as those in [15, 16], for the exhaustive
HILS based approach in [8], and for our present parallel random exhaustive HILS based
approach.

8. Conclusions

We presented a parallel random exhaustive Hardware In the Loop Simulation (HILS)
based model checker for hybrid systems that, while being exhaustive with respect to the
disturbance model given as input, provides at any time during the verification process
an upper bound to the probability that the System Under Verification (SUV) exhibits an
error in a yet-to-be-simulated scenario (Omission Probability, OP).

Our experimental results on real world case studies from the Simulink distribution
(namely: Inverted Pendulum on a Cart and Fuel Control System) show that, by exploit-
ing parallelism, our approach to the computation of optimised simulation campaigns is
feasible even for disturbance models entailing tens of millions of operational scenarios.

Also, simulation results show that, by exploiting parallelism, our simulation campaign
optimiser effectively counteracts the simulation time overhead stemming from randomi-
sation.

Finally, we have shown that our bound to the OP decreases about linearly with the
coverage, which is as good as it can be even in the worst case scenario (just one error
trace). Furthermore, resting on randomisation, we can use the coverage as a reliable
estimator for the time needed to complete the verification process.

Acknowledgments

The research leading to these results has received funding from the European Union’s
7th Framework Programme (FP7 2007-2013) under grant agreements n. 317761 and
600773. The authors would like to thank the anonymous reviewers, whose comments
helped in improving this paper.

References

[1] T. Mancini, F. Mari, A. Massini, I. Melatti, E. Tronci, Anytime system level verification via random
exhaustive hardware in the loop simulation, in: Proc. DSD 2014, IEEE, 2014.

[2] C. Baier, J. Katoen, Principles of Model Checking, MIT Press, 2008.
[3] Z. Yang, K. Hu, D. Ma, J.-P. Bodeveix, L. Pi, J.-P. Talpin, From {AADL} to timed abstract state

machines: A verified model transformation, Journal of Systems and Software 93 (2014) 42 – 68.
doi:http://dx.doi.org/10.1016/j.jss.2014.02.058.
URL http://www.sciencedirect.com/science/article/pii/S0164121214000727

32

http://www.sciencedirect.com/science/article/pii/S0164121214000727
http://www.sciencedirect.com/science/article/pii/S0164121214000727
http://dx.doi.org/http://dx.doi.org/10.1016/j.jss.2014.02.058
http://www.sciencedirect.com/science/article/pii/S0164121214000727

[4] H. Mkaouar, B. Zalila, J. Hugues, M. Jmaiel, From aadl model to lnt specification, in: J. A.
de la Puente, T. Vardanega (Eds.), Reliable Software Technologies Ada-Europe 2015, Vol. 9111
of Lecture Notes in Computer Science, Springer International Publishing, 2015, pp. 146–161. doi:

10.1007/978-3-319-19584-1_10.
URL http://dx.doi.org/10.1007/978-3-319-19584-1_10

[5] E. Clarke, T. Henzinger, H. Veith, Handbook of Model Checking, Springer, 2016.
URL https://books.google.it/books?id=qxG8oAEACAAJ

[6] R. Alur, Formal verification of hybrid systems, in: Proc. EMSOFT 2011, ACM, 2011, pp. 273–278.
[7] E. M. Clarke, Jr., O. Grumberg, D. A. Peled, Model Checking, MIT Press, Cambridge, MA, USA,

1999.
[8] T. Mancini, F. Mari, A. Massini, I. Melatti, F. Merli, E. Tronci, System level formal verification via

model checking driven simulation, in: Proc. of CAV 2013, Vol. 8044 of Lecture Notes in Computer
Science, Springer, 2013, pp. 296–312.

[9] F. A. Aloul, B. D. Sierawski, K. A. Sakallah, Satometer:: how much have we searched?, in: Pro-
ceedings of the 39th annual Design Automation Conference, DAC ’02, ACM, New York, NY, USA,
2002, pp. 737–742. doi:10.1145/513918.514103.
URL http://doi.acm.org/10.1145/513918.514103

[10] R. Grosu, S. Smolka, Monte carlo model checking, in: N. Halbwachs, L. D. Zuck (Eds.), Proc.
TACAS 2005, Vol. 3440 of LNCS, Springer, 2005, pp. 271–286.

