
Reliability and performance enhancements for SSD

RAID

Alistair A. McEwan and Muhammed Ziya Komsul

Department of Engineering, University of Leicester, LE1 7RH, UK

Abstract

NAND based solid state storage devices are almost ubiquitously used in
safety-critical embedded devices, and recent advances have demonstrated
RAID architectures specific to solid state storage devices resulting in in-
creased data reliability, with architectural enhancements to solve the age
convergence problem. However, these techniques require devices to be taken
off-line while components are replaced—consequently these devices are of
limited use in hard real time systems. There are further real time issues in
that the conventional architectures ignore other characteristics of solid state
devices such as garbage collection and meta data management. In this paper
we investigate techniques that support the replacement of aged devices in
the array in such a way that we provide continuous system reliability. We
also improve the performance overhead of the reconstruction process using a
novel data migration policy. The techniques are implemented and tested in
a trace-driven simulator, and results demonstrate that average I/O response
time is improved by up to 39% with improvement by up to 45% in its stan-
dard deviation, overheads in terms of device replacement time are negligible,
and read performance is improved by an average of 8%.

Keywords: , SSD RAID, Real time storage, SSD garbage collection, SSD
RAID architecture, Hot swapping and data migration, Parity distribution

1. Introduction

Many embedded systems, including those that are safety critical, have to
observe strict constraints in terms of shock resistance, energy consumption,
physical size, and other factors. Magnetic hard discs are typically not well
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suited to systems with these constraints due to their mechanical nature—
however solid state storage (SSD), otherwise known as flash memory, enjoys
many advantages. However, perhaps the single most important issue when
using SSD devices in high reliability environments is the fact that they phys-
ically wear out over time—normally related to the number of times parts of
the device are erased—meaning that data stored on the device will become
unreliable over time. This failure characteristic is different to traditional
magnetic mediums that typically fail non-deterministically.

One approach to enhance reliability in the case of wear-out is the use of
Error Correction Codes (EEC). This is parity-style data that is stored in the
meta data of each page of memory, and is used to cross-check, or repair, the
data it relates to at the point where data is read. However there are limits
to how much it can improve reliability as the potential to repair is limited.
Where capacity of storage is an issue, multiple level cell (MLC) technology
may offer benefits over single level cell (SLC) devices. However MLC devices
suffer from greater unreliability—particularly when the device ages—than
SLC due to a lower erase endurance. MLC also do not lend themselves to
ECC techniques as the size of meta data areas is limited.

Recent advances in storage technology have applied Redundant Array
of Independent Disk (RAID) to SSD storage in order to improve reliability
and data integrity when a single device or component fails. Common RAID
techniques such as RAID 4 and RAID 5 hold parity data to reconstruct
original data in case of block errors. However, the usage of these techniques
in SSD suffers the problem of wearing out all the devices simultaneously.

In previous work a novel RAID-based architecture was presented to en-
hance the reliability of an SSD storage system[1], mitigating this problem by
guaranteeing wear imbalance between components in the array. This is done
using two primary techniques. The first is an uneven parity distribution—
which refers to ratios of the parity data across devices of the array—that
ensures erases across components are distributed unevenly, and the second is
a device copy/swap algorithm that moves data around and manages lifespan
as components reach endurance limits. The limitation of this architecture is
that this copy/swap operation requires the array to be taken off line and so
whilst this mechanism significantly enhances reliability, it restricts is usage
in hard real time systems as it is not able to serve requests during the com-
ponent replacement period. Furthermore, it does not consider flash specific
operations such as garbage collection and meta data managements, both of
which may affect the real time characteristics of a system.
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The contribution of this paper is an investigation into several novel tech-
niques that may be incorporated into an SSD RAID that improve the effi-
ciency of the replacement process for hard real time applications—proactive
hot swapping, data migration that coordinates operations with a garbage col-
lector, and a parity redistribution mechanism. To utilize the benefits of hot
swapping, a semi hybrid RAID mechanism is also introduced that enhances
performance when there is no active device replacement process.

