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VThreads: A novel VLIW Chip Multiprocessor with
hardware-assisted PThreads

V. A. Chouliaras∗, D. Stevens and V.M. Dwyer

Wolfson School, Loughborough University, Loughborough, LE11 3TU, UK.

Abstract

We discuss VThreads, a novel VLIW CMP with hardware-assisted shared-memory Thread support.
VThreads supports Instruction Level Parallelism via static multiple-issue and Thread Level Parallelism via
hardware-assisted POSIX Threads along with extensive customization. It allows the instantiation of tightly-
coupled streaming accelerators and supports up to 7-address Multiple-Input, Multiple-Output instruction
extensions. VThreads is designed in technology-independent Register-Transfer-Level VHDL and prototyped
on 40 nm and 28 nm Field-Programmable gate arrays. It was evaluated against a PThreads-based mul-
tiprocessor based on the Sparc-V8 ISA. On a 65 nm ASIC implementation VThreads achieves up to x7.2
performance increase on synthetic benchmarks, x5 on a parallel Mandelbrot implementation, 66% better on
a threaded JPEG implementation, 79% better on an edge-detection benchmark and ~13% improvement on
DES compared to the Leon3MP CMP. In the range of 2 to 8 cores VThreads demonstrates a post-route
(statistical) power reduction between 65% to 57% at an area increase of 1.2%-10% for 1-8 cores, compared
to a similarly-configured Leon3MP CMP. This combination of micro-architectural features, scalability, ex-
tensibility, hardware support for low-latency PThreads, power efficiency and area make the processor an
attractive proposition for low-power, deeply-embedded applications requiring minimum OS support.

Keywords: RTL Implementation; Embedded Microprocessors; Hardware/software interface; Configurable
VLIW architectures; Field-Programmable Gate Array Design; Standard-cell design

1 Introduction and motivation

State-of-the-art silicon technology nodes empowered VLSI designers to integrate complex systems on a sin-
gle chip with such advanced Systems-on-Chip (SoC) incorporating multiple processing engines. These are,
as a minimum, scalar 32-bit central processing units (CPUs), digital signal processors (DSPs) augmented ei-
ther by data-level parallel (DLP) standalone coprocessors [1], instruction set architecture (ISA) extensions or
combinations thereof [2], connected via numerous, high bandwidth, point-to-point buses and more recently,
packet-switched networks [3]. These units are supplied by many local memory blocks under the control of Di-
rect Memory Access (DMA) engines. This ever-increasing circuit complexity needs to be delivered in the face of
very tight design deadlines, mandated by Time-to-Market (TTM) imperatives, resulting in the final SoC being
almost always over-engineered (hence, sub-optimal). Over-engineering is the effect of an increasing productivity
gap where the chip complexity that can be handled (and verified) by design teams falls well short of the potential
offered by these advanced silicon process nodes. As a result, the investigation of appropriate architectures and
micro-architectures and the exploration of the implementation space are minimal in most designs.

At the same time the industry is witnessing a revolution in the capability of Field-Programmable Silicon
(FPGAs), particularly in the past few years. The leading vendors in the area such as Xilinx and Altera have
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consistently delivered high capacity silicon (Virtex 6/7/UltraScale/UltraScale+ and Stratix IV/V/10) incorpo-
rating hundreds of hard-wired blocks such as static (block) memories, DSP data-paths, clocking infrastructure
(PLLs/DLLs), high-throughput interfaces (hard PCIe cores) and networking capability (Hard Ethernet MACs,
Interlaken cores), supported by high speed differential I/O. The leading FPGA vendors supply a wealth of
silicon intellectual property (IP) in the form of soft processors (Microblaze and Nios2 respectively), high-value
hardened silicon IP (ARM A9 SMP subsystem in both the Zynq and Cyclone SoC device families), interconnect
systems (IBM PLB, ARM AXI4 and Altera Avalon), and a wealth of other IP blocks covering practically every
conceivable application.

What’s even more noteworthy is that this rich ecosystem, along with proprietary Electronic Design Automa-
tion (EDA) tools is provided for (nearly) free to the FPGA silicon customers. On the tools side in particular,
both vendors have embraced potentially disruptive technologies such as Electronic System Level (ESL) design,
in its form as Behavioural synthesis (Xilinx AutoESL flow [4] and C2H from Altera) with a good overview of
the current state-of-the-art given in [5]. This is a turning point in the design of such complex VLSI systems in
Field-Programmable silicon; vendors have identified the complexity of composing such systems with established
Register-Transfer-Level (RTL) methodologies as the design and verification bottleneck and thus are trying to
embrace a more software-centric approach using such flows. Still, widespread adoption of such ESL methodolo-
gies is at an early stage thus raising the research question of the suitability of higher level descriptions for system
design. Whilst there seems to be a concerted effort towards the adoption of the Single-Program, Multiple-Data
(SPMD) model with OpenCL [6, 7] and CUDA [8] being prime examples, research by our group [9, 10] pioneered
the use of the Unified Modelling Language (UML, Object Management Group UML 2 specification [11]) for the
behavioural synthesis of embedded VLSI systems. The latter is widely used in large scale software engineering
projects and initially lacked hardware-related modelling abstractions. Our research adopted the Modelling and
Analysis of Real-Time and Embedded systems (MARTE) profile [12] of UML in the ENOSYS FP7 project1.
Whilst not focused on the ENOSYS project in this paper, a short description is deemed necessary at this
stage to set the scene for the need behind the proposed VThreads architecture, the next generation Very Long
Instruction Word (VLIW) Chip Multi-processor (CMP).

1.1 The ENOSYS FP7 Project

The aim of ENOSYS was to reduce design and development cost on Field-programmable Silicon as well as
shorten the time to market of electronic products [13] through the co-design of an optimal multi-core system
architecture making use of a configurable, extensible VLIW architecture. Whilst there has been very many
previous attempts at addressing embedded system co-design, the closest to ours and most notable such effort
was the Pico project [14] from Hewlett Packard Labs2 which proposed the close integration of a fully-predicated
VLIW engine with hard-wired implementations of loop nests. ENOSYS took this much further through A)
the use of a Multi-core configurable, extensible VLIW architecture B) Its close integration with HLS-designed
objects of arbitrary complexity (not only loop nests) under the control of a simple RISC processor responsible
for orchestrating data transfers across all processing elements in the system and C) The over-arching Design
Space Explorer (DSE) environment. The ENOSYS flow is depicted in Fig 1 and includes two phases:

System Modelling phases (SMF1/2/3): Starting from a textual system description the system require-
ments are captured during phase SMF1. Subsequent refinement takes place in SMF2 transforming the initial
specification to a MARTE-compliant description. The full system functionality is then encapsulated in that
MARTE description through the use of an action language such as C++ or Java (SMF3). This is followed by
source-to-source transformation which exposes parallelism both at the basic block level (through transforming
control to data dependencies) as well as exposing data-level parallelism through automatic application of affine
transformations to the iteration indices of tightly-coupled loops. The later form of parallelism is exploited both
during behavioural synthesis using FalconML, the commercial successor to [15] (for hard-wired blocks) as well as

1http://www.enosys-project.eu
2Subsequently acquired and commercialized by Synopsys Inc.
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Figure 1: The ENOSYS project flow

from the compiler of the multi-core CPU-subsystem. The captured system is validated and exported in textual
form (XMI) as input to the second, Synthesis and Exploration Flow.

System Synthesis and Exploration phase: During this stage the validated design is partitioned auto-
matically (under DSE control) with objects allocated to CPU cores or directly synthesized to gates via FalconML.
The target embedded system architecture is shown in Fig. 2 and consists of a standard host processor (Leon3
for standard-cell technologies and the Xilinx Microblaze for FPGA targets) and a number of default peripher-
als. A key component of the flow is the multi-core VLIW engine [16, 17] (Figs. 2b and 2c) which forms the
first-level accelerator. Objects that can’t be efficiently executed on the combined Microblaze+LE1 CMP are
offloaded to UML-designed accelerators (Hard-wired System Domain) in Fig. 2a. The allocation of software
objects to either software classes executing on the LE1 CMP or hard-wired implementations as depicted is left
to the DSE element of the flow. The whole platform uses a bespoke API (bare-metal on the Microblaze and
run-to-completion on the LE1).

1.2 Motivation and Contributions

Lessons learned during the ENOSYS effort were in a number of areas namely low-level software (OS), hardware
(tightly-coupled accelerators) and technology (FPGA vs standard-cell).

1. OS: The need for a low-level OS executive (a simplified RTOS) to be used by the LE1 VLIW accelerator
arose towards the end of that research; the authors identified that the silicon overheads and the relatively
low performance of a soft-CPU such as the Microblaze weren’t always justified as the algorithm com-
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Figure 2: ENOSYS HW Platform.

putations were performed by the LE1 CMP and the HW accelerators. It was decided that a new LE1
micro-architecture was necessary to make more efficient use of the ’bare-metal’ CPU cores and their close
interaction with the hard-wired UML accelerators, limiting the host processor to purely OS and I/O. This
is achieved through native (hardware-assisted) PThreads support as code portability between PThreads
and code executing on the VThreads CPU was deemed as important.