[11] E. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems, Texts in
Applied Mathematics, Springer, 1998.
URL http://books.google.it/books?id=ZFIp53GKSVMC

[12] T. Mancini, F. Mari, A. Massini, I. Melatti, E. Tronci, System level formal verification via dis-
tributed multi-core hardware in the loop simulation, in: Proc. PDP 2014, IEEE, 2014, pp. 734–742.

[13] G. Della Penna, B. Intrigila, I. Melatti, E. Tronci, M. Venturini Zilli, Exploiting transition locality
in automatic verification of finite state concurrent systems, STTT 6 (4) (2004) 320–341. doi:

10.1007/s10009-004-0149-6.
[14] O. Maler, D. Nickovic, Monitoring temporal properties of continuous signals, in: Proc. FOR-

MATS 2004 and FTRTFT 2004, Vol. 3253 of LNCS, 2004, pp. 152–166.
[15] E. M. Clarke, A. Donz, A. Legay, On simulation-based probabilistic model checking of mixed-analog

circuits., Formal Methods in System Design 36 (2) (2010) 97–113.
URL http://dblp.uni-trier.de/db/journals/fmsd/fmsd36.html#ClarkeDL10

[16] P. Zuliani, A. Platzer, E. Clarke, Bayesian statistical model checking with application to
simulink/stateflow verification, in: Proc. HSCC 2010, 2010, pp. 243–252.

[17] Y. J. Kim, M. Kim, Hybrid statistical model checking technique for reliable safety critical systems,
in: Proc. ISSRE 2012, 2012, pp. 51–60.

[18] Y. J. Kim, O. Choi, M. Kim, J. Baik, T. Kim, Validating software reliability early through statistical
model checking, IEEE Software 30 (3) (2013) 35–41. doi:10.1109/MS.2013.24.
URL http://doi.ieeecomputersociety.org/10.1109/MS.2013.24

[19] P. Schrammel, D. Kroening, M. Brain, R. Martins, T. Teige, T. Bienmüller, Incremental bounded
model checking for embedded software (extended version), CoRR abs/1409.5872.
URL http://arxiv.org/abs/1409.5872

[20] MathWorks, Modeling a fault tolerant fuel control system, http://www.mathworks.com/help/

stateflow/examples/modeling-a-fault-tolerant-fuel-control-system.html.
[21] T. Mancini, F. Mari, A. Massini, I. Melatti, E. Tronci, SyLVaaS: System Level Formal Verification

as a Service, in: Proc. PDP 2015, IEEE, 2015.
[22] E. Tronci, G. Della Penna, B. Intrigila, M. Venturini Zilli, A probabilistic approach to automatic

verification of concurrent systems, in: Proc. APSEC 2001, IEEE, 2001, pp. 317–324.
[23] H. Sivaraj, G. Gopalakrishnan, Random walk based heuristic algorithms for distributed memory

model checking., Electr. Notes Theor. Comput. Sci. 89 (1) (2003) 51–67.
URL http://dblp.uni-trier.de/db/journals/entcs/entcs89.html#SivarajG03

[24] A. Arcuri, M. Iqbal, L. Briand, Random testing: Theoretical results and practical implications,
IEEE Transactions on Software Engineering 38 (2) (2012) 258–277. doi:10.1109/TSE.2011.121.

[25] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University Press, New York, NY,
USA, 1995.

[26] H. Abbas, G. Fainekos, S. Sankaranarayanan, F. Ivančić, A. Gupta, Probabilistic temporal logic
falsification of cyber-physical systems, ACM Transactions on Embedded Computing Systems 12 (2s)
(2013) 95:1–95:30. doi:10.1145/2465787.2465797.
URL http://doi.acm.org/10.1145/2465787.2465797