The paper is structured as follows: in Section 2 we present motivation
and background for this work. Section 3 presents the architectural design of
the system. Section 4 presents proactive hot swapping, Section 5 presents
data migration, and Section 6 presents the parity redistribution mechanism.
Section 7 presents the semi hybrid RAID configuration. Experimentation and
analysis are given in Section 8, and we draw some conclusions and identify
areas of future work in Section 9.

2. Motivation and Related Work

Early works in the area of SSD RAID storage include [2], which explores
the viability of using RAID architectures as a reliability enhancement. Age
convergence mechanisms—the process by which parity is distributed and
thereby component ageing managed—were further developed in [3]. The con-
tribution of these works was to minimise risk of simultaneous device failure
by unvenly distributed parity techniques. However these works do not take
into consideration real time and performance related issues of flash arrays.

[4] describes the implementation of a flash management framework in
synthesizable Verilog that was used in a series of experiments exploring out
of order execution, dynamic scheduling, and multi chip parallelism. The
framework was expanded in [5] to allow for simulation and experimentation
in the case of real time issues.

The device replacement process was originally presented in [1], and lim-
itations of this process with respect to real time systems were discussed in
[6]. In summary, the replacement process involves changing the most aged
component with a hot spare, whilst also ensuring that uneven parity distri-
bution is maintained by redistributing it (using the parity distribution of [7]).
This involves moving data and reconstructing parity on other devices. These
operations necessarily increase write amplification and device replacement
time—write amplification refers to the additional writes caused by opera-
tions such as garbage collection and wear levelling, and is formulated as the
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ratio of total writes performed to the writes requested by the host [8]. This
presents limitations in real-time environments.

A number of studies aimed at providing on line and efficient RAID recon-
struction have been conducted for magnetic hard disks, such as [9, 10, 11, 12].
Although they offer on line replacement, these mechanisms considerably in-
crease the amount of I/O to the storage systems and thus the average re-
sponse time of the system grows, as shown in [11]. Existing SSD based
replacement techniques either do not provide online replacement [2] or apply
HDD based RAID reconstruction mechanisms [13, 14].

Write amplification in RAID has been extensively discussed in literature.
MiPiL, for instance, minimise data migration while maintaining uniform data
and the parity distribution of RAID-5 [15]. Moreover, a diagonal coding
scheme is introduced for system-level wear levelling which prevents rapid
wear out due to updating dependencies between actual and parity data[16].
To create wear imbalance in the case of sequential workloads a forced random
write approach with partial stripe is presented in [3]—however this approach
increases write amplification while reducing lifespan. To address this an ef-
ficient lifetime management that prevents additional parity updates while
creating age differentiation is given in [17]. These mechanisms only con-
sider parity related write amplification, ignoring the high write amplification
caused by device replacement and parity redistribution.

There have been several techniques proposed to replace solid state devices
in case of failure. Diff-RAID [2] provides a device replacement which shifts
parity according to the next parity assignment—however a significant differ-
ence is that it applies a reconstruction method based on magnetic devices
and therefore increases write amplification and device replacement time due
to additional parity movement operations. To reduce to parity data over-
heads, a configurable RAID mechanism for SSDs is presented in [14]. The
mechanism stores less important data using RAID 0 (which does not provide
redundant data for recovery in case of failure) while more important data is
stored using parity based RAID levels. Although this reduces performance
overheads incurred from parity data, it does not provide a replacement policy
for a complete device failure—only partial levels of data recovery.

Non-deterministic behaviours of NAND flash memory have been inves-
tigated in several works, including garbage collection confliction with I/O.
These studies propose either partial cleaning policies with the help of ad-
ditional memory[18, 19], file system support[20], or pre-emptible garbage
collection [21], but they do not consider the context of RAID.
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Figure 1: System architecture block diagram

To guarantee average I/O latency while migrating data, [22] presents
a control-theoretic approach which dynamically adjusts the speed of data
migration by periodically measuring I/O performance of the magnetic storage
devices. Thus, it migrates the majority of data during idle time periods or low
density streams. [23] presents an idle time detection method that achieves
zero impact on the foreground application whilst rebuilding the RAID.