2. Hardware: The LE1 micro-architecture was also at the focus of performance optimization efforts as it
was discovered that the LE1 memory subsystem (based on a configurable, multi-banked tightly-coupled
RAMs) was more effective for the ENOSYS co-design tasks compared to the host system DDR2 so-
lution. This called for a number of improvements in certain areas in the existing LE1 design namely
the Instruction Fetch engine (IFE), tight integration of streaming accelerators, Multi-input/Multi-output
(MIMO) Instruction Set Extensions (ISEs), branch prediction, extensive instrumentation and extended
use of customization.

3. Target technology: Finally, it was decided that the LE1 optimizations should be such that the new
version of the processor be fully technology-agnostic in order to support both FPGA and ASIC flows.
This called for modifications in the embedded SRAM blocks and the system clocking.

The outcome of this evaluation is the next-generation LE1 system, know as VThreads which is the focus of this
paper. The processor addresses (1) by providing minimalist low-level, low-latency, hardware-assisted PThreads
support; (2) with more efficient hardware organization and 3) via a re-design in a technology-independent way.
An overview of VThreads is given in the next section.
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2 VThreads Overview

VThreads is a configurable CMP designed to be used in deeply-embedded co-design applications on FPGA and
ASIC technologies. It implements a hybrid, explicit [18] parallelism model supporting both shared-memory se-
mantics in hardware (hardware-accelerated PThreads) and a small set of Message-Passing primitives, facilitated
by the host system. VThrads is designed to be attached to a larger system which includes a host CPU running
the OS, high-level data scheduling and interfacing. A programmer’s view of the VThreads system architecture
(full deployment) is depicted in Figure 3a.
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Figure 3: VThreads overview showing the hierarchical decomposition of the architecture (GALAXY) into shared memory
systems (SYSTEM0..255), Contexts per System (CNTXT0..255), HyperContexts and data-path components per Context(processing
clusters, CL0..3).

At the highest level (Galaxy), VThreads consists of a configurable number of shared-memory multiproces-
sors (System(X)) and the Galaxy-level interconnect3. The host can initiate remote memory access operations
across these multiprocessors using it’s own DMA facilities. Each such System hierarchy is a shared-memory
multiprocessor and consists of up to 256 Contexts (processing containers) with each such context encapsulating
up to 16 HyperContexts (HCs, architected states). HCs multiplex onto the available execution resources of their
Context using vertical multi-threading (only one HC can issue per clock). The context execution resources are
split over a maximum of 4 clusters (CL0-CL3) with each cluster including multiple integer ALUs (IALUs), mul-
tipliers (IMULTs), MIMO ISE data-paths and a multi-ported Load Store Unit (LSU). Clusters are instances of
data-path templates (section 3.3) and their execution resources are time-multiplexed across the HCs. Figure 3b
depicts in diagrammatic form the full architected state of the Context and demonstrates the compiler-available
registers in the Context HCs and Clusters4

VThreads supports a single local data memory per System (DRAM on Fig. 3a), accessible from all the
Contexts/HCs in that system, and a configurable, instruction RAM (IRAM). Both memories are parametric
and multi-banked.VThreads relies on an ISA-agnostic pipelined micro-architecture with partial support for
fully-predicated (EPIC) [19] and full support for partially-predicated (Multiflow-type) statically-scheduled, long
instruction word architectures [20]. These are known as perspectives with the default perspective (VT32PP)
being the 32-bit partially-predicated VLIW architecture. This is loosely based on the Multiflow architecture with
architectural support for Single-Instruction, Multiple-Data (SIMD) processing, multiple register files, MIMO
ISEs and control state and hardware support for POSIX Threads. There are also 512 control/configuration

3VThreads doesn’t bus-master and the Galaxy-Level (Inter-System) Interconnect is implemented on the host system, typically
using the AXI4 Interconnect IP on Xilinx 7 Series. Inter-System transfers are scheduled by the host DMA.

4The 256 Systems x 256 Contexts define the architectural extrema of VThreads. The 64K Contexts, each with a max. of 16
HCs are encoded in 20-bits which are returned by the VT32PP CPUID instruction. Whilst Figs. 3 and 4 depict a single AHB/AXI4
slave port per system, the authors have considered the use of an internal (Galaxy-level) NoC, instead of the external AXI4 system,
to limit the number of such slave channels. This is not elaborated further as it’s not part of the existing VThreads RTL database.
All performance experiments have been conducted with a single-system Galaxy configuration as discussed in Section 5.

5



registers forming the CTRL_SPACE, accessible by the host system and the HCs via the DBG_IF (section 3.6) and
RDCTRL and WRCTRL instructions respectively. Finally, there are 256 32-bit peripheral registers (PERIPH_SPACE)
per context used to map the control registers of attached streaming peripherals. They are accessed via the
DBG_IF and the HCs with the RDPERIPH and WRPERIPH instructions. VT32PP is a true Harvard architecture;
instructions have their own 32-bit private address space which is only accessed by the host system with single
or streaming IRAM read/write transactions. Long instruction words (LIWs) consist of a variable number (up
to the architectural width of the processor) of RISC-type operations known as syllables or RISCops (used
interchangeably in the text). Instruction accesses are byte-aligned (to allow for future implementations where
variable instruction lengths are supported) and control transfer instructions target the first syllable of the target
LIW. In its current form, VThreads supports blocked (vertical) hyper-threading with micro-architectural hooks
in place to support Simultaneous (SMT) [21] and Cluster-Simultaneous (CSMT) [22] multi-threading.

Whilst there are numerous research and commercial machines in the VLIW domain such as CoreVA [23],
PACDSP [24], Kalray [25] the VT32PP ISA was chosen for the VThreads organization due to it’s similarity
to the Multiflow and the LX [26] machines, the maturity of the compiler and the knowledge the designers
had acquired during the development of the precursor LE1 CPU. A particularly important point and a major
differentiator of our work was the architectural support for MIMO ISEs and embedded streaming accelerators
which are not found in most VLIW implementations. The following section goes into the details of the VThreads
Organization.

Figure 4: VThreads Micro-architecture

3 VThreads organization

From Fig. 4 the Galaxy is connected to a host system (Microblaze/Nios2/Leon3) which provides a number, equal
to the number of instantiated Systems in the Galaxy, of memory-mapped ports (AXI4MM/AvalonMM/AHB)
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and a single non-pipelined interface (AXI4LITE/APB) for debug purposes. Each System includes a configurable
number of Contexts, a peripheral wrap component and the multi-ported, multi-banked Data Memory. That
memory is host-mapped and accessed from via host DMA transactions. The DBG_IF logic is distributed within
VThreads to all Systems/Contexts/periph_wrap instances and follows a simple Req/Ack protocol between the
DBG_IF Finite State Machine (FSM), the per-context controller and associated processor and peripheral state.

The expert reader will notice that Inter-System communications and synchronization are supported only via
host-intervention (host-side DMA and use of MUTEX-type IP) as VThreads is not in its present form designed
to bus-master the host system. At the same time, multiple VThreads can be instantiated at a higher level of
hierarchy (full system) however sufficient configurability and extensibility is built within the Galaxy to ensure
there is no need to do that.

The following sections provide additional details into all the blocks of Fig. 4 with emphasis on the Context
Instruction Fetch Engine (IFE), mid-pipe section (MIDPIPE), execution data-paths (Cluster-Architecture) and
cluster-level Load-Store unit (CL_LSU)) followed by a discussion of the periph_wrap, the System-Level Memory
(DRAM) and the DBG_IF which supports Hardware-accelerated PThreads.

3.1 Instruction Fetch Engine (IFE)

Figure 5: IFE organization

The IFE (Fig. 5) is responsible for accessing the local instruction memory and producing (buffering) as many
VLIW bubdles as possible every clock. It includes the per-Context IRAM, the per-HC Program Counter (PC),
a configurable 2-bit saturating counter branch predictor with per-HC history bits (BHT) and a single Branch
Target Address array. The IRAM is implemented with single-port compiled RAMs (more suitable to standard-
cell technologies) however, dual-port SRAMs are used on FPGA targets as they come at the same silicon cost
while doubling the fetch bandwidth. The IRAM is split into even and odd banks to allow for single-cycle LIW
bundle access in the case where single-port RAMs are used. The IFE includes a per-HC configurable instruction
queue which buffers fetched LIW bundles, to be consumed by the downstream stages. A previous version of the
IFE included a single-block, non-banked IRAM configuration which resulted in pipeline stalls when the LIW
bundle wasn’t naturally-aligned [27] and the new design removes this limitation. Micro-architectural parameters
of IFE include the LIW issue width, IRAM size and block-size, the use of branch prediction and the detailed
micro-architecture (legacy LE1 or VThreads).

3.2 Mid-Pipe

The Mid-Pipe (Fig. 6) includes the decode logic, register files, bypass logic and issue queues per HC. Follow-
ing from the IFE, one of the non-blocked HCs is selected by the Thread_Select_Logic (bottom of Fig. 5) for
access to the array of instruction decoders. These are combinatorial blocks producing a large array of con-
trol fields which schedule the downstream pipeline resources. The output from Declogic includes the register
source/destination information which specifies the number of register sources (1-7), destinations (up to 2), type
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(scalar static/rotating GRPs, static/rotating predicates, static vector, the Link register and finally, the PC).
The relevant bits are extracted and passed through the port_allocation logic which dynamically allocates read
ports from those available in the register file. This level of internal decoding adds a little complexity however
it totally eliminates any LIW issue restrictions and permits the use of MIMO ISEs (Section 3.4). The register
file is clocked on the next rising edge and the resultant data are made available late in that cycle. At the same
time, the bypass logic settles and switches the necessary multiplexers which select, per HC, per register source,
either the register-fetched value or a value produced in the downstream pipeline stages. These operands are
finally clocked into the ISSUE_Q, waiting for issue to the execution data-paths. Fig. 6 shows the lightweight
Thread_Issue_Logic which selects, amongst the ready-to-issue HCs, the next one to dispatch downstream and
is based on a simple round-robin scheme. Micro-architectural parameters relating to the mid-pipe section are
the number of Systems, Contexts per System, HCs per Context, register file organization, available Cluster
Templates and Clusters per Context.