33

http://dx.doi.org/10.1007/978-3-319-19584-1_10
http://dx.doi.org/10.1007/978-3-319-19584-1_10
http://dx.doi.org/10.1007/978-3-319-19584-1_10
http://dx.doi.org/10.1007/978-3-319-19584-1_10
https://books.google.it/books?id=qxG8oAEACAAJ
https://books.google.it/books?id=qxG8oAEACAAJ
http://doi.acm.org/10.1145/513918.514103
http://dx.doi.org/10.1145/513918.514103
http://doi.acm.org/10.1145/513918.514103
http://books.google.it/books?id=ZFIp53GKSVMC
http://books.google.it/books?id=ZFIp53GKSVMC
http://dx.doi.org/10.1007/s10009-004-0149-6
http://dx.doi.org/10.1007/s10009-004-0149-6
http://dblp.uni-trier.de/db/journals/fmsd/fmsd36.html#ClarkeDL10
http://dblp.uni-trier.de/db/journals/fmsd/fmsd36.html#ClarkeDL10
http://dblp.uni-trier.de/db/journals/fmsd/fmsd36.html#ClarkeDL10
http://doi.ieeecomputersociety.org/10.1109/MS.2013.24
http://doi.ieeecomputersociety.org/10.1109/MS.2013.24
http://dx.doi.org/10.1109/MS.2013.24
http://doi.ieeecomputersociety.org/10.1109/MS.2013.24
http://arxiv.org/abs/1409.5872
http://arxiv.org/abs/1409.5872
http://arxiv.org/abs/1409.5872
http://www.mathworks.com/help/stateflow/examples/modeling-a-fault-tolerant-fuel-control-system.html
http://www.mathworks.com/help/stateflow/examples/modeling-a-fault-tolerant-fuel-control-system.html
http://dblp.uni-trier.de/db/journals/entcs/entcs89.html#SivarajG03
http://dblp.uni-trier.de/db/journals/entcs/entcs89.html#SivarajG03
http://dblp.uni-trier.de/db/journals/entcs/entcs89.html#SivarajG03
http://dx.doi.org/10.1109/TSE.2011.121
http://doi.acm.org/10.1145/2465787.2465797
http://doi.acm.org/10.1145/2465787.2465797
http://dx.doi.org/10.1145/2465787.2465797
http://doi.acm.org/10.1145/2465787.2465797

[27] G. D. Penna, B. Intrigila, I. Melatti, E. Tronci, M. V. Zilli, Finite horizon analysis of markov chains
with the murphi verifier., STTT 8 (4-5) (2006) 397–409.
URL http://dblp.uni-trier.de/db/journals/sttt/sttt8.html#PennaIMTZ06

[28] D. Jansen, J. Katoen, M. Oldenkamp, M. Stoelinga, I. Zapreev, How fast and fat is your proba-
bilistic model checker? an experimental performance comparison, in: K. Yohav (Ed.), Hardware
and Software: Verification and Testing, Proceedings of the Third International Haifa Verification
Conference, HVC 2007, Vol. 4899 of Lecture Notes in Computer Science, Springer Verlag, London,
2008, pp. 69–85.
URL http://doc.utwente.nl/62646/

[29] H. L. S. Younes, R. G. Simmons, Probabilistic verification of discrete event systems using acceptance
sampling, in: E. Brinksma, K. G. Larsen (Eds.), CAV, Vol. 2404 of Lecture Notes in Computer
Science, Springer, 2002, pp. 223–235.
URL http://dblp.uni-trier.de/db/conf/cav/cav2002.html#YounesS02

[30] H. L. S. Younes, Ymer: A statistical model checker, in: K. Etessami, S. K. Rajamani (Eds.), CAV,
Vol. 3576 of Lecture Notes in Computer Science, Springer, 2005, pp. 429–433.
URL http://dblp.uni-trier.de/db/conf/cav/cav2005.html#Younes05a

[31] H. L. S. Younes, Probabilistic verification for “black-box” systems, in: K. Etessami, S. K. Rajamani
(Eds.), CAV, Vol. 3576 of Lecture Notes in Computer Science, Springer, 2005, pp. 253–265.
URL http://dblp.uni-trier.de/db/conf/cav/cav2005.html#Younes05

[32] K. Sen, M. Viswanathan, G. Agha, On statistical model checking of stochastic systems, in: K. Etes-
sami, S. K. Rajamani (Eds.), CAV, Vol. 3576 of Lecture Notes in Computer Science, Springer, 2005,
pp. 266–280.
URL http://dblp.uni-trier.de/db/conf/cav/cav2005.html#SenVA05

[33] H. L. S. Younes, M. Z. Kwiatkowska, G. Norman, D. Parker, Numerical vs. statistical probabilistic
model checking, STTT 8 (3) (2006) 216–228.
URL http://dblp.uni-trier.de/db/journals/sttt/sttt8.html#YounesKNP06

[34] A. David, K. G. Larsen, A. Legay, M. Mikučionis, Z. Wang, Time for statistical model checking of
real-time systems, in: G. Gopalakrishnan, S. Qadeer (Eds.), Proceedings of the 23rd international
conference on Computer Aided Verification (CAV), Vol. 6806 of LNCS, Springer-Verlag, Berlin,
Heidelberg, 2011, pp. 349–355.
URL http://dl.acm.org/citation.cfm?id=2032305.2032332

[35] S. Tripakis, C. Sofronis, P. Caspi, A. Curic, Translating discrete-time simulink to lustre, ACM
Trans. Emb. Comp. Syst. 4 (4) (2005) 779–818.