3. Architectural Design

The architecture of the system and internal communication paths are il-
lustrated as a block diagram in Figure 1 and is based on [7]. It consists of the
solid state devices, memory components to store meta data information, and
the FPGA-based management components. The management component
consists of 3 main blocks. The first block—Device Replacement—contains
proactive hot swapping, coordinated data migration, and parity redistribu-
tion functionality. It monitors the Global Flash Translation Layer (FTL) in
order to make decisions about activating or deactivating these functions.

The second block is the Global FTL as it takes a holistic view of the
whole array, rather than a view of a specific SSD device—this is the view
described by the pseudo code data structure in Data structure 1—an array
of this structure is held globally, with one array entry per device and this is
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Data structure 1 Global view of a single device

struct ssd_metadata {

boolean GC;

DR_type DR;

integer parity_percent;

integer erasures;

integer freeblocks;

integer hardthreshold;

queue ioreq request_queue;

sequence lpa_table;

sequence page_status_table;

}

what enables the raising of various functional behaviours to a global level.
For each device a record is kept as whether or not garbage collection is cur-
rently active, device replacement is ongoing, the percentage of parity to be
stored on the device, the number of erasures performed, the number of free
blocks remaining, the hard threshold for garbage collection, the queue of in-
coming I/O requests, a table of logical to physical addresses and the page
status (valid data, invalid data, or free space). The Global FTL manages ad-
dress mapping (logical to physical addresses) using these tables, and garbage
collection functionality. To reduce the performance overhead of meta data
operations, the FTL physically stores the page status tables in NvSRAM,
and SRAM is used for physically storing address mapping tables and the
statistical information for each individual device in the array.

The third block—the RAID controller—provides primary RAID function-
ality. The view of the overall RAID array is described by the pseudo code
data structure in Data structure 2, and consists of a note of the type of the
array (RAID-4, RAID-5, Diff RAID, or semi hybrid), the number of devices
in the array (not counting spares), the erasure limit threshold for the devices
in the array (we assume the devices are homogenous), a boolean variable
indicating if the device replacement process is currently active, an array of
metadata structures describing the state of each device in the array, and the
stripe mapping table which contains details of all stripes of data stored in
the system. This stripe mapping table is stored in SRAM memory. The semi
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Data structure 2 Global view of RAID array

struct RAID {

RD_type raid_type;

integer number_devices;

integer threshold;

boolean active_replacement;

sequence ssd_metadata ssd_array;

stripe_map table;

}

hybrid controller dynamically reconfigures components in the array, and the
global view of the array, after device replacement in order to improve read
performance by manipulating this structure.

Data structure 3 Stripe mapping table entry

struct stripe_map {

list devices;

integer parity_device;

integer logical_address;

}

An entry in the stripe mapping table is described by the pseudo code data
structure in Data structure 3 and consists of a list of the physical devices that
the data in question is stored on, the device index where parity is stored, and
the logical address of the data. It is only necessary to store a single logical
address, as this refers to an entry in the ssdmetadata address mapping table
lpatable where, for a given datum the logical address maps to the physical
address where the datum is stored.

Each device maintains its own queue of incoming requests, described by
the pseudo code in Data structure 4. A request consists of a logical block
number that the request targets, arrival time, the type of request (which may
be read, write, erase, or generated by garbage collection or device replace-
ment), the size of the request, and the prioity—which may be either high or
low.
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Data structure 4 Device specific I/O request

struct ioreq {

integer blkno;

integer time;

request_type type;

integer size;

request_priority priority;

}

4. Proactive Hot Swapping

The proactive hot swapping mechanism presented in this section enables
device replacement and array reconstruction to be carried out while the array
remains on line before the given device reaches a critical bit error rate. When
device replacement is needed, incoming write requests are redirected to a
hot spare device at FTL level and the stripe mapping table in the FTL is
updated. However reading from the failing device causes additional I/O, due
to the need to read and recalculate using parity blocks.

A device can be considered in one of three states by the Global FTL. S0 is
a fully enabled state—the device is available for all I/O read/write activity.
S1 is a read only state where the device only responds to read instructions
and does not serve any writes. S2 is a disabled state where the device is not
accessible for any I/O read/write activity.