3.3 Cluster Architecture

Clusters are autonomous execution units including pipelined integer (SCORE), floating-point (FPCORE),
MIMO ISE data-paths (CCORE, not shown) and associated processor state. A high level view of the clus-
ter hierarchy is depicted in Figure 7a.

The SCORE encapsulates the data-path pipelines (IALU, IMULT) and the branch logic (BRU, not shown).
These are the pipelined execution units and support arithmetic, logical, shift and multiplication operations.
The IALU consists of primarily single-cycle data-paths and IMULT instantiates a configurable DesignWare
component with an explicit latency annotation. Use of configurable latency for the IALU (Fig. 7b) and the
IMULT (Fig. 7c) ensures that a high Fmax is achieved (via retiming) despite the series Thread_Select_Logic
in Fig. 6. This series dependency can also be broken with the explicit specification (via an HDL constant) of
a Thread_Pick_Stage (TPICK) however, at the expense of an extra clock in Branch/Jump resolution which
penalizes the IPC of the machine. Finally, the BRU is responsible for all updates to the per-HC PC and validates
the branch prediction, in the process re-steering the former to the correct address if a mis-predicted path was
followed.

The FPCORE includes an iterative divider unit (FDIV) and two 4-stage pipelined generic floating point
data-paths capable of performing single-precision addition/subtraction and multiplication. In addition, the
generic FP data-path includes format conversion from signed 32-bit integers to single-precision FP. FPCORE
also makes use of DesignWare IP.

Finally, the cluster includes a multiplicity of register files, one per-HC, each with a statically-defined number
of R/W ports and the Cluster Load/Store Unit (discussed in Section 3.5).
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(a) Cluster organization showing major configurable data-
path components such as SCORE, FPCORE and the Regis-
ter file organization, per HC.
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Figure 7: Cluster organization VThreads specifies up to 16 cluster templates with a template specifying the
SCORE, FPCORE, CCORE units; The designer selects, via HDL constants,the templates to be instantiated
(number of clusters).

3.4 Custom Core (CCORE) and Peripheral Wrapper

VThreads includes architectural support for custom MIMO ISEs with syllables extended to 64 bits to allow for
the encoding of a maximum of 7 register specifiers. There are 5 categories (CASM4, CASM5, CASM6, CASM7)
each supporting 4, 5, 6 and 7 such specifiers. CCORE incorporates the data-paths that implement all these
extensions and has direct access to the multi-ported RF.

To satisfy the deeply-embedded peripheral requirement of the Hardware aims of Section 1.2, VThreads was
architected to tightly integrate such streaming peripherals, operating in parallel to the instantiated context.
These peripherals are typically stream accelerators, designed with ESL flows [28] or directly in RTL, and
access the common system memory via pipelined ports. Fig. 8 depicts the schematic of the block. VThreads
peripherals include a programmer’s interface consisting of both mandatory and user-architected registers which
are read from/written to by individual HCs as well as from the host. Peripherals are instantiated at the System
level as shown in Figure 4; relevant parameters identify the name of the instantiated peripheral, the number
of LSU ports required and secondary channel arbitration. As it stands, the micro-architecture fully supports
the accelerators designed with ROCCC 2.0 [29]. The close integration of pipelined accelerators to the processor
core is a key characteristic of this design and a differentiator to the previous LE1 effort.

3.5 Cluster Load/Store Unit (LSU) and System-Level Data RAM

The Load/Store Unit (Fig. 9) is the interface to the system memory at the Cluster level. A Cluster can include
an instance of the LSU and supports a number of direct channels (ports) to system shared DRAM. Active HCs
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Figure 8: Periph_Wrap organization
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Figure 9: Cluster Load/Store Unit organization

arbitrate (per cycle) for the use of the available memory ports. The winner gets full access to all LSU ports and
can issue up to that number Load/Store RISCops. At the System level (Fig. 10) there are multiple, single or
dual-port compiled RAM blocks (Banks) supporting a maximum of PORTS*BANKS LD/ST RISCops per clock,
distributed across all contexts in the current system. The clock can be x1 or x2 further expanding the number
of ports on both ASIC and FPGA silicon. Supporting both single and dual port RAMs and clock multipliers
at RTL makes the processor implementation fully technology agnostic with FPGA targets making use of the
second port for free. In addition, configuration parameters specify the XBar architecture (single vs hierarchical)
and in the former case, the pipelining depth. Fig. 10 also depicts the system-level periph_wrap block and the
DBG_IF DMA Engine channels into the system memory, via that XBar. A further HDL parameter determines
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Figure 10: System Memory organization

the depth of the buffering for each issuing context; a value of 0 means that the output from the Effective
Address calculation is made available to the DRAM XBar at the end of the cycle. This choice allows for the
best single-thread performance (minimal Load-Use latency) however, at the expense of maximum operating
frequency.
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Figure 11: HC State transitions

3.6 The DBGIF and Hardware-accelerated PThreads

This section details the hardware-accelerated POSIX Threads primitives. PThreads was used as the primary
threading mechanism due to its low-level nature which maps well to the accelerator philosophy behind the
VThreads processor. The HCs can be in a number of states based on run-time events; these events include host
interventions (hostWrState, hostCmd) or execution of VT32PP native instructions such as vthread_create,

vthread_join, vthread_exit. All HCs maintain private state (transitions depicted in Fig. 11) with the FSM
being the synchronization point across all agents (host and HCs) requesting actions.

As shown, all HCs start in the debug state; a Host command (Host.wrState) advances a particular HC to
the ready state where it can participate in host-issued thread operations. When such a host command is issued,
the HC moves to the Running state where it stays there until A) the host issues an asynchronous terminate
(Host.cmd(vthreads_exit)); B) the thread exit normally (vthreads_exit); C) a join operation is issued
(vthreads_join). In the A) and B) cases, the HC state changes to ready, in preparation for re-allocation; in
the case of C), the HC enters the Join State where it remains until the parent thread joins; it then returns to
ready for re-allocation. Note that Terminated_async and Terminated_sync are transient states, currently used
as place-holders for future enhancements. The state is maintained via the threadStateTable hardware structure
as shown in Fig. 12.
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Figure 12: Thread State Table demonstrating the deep VThreads state used in accelerating PThreads operations.

The macro thread-affinity observed when executing software on VThreads is based on the simple Context
affinity (C-Affinity) and HC-Affinity hardware algorithms. These rely on two hidden state vectors (System-wide
registers, C_Affin, HC_Affin) which maintain a bit-mask associating Contexts and HCs, per Context, used
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in vthread_create operations, for that context. From Fig. 12, the Context state includes the state of all
HCs, C_Affin and HC_Affin vectors and two pointers, the cPtr and hcPtr, used below. Assuming Context0
issues a vthreads_create() operation, the state table of all HCs across all Contexts are searched in parallel to
identify Contexts with available HCs (vector hcAvail[]). This vector is anded with the C_Affin[] vector of the
requesting Context to identify all Contexts able to provide a new HC for execution (vector cRdy[]). The cPtr

associated with the latter Context is used to drive a find_first_one (with a biased starting point) combinatorial
block which resolves one out of all the available Contexts. This is clocked in the newCptr register, updates the
cPtr of the issuing Context and is further used to select the first available HC (using the same biased ff1 block).
The final output are the vectors newCPTR, newHCPtr which are read by the FSM which subsequently loads
the PC, LR and SP of the chosen Context, HC and drives the Galaxy-level pipeline signals for the latter to
commence execution in MIMD mode. Though not studied in this research, we are investigating other algorithms
in which closely-related threads (SPMD paradigm) are grouped on the same Context to maintain close tracking.
This is not elaborated further as its not implemented in the current RTL.

4 Processor Customization and Tool-chain

VThreads is a highly configurable, extensible processor architecture implemented in RTL VHDL and includes
a low-level C-based API with the whole Sw/Hw flow orchestrated by the LE1 Tool-chain. This section provides
more details into the customization capabilities of VThreads, discusses the developed tool-chain and demon-
strates user-related software aspects when programming the system.

4.1 Processor Customization

Figure 13: VThreads Customization using an XML template.