[36] B. Meenakshi, A. Bhatnagar, S. Roy, Tool for translating simulink models into input language of a
model checker, in: Proc. ICFEM 2006, 2006, pp. 606–620.

[37] M. Whalen, D. Cofer, S. Miller, B. Krogh, W. Storm, Integration of formal analysis into a model-
based software development process, in: Proc. FMICS 2007, 2007, pp. 68–84.

34

http://dblp.uni-trier.de/db/journals/sttt/sttt8.html#PennaIMTZ06
http://dblp.uni-trier.de/db/journals/sttt/sttt8.html#PennaIMTZ06
http://dblp.uni-trier.de/db/journals/sttt/sttt8.html#PennaIMTZ06
http://doc.utwente.nl/62646/
http://doc.utwente.nl/62646/
http://doc.utwente.nl/62646/
http://dblp.uni-trier.de/db/conf/cav/cav2002.html#YounesS02
http://dblp.uni-trier.de/db/conf/cav/cav2002.html#YounesS02
http://dblp.uni-trier.de/db/conf/cav/cav2002.html#YounesS02
http://dblp.uni-trier.de/db/conf/cav/cav2005.html#Younes05a
http://dblp.uni-trier.de/db/conf/cav/cav2005.html#Younes05a
http://dblp.uni-trier.de/db/conf/cav/cav2005.html#Younes05
http://dblp.uni-trier.de/db/conf/cav/cav2005.html#Younes05
http://dblp.uni-trier.de/db/conf/cav/cav2005.html#SenVA05
http://dblp.uni-trier.de/db/conf/cav/cav2005.html#SenVA05
http://dblp.uni-trier.de/db/journals/sttt/sttt8.html#YounesKNP06
http://dblp.uni-trier.de/db/journals/sttt/sttt8.html#YounesKNP06
http://dblp.uni-trier.de/db/journals/sttt/sttt8.html#YounesKNP06
http://dl.acm.org/citation.cfm?id=2032305.2032332
http://dl.acm.org/citation.cfm?id=2032305.2032332
http://dl.acm.org/citation.cfm?id=2032305.2032332

A. List of Acronyms

BMC Bounded Model Checking . 9

CCP Coupon Collector’s Problem. .31

CPS Cyber-Physical System . 31

DES Discrete Event System . 7

DFS Depth-First Search . 15

FCS Fuel Control System . 20

HILS Hardware In the Loop Simulation . 32

IPC Inverted Pendulum on a Cart . 20

MDES Monitored Discrete Event System . 10

OP Omission Probability. .28

RSG Random Sequence Generator . 15

SAT Propositional Satisfiability . 5

SLFV System Level Formal Verification . 21

dSLFV Deterministic SLFV . 20

rSLFV Random Exhaustive SLFV . 20

SUV System Under Verification . 32

35

	Introduction
	Motivations
	Main Contribution
	Summary of Experimental Results
	Paper Outline

	Background and Preliminaries
	Modelling the Operational Environment
	Modelling the Property to be Verified
	Modelling the SUV
	System Level Formal Verification (SLFV)
	Parallel HILS Based Deterministic SLFV
	Disturbance Trace Generation and Splitting
	Computation of Optimised Simulation Campaigns

	Omission Probability
	Enabling Omission Probability Computation: Random Exhaustive SLFV
	Proof of Results
	Experimental Results
	Experimental Setting
	Case Studies
	Inverted Pendulum on a Cart (IPC)
	Fuel Control System (FCS)

	Computational Infrastructure

	Disturbance Trace Generation and Splitting
	Computation of Optimised Simulation Campaigns
	Execution of the Simulation Campaigns
	Overall Verification Time and Scalability
	Estimation of Sequential Verification Time
	Speedup and Efficiency

	Omission Probability
	Completion Time Estimation

	Related Work
	Conclusions
	List of Acronyms