All devices in the array—including all future devices to be used are ini-
tialised to S0 (Line 1) and the next spare device identified, before the hot
swap manager enters the infinite loop that monitors the whole system (Line
2). The index of the most aged device is noted on each iteration of the loop
that follows in the local variable eldest—which then terminates when one
device exceeds the safety threshold (Line 3–Line 5). The hot swap manager
then records that it is in the process of hot swapping the device by setting the
active replacement flag and the state of the device in question (Line 6)—this
ensures that the FTL knows to migrate write operations from the old device
to the new device. Parity limits are then redefined across the array for all the
remaining devices and the new device (Line 7). The hot swap manager then
busy waits until all data has been migrated—indicated by the FTL resetting
the active replacement flag (when the cold data migration process reports
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Algorithm 1 Managing proactive hot swapping

1: ssd array[].state, spare ← S0, RAID.number devices+1
2: while true do
3: repeat
4: eldest ← greatest(ssd array[].erasures)
5: until eldest > RAID.threshold
6: ssd array.eldest.DR, active replacement ← S1, true
7: update(ssd array[].parity percent)
8: while active replacement do
9: end while

10: if RAID raidtype = hybrid then
11: ssd array[eldest].DR, spare ← S1, spare+1
12: else
13: ssd array[eldest].DR, spare ← S2 spare+1
14: end if
15: end while

that all data has been migrated) (Line 8, Line 9). If a hybrid RAID config-
uration has been selected (Line 10) then the replaced device can be retained
for read purposes (Line 11), else it is discarded (Line 13), and in both cases
the next spare device is identified.

Dynamic I/O location is the process by which I/O destination requests
are determined during hot swapping and is described informally in Algorithm
2. Read operations that hit the old device remain unchanged, write and
update operations are always redirected to the new device, with update also
invalidating the data on the old device. Firstly, we identify the spare end
eldest devices (Line 2, Line 3) and then extract the set of devices which
are needed to service the current request (Line 5) by identifying the entry
in the stripe mapping table that corresponds to the logical address in the
meta data (Line 4) identified in the incoming request. If the eldest device
is part of the request, and there is a device replacement ongoing, and the
request is for an update, then it needs special consideration (Line 6). In this
case, updates are redirected to the new device and the old data is invalidated
(Line 7, Line 8), but read and write operations proceed as normal (Line 10).
Update operations that do not target the eldest device, or when not in device
replacement mode also proceed as normal.

The proactive technique reduces the probability of failure in multiple
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Algorithm 2 Dynamic I/O location

1: while true do
2: spare ← RAID.number devices+1
3: eldest ← greatest(ssd array.erasures)
4: ? RAID.table[x].logical address = request.blkno :
5: devices needed ← RAID.table[x].devices
6: if eldest ∈ needed devices ∧ active replacement ∧ request.type =

update then
7: write(spare, request)
8: invalidate(eldest, request)
9: else

10: Do I/O operations as normal
11: end if
12: end while

devices simultaneously as it starts data migration before a device fails. How-
ever, there will generally be some data which is not updated during the data
migration process as it has not been accessed and will have to be actively
migrated before next device replacement operation. To address this, the
following section introduces a cold (coordinated) data migration operation
where cold data in the failing device is partially migrated to the new device
using an idle time detection approach.

5. Coordinated Data Migration

Device replacement and garbage collection tasks both generate (internal)
I/O requests. Cold data migrations are usually triggered when there is an
idle time, or low density workload patterns are detected. In the case where
garbage collection also uses idle time detection (see [24]) as implemented in
this architecture, the possibility exists that the sum total of idle time peri-
ods is insufficient for completing all of the internal I/O requests generated.
Therefore when the migration operation overlaps with an ongoing garbage
collection process in the target device performance of the system degrades.