Galaxy-level HDL customization is achieved via an XML file as shown in Fig. 13 which is parsed to extract
a number of parameters. The example diagram RHS specifies three enumerated types (GALAXY_T, DARCH_T,

ISA_PRSPCTV_T, IARCH_T) which are used to configure the Galaxy (Systems and type); Systems (Contexts,
availability of scalar processor at system-level, Data memory architecture/block size/size/banks); Contexts
(VLIW width, ISA perspective, IFE architecture and Fetch width, Cluster Templates, HCs, IRAM banks/-
size/block size). The data-path components are described in ClusterTemplate. The extracted XML parame-
ters are used to populate a top-level RTL VHDL configuration file (mastercfg_pkg.vhd), precisely specifying
the hardware architecture, and are communicated to the processor hierarchy via VHDL generics.
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4.2 VThreads Tool-chain

The tool-chain developed for VThreads consists of the HP Labs VEX research compiler5 [26] along with scripting
infrastructure to process the generated assembly. The final output of the flow is a set of header files, incor-
porated on the host application, with the initialized IRAM and DRAM images. The low-level API is used to
communicate between a master authority (VHDL simulator/Host processor/x86 workstation) to a slave author-
ity (Insizzle/FPGA silicon) in a seamless way. The host driver and VThreads application is cross-compiled for
the host with gcc (Leon3/Microblaze/ARM target) resulting in the app.elf file. This is loaded via the Xilinx
xmd utility to the final FPGA silicon for real-time execution. The flow is depicted in Fig. 14 and the individual
tools are further elaborated below:
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Figure 14: VThreads tool-chain. Tools developed for the processor are shown shaded. The tool-chain permits seamless integration
of the application and the host to one of three targets (Insizzle cycle-accurate simulator, Modelsim RTL simulator and FPGA silicon)

1. xml2mm: The xml2mm Perl utility parses the system.xml file (Fig. 13), recovers all configuration
parameters and auto-generates a single mastercfg_pkg.vhd file which customizes the RTL database. It
generate also the machine description file (MM) which is input to VEX compiler along with the application
sources (App.c). The latter produces a number of assembly files (App.s).

2. Compiled Simulator Support: This is the first level of execution of the user application (App.c).
It consists of a collection of Perl utilities which use headers from VEX and auto-generate a number of
C files (App.cs.c). When all these files are combined together the resulting x86 executable faithfully
represents the behaviour of the user application, as it would when running on silicon. This mode of
operation supports a single Context/HC however, it is particularly useful for providing a Dynamic Trace
(the delta of the processor state affected by every dynamically-executing instruction) which is used, via
the Foreign Language Interface (FLI) mechanism below, to communicate with the VThreads RTL in
Modelsim Co-simulation of the application and the processor RTL.

3. 3-pass Assembler: The Assembler input is the scheduled assembly (App.s) produced by VEX which goes
through a number of transformation stages. These adjust the assembly to the target VT32PP perspective,
map the PThreads calls to custom assembly opcodes and allow use of the standard C library on both
the physical implementation and Insizzle, the VThreads cycle accurate simulator. Finally, the assembler
produces the iram.bin/iram.h and dram.bin/dram.h images/header files with the latter automatically
included with the API in the host application.

4. Insizzle: The VThreads Cycle-Accurate Simulator (Insizzle) is an extensible, interpreted simulator which
executes instructions as the VThreads hardware would6. Unlike the compiled simulator discussed previ-

5http://www.hpl.hp.com/downloads/vex/
6The deterministic DRAMmemory system is modelled accurately on Insizzle resulting in very high RTL/Silicon cycle correlation.
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ously, Insizzle includes the full architected state (including HCs, custom ISA support etc.). It is used to
confirm correct execution as well as producing various output heuristics which can be used to inspect/pro-
file the code. Insizzle requires the instruction and data binary files (iram.bin/dram.bin) produced by
the Compilation and Assembly stages along with the XML machine description. As shown in 14, Insizzle
is the second source of architectural Traces, used for RTL co-simulation.

5. VThreads API: The VTAPI is a C library statically incorporated in the host-resident application code.
It is used to identify, initialize and test features of the attached VThreads slave. In addition, it provides
a simplified interface to load the IRAM and DRAM of the latter, begin execution and poll the VThreads
state for completion. It provides a simplified DMA interface to the host. The API is designed to be used
in architectural, cycle-accurate (single and multi-threaded) and RTL simulation modes and on the FPGA
prototypes while it allows an external host (Ethernet proxy) to be used for stdio at runtime. A subset of
the VTAPI calls and relevant categories are listed in Fig. 15.

Category API Call Description

Instrumentation

vtApiSetUpInstrumentation Attach an event to an instrumentation counter

vtApiRdInstrumentation

vtApiextractStats Extracts statistics from the addressed target

vtApiPrintStats Prints statistics from the addressed target

State Extraction

vtApi<Rd/Wr>OneSGpr Read/Write one static GP register in <S.C.HC>

vtApi<Rd/Wr>OneSPr Read/Write one Predicate register in <S.C.HC>

vtApi<Rd/Wr>PC Read/Write PC of <S.C.HC>

vtApiDumpOneArchState Dump all arch state for context <S.C>

vtApiDumpFullArchState Dump all arch state for Galaxy <S>

Peripherals
vtApiRdPeriph Read one register in the addressed peripheral

vtApiWrPeriph Write one register in the addressed peripheral

vtApiLoadIramFromFile Load the IRAM of a given context from the file

vtApiLoadDramFromFile  Load the DRAM of a given system from the file

Standard access
vtApiLoadIram

vtApiLoadDram

Return the contents (long long) of an 
instrumentation counter

Ethernet proxy 
access

Load the IRAM of a given context with the array 
iramBin
Load the DRAM of a given SYSTEM with the array 
dramBin

(a) VTAPI set 1

Category API Call Description

Tests

vtApiDmaTest Full Test of the DMA capabilities of DBG_IF

vtApiSysTest Full System Test

vtApiRfTest Architected state test

vtApiPrivMemTest Private memory tests

vtApiPeriphTest Peripheral identification tests

vtApiDbgIfDiags Full DBG_IF diagnostics

Execution Control

vtApiCtrlWait

vtApiWaitOneHc

vtApiStartOneHc

vtApiForkMultiCHC0

vtApiJoinMultiCHC0

vtApiLoadAndStartOneHC Start the addressed S.C.HC

DBG_IF DMA vtApiDma Initiate polling-based DMA

Busy-waits on the VT_CTRL_REG of the addressed 
<S.C.HC> until DEBUG=1
Waits for the addressed <S.C.HC> to return to the 
DEBUG state (VTPRM)
 Starts the addressed <S.C.HC> (STATE=RUNNING) at 
given PC with given SP

Start the <S.C.0> in multiple contexts 
(0..contexts)
 Busy wait on <S.C.0> in multiple contexts 
(0..contexts). Return when all HCs are in DEBUG 
mode

vtApiIssueDbgCmdAndWaitFor
Completion

Wait for execution of Debug command on addressed 
<S.C.HC>

(b) VTAPI Set 2

Figure 15: VTAPI Subset functions. These are available to the embedded host with the Ethernet proxy being
used to re-direct host stdio to an x86 host.

6. FLI Processes: The VThreads tool-chain is architected to provide a dynamic (through Unix Queues)
execution trace to the RTL simulator. This is achieved with the Foreign Language Interface (FLI) of
Modelsim which is our simulator of choice. Typical usage includes the use of a dynamic trace, produced
either by the compiled simulator or Insizzle, to cross-check the VThreads pipeline in a VHDL test-bench.
The RTL includes a large number of test-points exposed at the top-level interface which, whilst non-
synthesizable (guarded with translate-off/on pragmas), are available in the HDL simulator allowing
full checking of a number of micro-architectural fields, per RISCop, per clock, per Context/System.

4.3 Application Environment

The VThreads tool-chain allows the programmer to seamlessly develop, compile and execute the target appli-
cation in a Unix environment. Fig. 16 depicts an extract from the DES benchmark (inner loop creating mul-
tiple threads, Section 5.3.4) which was run on the benchmarked processors (Leon3+FSU, Leon3MP+Custom
PThreads and VThreads, Section 5.3) with the only modification being the initialization of the FSU library
(pthread_init) for Leon3. The automation afforded by our tool-chain takes care of all low-level details result-
ing in a final executable which can be run on Insizzle or FPGA silicon.

5 Performance Evaluation

This section discusses the performance of VThreads compared to a number of other CPU cores for A) a number
of micro-benchmarks (section 5.2) and B) by executing four larger threaded applications (section 5.3). Four
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Figure 16: Code snippet showing the inner create/join operation for the DES benchmark.

processors are used in the study. The MicroBlaze and Leon3 are two scalar (single-issue) soft CPUs designed for
FPGAs (both) and standard-cell implementation (Leon3). Leon3 was included in this study as it was originally
considered for the ENOSYS CMP architecture (CPU on Fig. 2) and dismissed due to it’s scalar issue and lack
of sufficient RF bandwidth for MIMO ISEs. The MicroBlaze is included in the Xilinx tools (PlanAhead and
Vivado for the latest FPGA families). It is AXI4-based, highly configurable and can be optimized for either area
(3-stage pipe) or performance (5-stage pipe). The 5-stage configuration was used in this study. This processor
has Interleaved Multi-threading (IMT) PThreads support through the Xilinx Kernel (XilKernel). The Leon3 is
based on the SPARC-V8 RISC architecture from Gaisler Research. It is AHB-based, easily portable to both
standard-cell and FPGA silicon and comes in a multiprocessor configuration (Leon3MP). PThreads support
was implemented on Leon3 with the library developed at Florida State University7. Both implementations
above support IMT and use context switching to time-multiplex multiple software threads on a single CPU.
For the multi-core Leon3MP PThreads support was provided via a custom Sw/Hw solution developed as part
of this research (section 5.1). Finally, the last processor is VThreads configured as a single-System Galaxy with
between 1-8 single-HC Contexts and making use of the PThreads hardware-support (section 3.6) to provide
a minimalistic environment which allows for the execution of all benchmarks in this section. All processors
were benchmarked on silicon (Xilinx ML605, Virtex6 LX240T-FG1156) and in the case of the Leon3MP and
VThreads, they were also synthesized on the UMC 65 nm 10M standard-cell technology from Faraday Tech.
On FPGA silicon Microblaze operated at 75 and 150 MHz; the Leon3MP at 120 MHz (1, 2 cores), 86 MHz
(4 cores) and 75 MHz (8 cores); VThreads run at 120 MHz (1 Context), 100 MHz (2 Contexts), 75 MHz (4
Contexts) and 62.5 MHz (8 Contexts). The experimental set-up is summarized in Table 1:

Table 1: Processor architectures and PThreads support used in this study

Processor Number of
cores

Threading Library Threading Type Fmax

MicroBlaze 1 PThreads Interleaved (IMT) 75:150
Leon3 1 PThreads Interleaved (IMT) 120

Leon3MP up to 16 custom PThreads Chip-Multiprocessing
(CMP)

120:120:86:75

VThreads
CMP

up to 8 hardware-assisted
PThreads

Chip-Multiprocessing
(CMP

120:100:75:62.5

7http://moss.csc.ncsu.edu/~mueller/pthreads/
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5.1 Leon3MP and the Custom PThreads Library

To provide a realistic benchmarking target for VThreads, a custom PThreads implementation was devised for
the Leon3MP processor. The latter allows up to 16 AHB masters (a total of 12 CPUs) to be instantiated
within a single-tier 32-bit AHB system; Our custom PThreads library relies on CPU0 being the master pro-
cessor with all others activated on demand through the use of an interrupt register. A custom boot-loader
was developed to offset the initial CPU stack pointers (defined in crt0.s) for each Leon3 core and override
memory resetting when any CPU other than CPU0 is started. Additionally methods for performing thread
creation/termination/synchronization were devised using global arrays and data structures to make the state of
each CPU globally available. The subset of PThreads operations supported are pthread_create, pthread_exit

and pthread_join and closely track both the POSIX standard as well as the hardware PThreads support of
VThreads. To illustrate, consider only CPU0 being active at the start of execution. It reads system configu-
ration registers to ascertain the number of available processors in the Leon3MP system. Then the global state
table is initialized; this includes the state of each core in the multiprocessor and function and argument pointers
to the target routine argument for pthread_create. The other CPUs are then started however, they do not
run any initialization code (due to the modified crt0.s) and instead are directed to a function where they enter
a very tight polling loop, monitoring the state table entry relating to their ID. Execution of pthread_create

on a core causes the global state to be scanned to locate a currently inactive (unallocated) core; once identified,
its global state is updated to busy and the function and argument pointers are initialized to the values passed
to the pthread_create operation on the issuing core. The selected core then begins execution of that function
(thread). Upon completion it updates its global state table to available, to allow subsequent threads (issued on
other cores) to be allocated on it, finally returning to the tight polling loop. Note that if no cores are available,
pthread_create is stalled until another core is made available using the same mechanism. Though not ideal
from an energy-efficiency point of view, this mechanism does provide a very fast PThreads implementation on
Leon3MP; a second generation of this library is being considered to identify and take into account low-power
modes of the Leon3 processor thus dispensing with the use of tight polling.

5.2 Micro-benchmarking

This section evaluates the performance of basic PThreads operations across the processors and PThreads API
implementations of Table 1. The following test cases are identified:

• Test 1: Create: Measures the time elapsed between the master thread issuing a pthread_create and
the slave thread beginning execution. A timer is started prior to pthread_create and stopped within the slave
thread. In the case of VThreads, internal instrumentation is used to obtain a precise figure of the number of
elapsed clocks.

• Test 2: Join: Measures the elapsed time from the slave thread completing to the master thread being
aware of the termination of the slave thread through a pthread_join operation. A timer is started and the
slave thread exits; the master thread performs a pthread_join and once it is made aware of the termination
of the slave thread the timer is stopped from the master thread.

• Test 3: Create & Join: The slave thread in this test executes an empty function and the results
show the accumulated time taken for both previous tests. A timer is started, the master thread performs
a pthread_create directly followed by a pthread_join; once that happens the timer is stopped. Internal
hardware timer/instrumentation mechanisms are used to retrieve either the number of clock cycles or the wall
time with all data obtained from FPGA silicon. For the MicroBlaze data are generated using the XPS Timer IP
whereas the Leon3 and Leon3MP figures were obtained from the newlib clock() function. The latter returns
the number of microseconds since the start of execution and that value includes an error margin with the
higher the frequency the greater that error. In this study frequencies of 75 MHz (8-core) and 120 MHz (2-core)
were used, resulting in possible errors of ±37.5 and ±60 cycles, respectively which are negligible. Finally, the
VThreads results are generated also from FPGA silicon making use of the internal instrumentation peripheral.
This monitors a number of internal events across all Contexts and records them on 16 33-bit counters. These
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cumulative values are extracted by the host via the DBG_IF. The VThreads configuration was a 2-Context
System with both Contexts consisting of asingle HC. A single Cluster template with 2 IALUs, 2 IMULTs and
1 LSU channel was used per Context. A single-bank system DRAM was used. The tests were executed 1000
times to account for the non-deterministic nature of the IMT implementations and the mean time was used.
Table 2 depicts the results across all architectures with derived figures (for the standard-cell implementations)
displayed in italic. These derived (extrapolated) figures convert FPGA-to-ASIC real-time use Frequency Scaling
and measure the efficiency of the processors on ASIC technologies8. Results are discussed in section 5.4.

Table 2: Simple Benchmarks Results (Clocks+real time (usec))

Silicon
Target

Processor Fmax Create Join Create & Join

Cycles Time Cycles Time Cycles Time

Virtex6
LX240T

MicroBlaze IMT @
75MHz

2185 29.13 1418 18.91 3542 47.23

MicroBlaze IMT @ 150
MHz

3254 13.02 1937 7.75 5129 20.52

Leon3 IMT @
75MHz

15600 208.00 359100 4788.00 374025 4987.00

Leon3 IMT @ 120
MHz

18360 153.00 581280 4844.00 598680 4989.00

Leon3MP (2 CPUs) CMP @ 120
MHz

240 2.00 0 0.00 240 2.00

LE1 (2-contexts) CMP @ 100
MHz

32 0.32 32 0.32 64 0.64

UMC65 nm
1.2V, 25C

Leon3MP (2 CPUs) CMP @ 500
MHz (extr.)

240 0.48 0 0.00 240 0.48

LE1 (2-contexts) CMP @
481.7 MHz

32 0.07 32 0.07 64 0.13

5.3 C benchmarks

This section presents more substantial application benchmarks threaded at fine and coarse levels. In coarse-level
threading, a single pthread_create operation is executed per available core at the beginning (initiated by core
0). Each thread then performs the relevant computation and finally pthread_join is used to synchronize all
active threads. In this case the number of pthread_create and pthread_join operations used is equal to N-1
where N=number of CPUs. Fine-grain threaded benchmarks make deliberately as much use of the PThreads
support as possible. Also each benchmark takes into account the physical cores available with the coarse-grained
benchmarks always creating enough threads to fully utilize all cores and each thread computing an equal, if
possible, fraction of the workload. Fine-grained benchmarks differ in that at certain points within the code
multiple threads are created to saturate the architecture. These threads compute their fraction of work and are
then synchronized to the main thread. Results were extracted from FPGA silicon for both the IMT (Leon3,
MicroBlaze) and CMP (Leon3MP, VThreads) architectures.

• IMT Architectures: An issue experienced in some benchmarks in the coming sections related to the on-
board timers for the IMT Leon3 and MB. When clocked at 75MHz the 32-bit MB timer overflowed after 57
seconds which was simply not long enough for the successful execution of all instances of the benchmark.
A separate process, running as a thread, was investigated to track this overflow and increment a second
counter however introducing this housekeeping thread added overheads in thread interleaving. Similarly
for the IMT Leon3 the timers returned odd numbers executing on silicon. It was discovered that the

8The expert reader will notice that the Leon3MP results are based on the Xilinx Coregen DDR2 controller which can’t be
benchmarked on our trial ASIC implementation. The VThreads results however scale perfectly as the processor uses an internal
single-port-compiled-SRAM based memory. Still, the Leon3MP results are valid under the assumption that an ASIC implemen-
tation of the aforementioned Coregen component exhibits the same latencies at the higher Frequencies achieved in the ASIC
implementations in Section 6.2
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timer only incremented for CPU0 while it was executing (disabled during context switch) thus skewing
the results. As a result of these issues IMT systems were not studied further in the following sections.

• CMP Architectures: The multiprocessor architectures (Leon3MP and VThreads) were evaluated with
a varying number of active cores (1, 2, 4 and 8) and for the case of Leon3MP, the extrapolated results
(identified with Italics in Tables 3 through 6) scale the real-time obtained from FPGA execution to derive
the ASIC real-time. The benchmarks were compiled for Leon3MP with sparc-elf-gcc, -O3 optimization
level and emulated FP support9. For VThreads the Tool Collection of Section 4 was used with -O4
optimization switches on VEX. The maximal CMP configurations are: A) Leon3MP: 8 CPUs, 4-way
32KB instruction cache, 4-way 16KB data cache per CPU at a system clock of 75MHz; B) VThreads: 8
homogeneous Contexts, each comprised of a 2-issue VLIW with 2 IALUs, 2 IMULT units and a single LSU
channel per Context. A 256KB/4-bank system DRAM is used with the Galaxy clocked at 62.5 MHz. To
ensure fairness in our standard-cell comparison, the same VThreads memory system (256KB/4-banks) was
migrated to the Leon3MP replacing the DDR2 controller). When implemented on a 65 nm 10M process
Leon3MP achieved 412.9 MHz and the VThreads CMP 398.2 MHz respectively at 8 cores. Standard-cell
results are discussed in section 6.2.

5.3.1 Mandelbrot Set (Multi-threaded)

The Mandelbrot Set [30] is a mathematical set of points whose boundary is a distinctive 2D fractal shape named
after the mathematician Benot B. Mandelbrot. This benchmark was selected as it is a highly parallel and truly
data-independent. Each point can be calculated in parallel based on a predefined magnification setting and
origin coordinates. A second set of co-ordinates is then passed to calculate the pixel value at a specific position.
In this study a 160 by 480 Mandelbrot fractal is computed using a 10-colour palette and a maximum iteration
value of 100. Originally the benchmark was split into contiguous sections (slices) of the image which resulted
in large computational load imbalance. Subsequently, computations were split on a row-basis resulting in an
interleaved output with the load more evenly balanced across threads. In coarse-grained threading a master
thread generates a new thread on each available core tasked to compute a section of the output image. The
fine-grained threading uses multiple PThreads operations. This are ((Size / N umber of C ores) ∗ (N umber of
C ores − 1) with Size equal to the number of output (76,800 based on a 160x480 image). The master thread
iterates through all output pixels and creates new threads for each. It then computes a pixel value itself and
synchronizes with all other threads. This is performed in a loop until all output pixels have been generated.
This results in 0 PThreads operations pairs on single core and up to 67,200 PThreads operations pairs on 8
cores. Table 3 shows the real time taken for the execution of the benchmarks on the Virtex6LX240T device and
the extrapolated Leon3MP ASIC results.

Table 3: Mandelbrot consolidated results. Data shows the real time (usec) for all architectures executing on FPGA (Virtex6
LX240T-FG1156) and on 65 nm standard-cell silicon (UMC65 nm from Faraday Technologies, Typ. conditions: 1.08V, 25C). The
Leon3MP UMC65 results (Italic) are extrapolated from the FPGA execution.

Threading Platform 1-core 2-core 4-core 8-core

Coarse

Leon3MP (40 nm FPGA) 12234.96 6149.95 4337.86 2521.29
Leon3MP (UMC65) 2936.39 1475.99 875.94 463.49
VThreads (40 nm FPGA) 2224.97 1314.52 906.09 681.44
VThreads (UMC65) 533.99 272.89 166.83 85.55

Fine

Leon3MP (40 nm FPGA) 12250.82 6322.52 4605.69 2797.64
Leon3MP (UMC65) 2940.20 1517.41 930.02 514.29
VThreads (40 nm FPGA) 2408.72 1357.75 973.60 771.24
VThreads (UMC65) 578.09 281.87 179.26 96.83

9http://www.jhauser.us/arithmetic/SoftFloat.html
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5.3.2 JPEG Decode (Multi-threaded/Multi-programmed)

This JPEG decoder is based on a small C implementation called NanoJPEG10. modified to remove dynamic
memory allocation and file I/O in order to run on embedded VLSI processors. A 64x64 JPEG image (Lena) was
used as the input data set. Due to the block-based nature of JPEG there are data-dependencies between macro
blocks (MBs) with pixels computed possibly relying on other pixels in the same or adjacent MBs. As a result,
the coarse-threaded version uses eight instances of the JPEG decoder with all instances decoding a separate
image. For fine-grained threading it was noted that at the end of MB decoding an inverse discrete cosine
transform (IDCT) is performed on each column of pixels within that MB (colIDCT), called eight times, once per
column. This loop was modified to split the work over all available cores and then use a unique identifier along
with the total number of parallel threads to specify whether or not to perform the computation. Fine-grained
threading is performed on a 64x64 image resulting in 96 MBs and up to 672 PThreads operation pairs in the
8-core configuration. As the amount of computation performed within that function is small it serves as a good
example to demonstrate the low-latency threading support in Leon3MP and VThreads. Real-time results from
executing on JPEG benchmark are shown in Table 4:

Table 4: JPEG Decode consolidated results. Data shows the real time (usec) for all architectures executing on FPGA (Virtex6
LX240T-FG1156) and on 65 nm standard-cell silicon (UMC65 nm from Faraday Technologies, Typ. conditions: 1.08V, 25C). The
Leon3MP UMC65 results (Italic) are extrapolated from the FPGA execution.

Threading Platform 1-core 2-cores 4-cores 8-cores

Coarse

Leon3MP (40 nm FPGA) 227.18 139.65 144.10 148.05
Leon3MP (UMC65) 54.52 33.52 29.10 27.22
VThreads (40 nm FPGA) 145.38 103.55 94.91 123.85
Vthreads (UMC65) 34.89 21.50 17.48 21.30

Fine

Leon3MP (40 nm FPGA) 26.09 24.62 33.48 39.25
Leon3MP (UMC65) 6.26 5.91 6.76 7.22
VThreads (40 nm FPGA) 16.60 20.60 28.91 48.40
Vthreads (UMC65) 3.98 4.28 5.32 6.08

5.3.3 Sobel Filter (Multi-threaded)

The Sobel Filter algorithm is typically used as first stage processing in feature-detection in which a source image
results in an output grey-scale image displaying ”edges”. Each pixel in the source image is used in calculations
with its surrounding pixels and two masks are used to find horizontal and vertical transitions in order to detect
edges and corners. The algorithm is computationally-intensive however, each output pixel can be calculated
independently. Inputs to the algorithm are a 640x480 image and two 3x3 mask arrays. Coarse-grained threading
results in between 0 and 7 PThreads operation pairs. This example is split in an interleaved fashion similar to
the Mandelbrot Set where each thread (core) processes a full row of the input image and then moves down a
set number of rows. The real-time results recorded from FPGA silicon are shown in Table 5:

Table 5: Sobel Filter consolidated results. Data shows the real time (usec) for all architectures executing on FPGA (Virtex6
LX240T-FG1156) and on 65 nm standard-cell silicon (UMC6 5nm from Faraday Technologies, Typ. conditions: 1.08V, 25C). The
Leon3MP UMC65 results (Italic) are extrapolated from the FPGA execution.)

Threading Platform 1-core 2-core 4-core 8-core

Coarse

Leon3MP (40 nm FPGA) 10131.32 5097.15 3619.16 2260.82
Leon3MP (UMC65) 2431.52 1223.31 730.81 415.61
VThreads (40 nm FPGA) 4947.30 3071.59 2219.78 2053.55
Vthreads (UMC65) 1187.35 682.39 408.72 257.82

Fine

Leon3MP (40 nm FPGA) 10286.05 5575.03 4398.11 3119.44
Leon3MP (UMC65) 2468.65 1338.01 888.10 573.45
VThreads (40 nm FPGA) 4952.16 3287.04 2507.72 2569.92
Vthreads (UMC65) 1188.52 682.39 461.73 322.65

10http://keyj.emphy.de/nanojpeg
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5.3.4 Data Encryption Standard (Multi-threaded)

The Data Encryption Standard (DES) was developed in the early 1970s and published as an official standard
in 1977. It has since been surpassed by other such standards as it is considered insecure due to the key size
being small enough to be susceptible to brute force attacks. The algorithm uses a 64-bit key to generate a set
of 16 48-bit sub-keys used to encrypt 64-bit blocks of plain-text, through a 16 stage Feistel Network, into 64-bit
blocks of cipher-text. This benchmark can be threaded with multiple threads processing 64-bit plain-text and
cipher-text pairs as they are data-independent. Similarly to previous benchmarks DES is parallelized both at
coarse and fine-grained levels. 64KB of data are processed resulting in 8192 blocks of 64-bits to encrypt. In
coarse-grained threading a thread is instantiated within each available core and then works across the input
data using its knowledge of the total number of threads and the size of the data to be encrypted whereas in the
fine-grained threading the maximum number of PThreads library operations pairs executed is 7,168, based on
8,192 blocks. The real-time extracted from FPGA silicon and the scaled ASIC results are shown in Table 6:

Table 6: DES consolidated results. Data shows the real time (usec) for all architectures executing on FPGA (Virtex6 LX240T-
FG1156) and on 65 nm standard-cell silicon (UMC65 nm from Faraday Technologies, Typ. conditions: 1.08V, 25C). ). The
Leon3MP UMC65 results (Italic) are extrapolated from the FPGA execution.