Figure 2 examples this problem in three scenarios. The first is an idle time
reconstruction mechanism on a traditional magnetic disk array, and shows
that to minimise the performance overhead in reconstruction, I/O requests
generated to serve reconstruction (DRT) are triggered when an idle time
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Figure 2: A comparison of device replacement mechanisms

period (white space on the X-axis) is detected. However this scenario enjoys
two important properties: there is no garbage collection, and there are no
time constraints as it is assumed other disks are not degrading.

These two properties are not enjoyed by the SSD array and this is shown
in the other two scenarios. In the second, both data migration and garbage
collection occur on the new spare device (only the new spare device needs
considered as no new data is written to the old device, and garbage collection
is not performed on the old device)in the same idle time periods and generate
a number of internal I/O requests. The drawback is that the idle time periods
need to be longer in order for all these requests to be served. Whenever the
mechanism detects an idle time period, the requests generated are inserted
into the I/O queue of the corresponding device. Since the device replacement
time must be as short as possible, these tasks can be assigned a higher priority
than general I/O instructions. However invoking the garbage collector causes
incoming requests to be blocked and I/O is adversely affected, indicated by
the horizontal arrows in the white space idle time.

The third scenario is one in which coordinated data migration is intro-
duced to interleave the overlapped requests. It monitors the ongoing garbage
collection processes in the array via the Global FTL (RAID.ssd array.GC).
If garbage collection and device replacement processes attempt to access the

11



target device during the same idle time period, the mechanism reschedules
them by manipulating the I/O request priority levels to guarantee system
response time. In normal operation, I/O request priorities are fixed. How-
ever if the target device is running out of free space and consequently has
to garbage collect immediately then I/O requests generated by garbage col-
lection take a higher priority than those of data migration, otherwise the
data migration I/O requests maintain a higher priority. The third scenario
of Figure 2 illustrates this and shows that no I/O block is delayed, and the
highest priority operations can complete.

Algorithm 3 Coordinated data migration during hot swapping

1: while true do
2: ∀ req ∈ ssd array[x].request queue |
3: req.type = DRT ∨ req.type = GC • req.priority ← low
4: if RAID.active replacement. ∧ ssd array[x].GC ∧ idletime then
5: if ssd array[x].freeblocks > ssd array[x].hardthreshold then
6: ∀ req ∈ ssd array[x].request queue | req.type = DRT •
7: req.priority ← high
8: else
9: ∀ req ∈ ssd array[x].request queue | req.type = GC •

10: req.priority ← high
11: end if
12: else
13: Normal scheduling is performed
14: end if
15: end while

The decision process for an individual device (indexed x) is informally
described in Algorithm 3. Initially the priorities of all the I/O requests
generated by reconstruction and garbage collection tasks are set low (Line
2, Line 3). If there is a request pending for both device replacement and
garbage collection (Line 4) the resultant action is dependant on the number
of free blocks (Line 5). If this is higher than a predetermined threshold (Line
5) then device replacement tasks may be assigned a high priority (Line 6,
Line 7), otherwise garbage collection is set to the higher priority (Line 9, Line
10) as the memory is running out of free space. If there is no overlapping of
these requests, scheduling continues as normal (Line 14).

As improving the efficiency of idle time detection is not in the scope of
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this study, a basic idle time detection function is adopted. To detect an idle
time, the last access time of the corresponding memory is stored in a register.
If there is not any request after a predefined time period this is considered
as an idle time, and idle time is reset when the next request arrives.

6. Cost Effective Parity Redistribution

The SSD RAID presented in this paper and in related work permit a
parity redistribution process during device replacement—and require strict
control over parity distribution percentages to maintain acceptable ageing
ratios. However redistibuting parity at device replacement time has two
main bottlenecks: it increases write amplification, and it requires additional
data movement between old and new devices—this adversely affects I/O
performance. The cost effective parity distribution mechanism in this section
addresses these problems and it achieves this without needing additional
expensive data movements. This mechanism redistributes the parity data
from the old device during the execution of (host) writes (hot data migration),
or during a cold data migration period.