Threading Platform 1-core 2-core 4-core 8-core

Coarse Threading

Leon3MP (40 nm FPGA) 1400.53 704.93 498.13 310.61
Leon3MP (UMC65) 336.13 169.18 100.59 57.10
VThreads (40 nm FPGA) 907.89 564.97 444.15 401.52
Vthreads (UMC65) 217.89 112.99 81.78 50.41

Fine Threading

Leon3MP (40 nm FPGA) 1392.65 711.13 541.89 358.27
Leon3MP (UMC65) 334.23 170.67 109.42 65.86
VThreads (40 nm FPGA) 909.20 530.65 391.42 400.56
Vthreads (UMC65) 218.21 110.16 72.07 50.29

5.4 Discussion of results

Fig. 17 depicts the speed-up of VThreads over all the measured CPUs for the micro-benchmarks of Section
5.2. As expected, the 2-Context, 100 MHz configuration demonstrates a speed-up of between x40-x3.91 over
the Microblaze/IMT (XilKernel) and x478->x15000 over Leon3/IMT (FSU PThreads). For the CMP imple-
mentations, VThreads demonstrates a speed-up of between x3.13 to x6.25 compared to the dual-core 120 MHz
Leon3MP on the VIRTEX6LX240T device. It is clear that the IMT implementations can’t match the two
multi-core architectures with the basic PThreads support; A full implementation such as FSU-PThreads in par-
ticular imposes substantial performance overheads which can’t be justified when minimalist OS-like capability is
required for deeply-embedded applications such as the ENOSYS platform of Fig. 2. The capability is very well
supported by both Leon3MP and VThreads. Targeting UMC65 technology the 481.7 MHz VThreads demon-
strates a speed-up of between x3.6 -x7.23, for create and join, compared to the very tight custom PThreads
implementation of the dual-core 500 MHz Leon3. As the Leon3MP data are extrapolated it is expected that
results will improve somewhat for Leon3MP when using the very same memory subsystem as the VThreads.
Overall, micro-benchmarking quantifies the benefit of very fine-grained, low-latency PThreads support compared
to state-of-the-art commercial and research processors and API implementations.

Fig. 18 depicts the VThreads speed-up across all silicon configurations, threading granularity and core count
for the more substantial workloads against the Leon3MP+Custom PThreads. The dashed black line identifies
the limit with VThreads being faster than Leon3MP (result >1.0). Focusing on the 1-core results (no thread-
ing), conclusions can be drawn on the relative efficiency of the micro-architectures; VThreads demonstrates a
substantial speed-up on the Mandelbrot workload which can be attributed to the use of banked local memories
(both IRAM and system-wide DRAM) compared to the caching system of Leon3MP. Also, the 2-issue LIW
efficiency is evident in the remaining benchmarks compared to the Leon3MP scalar issue with the Sobel filter
showing slightly >2.0 speed-up - this can be attributed to the differences of a trace-scheduling compiler such as
VEX against the gcc 3.3 used for Leon3MP.
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Figure 17: VThreads speed-up over all processors, all technologies for the synthetic benchmarks (Micro-benchmarks)
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Figure 18: Consolidated results: VThreads speed-up over all processors, all technologies for the C-based benchmarks (All
technologies, threading mechanisms)

For the threaded versions of the workloads we note that VThreads maintains a >x5 performance advantage
on Mandelbrot against the Leon3MP on standard-cell whereas the FPGA speed-up varies from x4.73-x3.63.
For the JPEG decoder, VThreads is 52% faster (4-cores) and 20% faster (8-cores) at coarse-threading (FPGA)
with ASIC results being slightly better (66% at 4 cores, 28% at 8 cores). The situation is slightly different for
the fine-grained JPEG in which the VThreads is 20% and 16% faster for 2 and 4-cores (FPGA) and slower
by 19% at 8-cores. Standard-cell results still demonstrate that VThreads is faster on this benchmark (38%
at 4-cores and 19% at 8-cores). VThreads maintains a lead on the highly-parallel coarse-threaded Sobel filter
benchmark being 66%-10% faster (FPGA), 79%-61% faster (ASIC). At the fine-threaded level it is faster by
70%-21% (FPGA) up to 96%-78% (ASIC). Finally, for the coarse-grained DES workload VThreads is faster at
2 and 4-cores (by 25%-12%) while being 23% slower at 8-cores (FPGA) with the ASIC results showing that
is faster by between 50%-13% (2-8 cores respectively). On the fine-threaded DES workload VThreads is 34%
faster (2-cores) and 11% slower at 8-cores (FPGA) with the ASIC results showing it’s faster by 51%-31% (2
and 8-cores respectively),

Overall, VThreads with its hardware-assisted PThreads support demonstrates better performance to the
Leon3MP system particularly for highly-parallel workloads such as Mandelbrot and Sobel filter; the pattern
on more complex benchmarks such as JPEG decode and DES is slightly different with the Leon3MP system
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demonstrating better performance at higher core counts (8). This can be attributed to the very fast custom-
PThreads implementation in which all cores are active in a very tight polling loop in a shared-memory system
whereas in VThreads, the DBG_IF PThreads mechanism in Section 3.6 is a natural synchronization point
which can be further optimized if implemented in a pipelined fashion such as the MPI coprocessors of [31].

6 Silicon Implementation Results

An important mandate for this work was the re-architecture of the legacy LE1 CPU to a technology-independent
form. This is discussed in this section with three implementations carried out. These include mature 40 nm
FPGA, 28 nm SoC-FPGA and 65 nm ASIC technologies. In the latter case, an 8-way Leon3 CMP system
was implemented with identical number of CPU cores with VThreads Contexts and utilizing the same memory
subsystem (256KB, 4 banks). The use of the VThreads DRAM subsystem was done to level the field and
provide a more accurate comparison across the ASIC implementations of the CMPs.

6.1 FPGA implementation

Data were collected for a 40 nm device (Xilinx V6LX240T-FG1156) and a 28 nm SoC FPGA(z7045 device on
the Xilinx ZC706 development board). The 40 nm target was synthesized with the older (deprecated) xst-based
flow whereas the z7045 target used of the advanced Vivado environment (2014.2). It should be noted that
the LX240T-FG1156 results didn’t include the re-timing option which further increases the performance of
the wide-multiplexer-heavy VThreads design. In addition, the z7045 results don’t include data for the Leon3
CPU as the host processor in this case is a high-speed (800 MHz) dual ARM A9 Cortex CPU. Tables 7 and 8
summarize the FPGA implementation results:

Table 7: FPGA Implementation Results. Xilinx V6LX240T (40 nm) - Not-retimed

Processor configuration FLOPS LUTs SLICES RAMB36E1 RAMB18E1 DSP48E1 Fmax
CPU=1 Leon3 14225 18650 8284 8 28 4 120

Contexts=1
DBANKS2 15147 20501 9319 45 256 7 100
DBANKS4 15640 20912 9147 37 264 7 100
DBANKS8 15150 22276 9163 45 256 7 75

CPU=2 Leon3 18,524 26,541 10,900 14 44 8 120

Contexts=2
DBANKS2 18260 29103 11999 69 256 11 75
DBANKS4 18586 30064 12488 69 256 11 75
DBANKS8 18079 31920 13093 69 256 11 50

CPU=4 Leon3 27,088 42,215 15,662 26 76 16 86

Contexts=4
DBANKS2 26432 45490 17732 85 288 19 75
DBANKS4 23635 47346 18441 117 256 19 50
DBANKS8 24194 49266 20551 85 288 19 50

CPU=8 Leon3 44187 73437 25581 50 140 32 75.9

Contexts=8
DBANKS2 39360 78655 28218 149 320 35 50
DBANKS4 37617 80534 29033 149 320 35 50
DBANKS8 34283 91007 30261 213 256 35 25

From Table 7 (40 nm device), VThreads experiences significant Fmax degradation with increasing number
of cores and number of data banks, (100 MHz at 1 context, 2 banks down to 50 MHz (8 contexts, 4 banks)
unlike the Leon3MP system which is over 50% faster (75.9 MHz) at 8 cores. This is to be expected as Leon3MP
is a scalar processor with a blocking, single-port data cache whereas VThreads uses a multi-banked memory
system. It should be noted that VThreads is a more advanced architecture and, due to the configurability and
extensibility aspects, is by nature more complex. Our experience is that the VIRTEX6LX240T silicon is less
forgiving on mux-heavy designs compared to the equivalent Stratix IV 230 device which shows substantially
better performance. On the 28 nm part (Table 8) VThreads performs much better with the 8-core, 4-bank
configuration being x2.8 faster compared to the equivalent 40 nm configuration. This can be attributed to both
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Table 8: FPGA Implementation Results. Xilinx z7045 SoC (28 nm)

Processor configuration Slices Slice Regs Slice LUTs RAMB36E1 RAMB18E1 Fmax

Contexts=1

DBANKS1 2753 2584 9070 32 2 159.2
DBANKS2 2583 2573 8646 36 3 153.1
DBANKS4 2656 2592 8778 36 3 145.9
DBANKS8 3969 2682 13777 36 3 138.3

Contexts=2

DBANKS1 5541 4956 18029 32 4 123.8
DBANKS2 5015 4932 16490 40 6 137.4
DBANKS4 5072 4950 16583 40 6 131.0
DBANKS8 7817 5116 26658 24 6 123.8

Contexts=4

DBANKS1 10311 9687 34160 32 8 120
DBANKS2 9751 9642 32445 48 12 121.1
DBANKS4 9979 9664 33646 48 12 119.5
DBANKS8 10772 9716 35040 48 12 102.8

Contexts=8

DBANKS1
DBANKS2 18926 19069 64934 64 24 119.0
DBANKS4 19834 19076 66674 64 24 113.9
DBANKS8 20550 19126 69054 64 24 92.7

the new synthesis environment (Vivado 2014.2), and the more advanced FPGA fabric.
With the ever increasing silicon mask costs making ASIC engineering a most expensive endeavour for aca-

demic departments and industry it is our view that the 28 nm part is a realistic silicon target for combining a
mature, stable software/hardware ecosystem (ARM) with the low-latency PThreads support of VThreads. It
is noted that at the implementation limit, the z7045 device accommodates 3 homogeneous Systems each with
8 Contexts for a total execution throughput of 24x2 RISCOps at 83 MHz (48 IPC max).

6.2 Standard Cell Implementation

A final comparison can be made between the Leon3MP and the VThreads VLIW CMP. The study was para-
metric and included automated synthesis and prototype place-and-route flows for various configurations of both
CMPs. These included 1-8 core Leon3MP CMP with the VThreads memory subsystem replacing the DDR2
controller, 1-8 Contexts VThreads CMP for both 2-wide (IW2) and 4-wide (IW4) configurations. The ASIC
implementation was on the Faraday/UMC 65 nm Library (10M) targeting the LL-RVT (Low-K) UMC process.
Typical-case conditions (VCC =1.08V, 25C) were selected for front-end synthesis with Cadence RTL Compiler
(RC) V10.10. All Leon3MP and VThreads configurations were constrained for 500 MHz operation (2ns) and
clock uncertainty of 100 ps. The retiming and auto-ungrouping features of RC were used, as well as low-power
implementation techniques such as operand isolation and clock-gating. Front-end synthesis was RTL-activity-
driven with the activity produced by running the default diagnostics for the Leon3MP system and executing
a small C-benchmark on VThreads. These were used to drive front-end dynamic and leakage power optimiza-
tions. Finally, to enable more back-end freedom, certain switches were enabled to allow for Total-Negative-Slack
Optimization. Both designs were automatically floor-planned (prototype flow); Power was measured post-place-
and-route using full Signal-Integrity (SI) effects (full extraction within Encounter) and assumed 0.2, 0.5 and 0.5
toggle rates for primary inputs, design flip-flops and clock-gate cells respectively. Back-end synthesis results are
summarized in Fig. 19. Fig. 20 presents the floor-plans and VLSI layouts of the CMP designs.

From Fig. 19, the 2-wide VThreads configurations show an area reduction of between 1.26% to up to 10%
(8-Context) compared to Leon3MP. The situation is different for the 4-wide configurations which exhibit a
silicon area increase from 7.3% to 28%. This is to be expected as the 4-wide IFE LIW packing mechanism is
more complex compared to the 2-wide. In terms of max. operating frequency, the IW2 configuration was slower
by 4.6% (4-Contexts) with the IW4 configuration being slower by up to 27.7% (8-Contexts). Finally, both 2
and 4-wide configurations exhibit better average power ranging from 64.8%-57.6% (IW2) and 45.8%-9% (IW4).
This is to be expected as VThreads overwhelmingly uses clock-enabled registers whereas the Leon3MP uses
synchronous resets with (most of the times) re-circulating multiplexers. Finally, the authors note that the final
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Figure 19: Percentual comparison of VThreads (Issue Width 2,4) vs the Leon3MP CMP for equivalent number of CPU cores.
The VThreads 256 KB 4-bank memory system was used on Leon3MP

performance can improve further if a bottom-up flow is used. This is currently inhibited by the extensive use
of HDL generics both in Leon3MP and VThreads which makes each instance of major blocks such as Context
unique thus requiring manual intervention. It is expected that removal of the generics would make the back-end
process substantially simpler and result in a higher Fmax for VThreads.

7 Related work

The authors in [32] discuss Hthreads, a mechanism to abstract the CPU/FPGA interface and seamlessly ex-
ecute threaded applications on either using the PThreads programming model. They propose an abstract
hardware/thread interface (HWTI) and support the compilation of data-parallel sections of code onto hard-
wired accelerators. In addition, the authors in [33] discuss distributed, hardware-based Micro-kernels, based on
the PThreads programming model as a framework for heterogeneous, FPGA-based MPSoCs parallel software
development. They propose a system where each CPU core includes a Hardware Abstraction Layer (HAL)
library and all make use of modified Hthreads hardware micro-kernel cores. They performed their investigation
on a heterogeneous MP-SoC system (Xilinx Virtex5 series) consisting of a hard-PPC and multiple soft MicroB-
laze processors. Whilst sharing the idea of using the PThreads model to express application parallelism, we
note that VThreads is a highly-customizable and extensible, technology-agnostic architecture and as shown,
can be targeted to both field-programmable silicon (section 6.1) and standard-cell technologies (section 6.2).
At the same time, VThreads provides a full software-based environment and it’s performance can be further
enhanced via custom MIMO ISEs and pipelined accelerators to closely match the processing requirements of
the application. Similar to this work is [34] which makes use of the task flow graph of an application with
Kahn Process Networks (KPNs) to efficiently design MPSoCs with hardware accelerators (Hardware Threads,
HWTs) for partially-reconfigurable systems and streaming applications. REconos [35] is an extension to the
eCos RTOS, making integrated use of software threads and hardware cores (hardware threads) to provide
POSIX-compliant services on FPGAs. We note that the authors make use of a single synchronization point
(where hardware interact with software threads), similarly to the VThreads DBG_IF FSM being the synchro-
nization point for all pthread operations. The authors propsed the use of distinct calls (e.g., pthread_create()

and rthread_create() for Sw and Hw threads respectively). The latter is not an issue with VThreads as
only Sw threads can be created on the unallocated HCs. Along the same lines, the Berkeley Operating sys-
tem for Re-programmable Hardware (BORPH) [36] provides unified Unix-like interface based on inter-process
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(a) 8-core Leon3MP system with a 256KB TCRAM (b) Single-system 8-context/single HC VThreads CMP

Figure 20: VLSI-Macro-LayoutsFloor-plans and VLSI Layouts on UMC65 nm process, typical conditions (1.08V, 25C).

Communication (IPC) mechanisms to FPGA-resident "hardware-processes" for the easy migration of software
components onto such devices. The ARPA-MT processor [37] proposes a technology-agnostic, scalar/SMT im-
plementation of the MIPS32 architecture with hardware-support for OS primitives (real-time-clock RTC, task
management and semaphore-based synchronization) in the form of system coprocessor 2 (Cop2). The coproces-
sor implements a register interface, supports a multitude of task manipulation/synchronization instructions and
is under the control of the host MIPS CPU. It provides very fine scheduling granularity (5-13 clocks) making it
suitable for a number of hard real-time applications. Whilst VThreads wasn’t conceived as a real-time proces-
sor, it also supports very low latency PThreads primitives and is suited more to high-throughput applications,
making use of all available parallelism (ILP, DLP and TLP) combined with hard-wired accelerators. Ziavras et
al [31] discuss the use of a pipelined coprocessor for implementing Message-Passing-Interface (MPI) primitives
directly in hardware. This work complements the findings of the researchers by investigating the use of a com-
plex FSM-based design to accelerate PThreads operations. Finally, we note [38] as a methodology similar to the
ENOSYS project; the authors leverage Object-Oriented (OOP) and aspect-driven (AOP) approaches to specify
and shield the system behaviour from the system implementation as a collection of Sw/Hw components. The
ENOSYS approach allowed for the tagging of objects as Sw/Hw and, under the control of the DSE environment,
the use of Action Language to describe system functionality and the intelligent allocation of such objects into
A) Hardware accelerators (behavioural synthesis with FalconML); B) onto software threads executing on the
bare-metal LE1 VLIW CMP.

8 Conclusions

This paper discussed VThreads, a novel VLIW CMP designed to provide lightweight OS-like services into
deeply-embedded applications requiring very fast thread management capabilities, typically not provided by
software implementations. VThreads, building on from it’s predecessor, demonstrated better performance and
power efficiency compared to the Leon3MP CMP in a variety of workloads whilst providing much improved
application optimization opportunities via it’s unique configurability. In the course of this work a number of
micro-architectural issues were identified and these are noted here as suggestions for future research, to improve
the performance of the processor. In particular VThreads relies heavily on single-port memories as the primary
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target was standard-cell technologies; modern 28 nm+ FPGAs provide high speed (250 MHz operation on the
Kintex7 fabric) dual-port RAM blocks which can be time-multiplexed to provide 4 independent R/W ports.
A third-generation micro-architecture will address this and allow for such multi-ported configurations. This
would permit fetching from multiple HCs per clock thus improving the performance of the IFE and permitting
for true SMT implementations instead of the current VMT approach. Further performance degradation was
noted due to the use of a shallow (1-stage deep) pipeline between the clients addressing the banked DRAM.
This proved to be a performance bottleneck (particularly on FPGA targets) and will also be addressed. It
is noted that the IFE FSM, responsible for the packing of LIWs (and the separation of embedded 32-bit
constants) is perhaps overly complicated and limits the frequency of the VThreads design, particularly on 4-
wide configurations (Fig 19). On the software side, we plan to provide more support for PThreads primitives
and integrate the Trimaran environment to to allow the use of the predicated ISA. A video of a dual-context,
dual-issue VThreads system executing the Mandelbrot benchmark in the context of the ENOSYS FP7 project
can be seen in https://www.youtube.com/watch?feature=player_embedded&v=Ltp4xWcEqr0.
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