6.1. Parity redistribution with hot data migration

In this section we describe parity redistribution with hot data migration
by exampling two scenarios. The scenarios differ from each other with regards
to the status of the target stripe (full or partial), and the location of parity
and data in the stripe. In the first scenario, given a partial stripe update
with a component targeting the device being replaced, updated parity is not
directly relocated to the hot spare device as, being the new device it is only
allocated a small parity percentage. Instead, the device with the highest
parity percentage that does not hold a component of the partial stripe being
updated is selected and the updated parity written to it. This eliminates
the need for an extra write operation and stripe unit migration required by
previous techniques and therefore improves write amplification.

The second scenario is the case where the data being updated is a com-
ponent of a full stripe across the array—the difference with the first scenario
is that there is no free device to which updated parity can be relocated. In
this scenario there are two possibilities: the first possibility is where parity
distributions across the array is already balanced in terms of age distribu-
tion ratios and so parity must start migrating to the new device, the second
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possibility is where an existing device in the array needs additional parity
located to it in order to maintain age ratios.

In the case of the first possibility, the updated data is written to the
new hot spare device and the updated parity to the device on which the
data element originally resided, and this can be performed in a single step.
This eliminates the need for an additional write and swap operation required
by previous techniques. In the case of the second possibility, two steps are
necessary: firstly the updated data is written to the same device on which
it originally resided; then the data stripe which resided on the second eldest
device in the array is moved to the new hot spare device and the updated
parity written to this next eldest device in the array. This improved write
amplification over previous techniques due to fewer datums being moved.

6.2. Parity redistribution with cold data migration

Cold data migration refers to a period where the array is in an idle time
(not currently servicing I/O requests). Actions taken in a cold data migration
depend on the type of the piece of data being moved—determined using the
dynamic strip mapping table. If the datum being moved is parity, then
the same process as for hot data migration is used as this occurs no extra
performance overheads. If the datum being moved is actual data then it is
directly relocated to the new hot spare device.

This allows for parity data to be migrated to suitable target devices dur-
ing idle time periods. This dynamic movement of data whilst the array is
kept available to service I/O requests is the major enhancement over ex-
isting techniques—made possible because the old device is not immediately
discarded upon needing replaced and is kep available for reading. This results
in significant improvement in write amplification and I/O response times.

7. Semi-Hybrid RAID

Proactive hot swapping initiates data migration from an ageing device to
a new device before endurance limits become critical. Once the replacement
process is complete there are two copies of valid pages: one in the old device,
and one in the new device. This is a typical RAID 1 redundancy model,
and may be exploited to improve read performance. In order to exploit
this improved read performance further in this section we present a semi
hybrid RAID architecture, where, when a device replacement is started the
mechanism configures old and new devices in a manner similar to RAID
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Figure 3: Semi hybrid RAID after the second device replacement

1. In doing so, the old device is not immediately discarded and is instead
retained for a period in order to service some (non ageing) read requests. The
architecture is referred to a semi hybrid RAID as it is effectively imposing a
RAID 1 configuration over a device and its replacement, in a manner that is
transparent to the SSD RAID architecture of the system.

This gives rise to a more complicated hardware and meta data architec-
ture as the array is used through time as each device may be shadowed by a
single older device that is used to service read requests; however the benefit
is that a higher throughput of read requests can be serviced—particularly in
the presence of the idle time detection techniques.

Figure 3 illustrates an example of the semi hybrid RAID after the second
device replacement process (we present the second replacement as it illus-
trates two instances of architecture emerging). At this point the system con-
sists of devices 3, 4, 5, 6, and 7. The semi hybrid RAID 1 mechanism consists
of the old devices 1 and 2 which have been replaced, shadowing the replace-
ment devices 6 and 7. When further devices are removed from the array—for
instance device 3 being replaced by device 8—these pairs would also form in-
dividual semi hybrid RAID configurations. New data is always written to the
new device, with appropriate meta data updates. It is possible—depending
on the age of the array—that each individual device in the array is shadowed
by a RAID 1 partner old device.

Algorithm 4 shows informally how the semi hybrid raid works. The next
queued access request is picked off the request queue and stored in the vari-
able request (line 2). If the hybrid configuration is active and the request is a
read (line 3) the mechanism then checks the location of the data by inspect-
ing meta data(line 4)—this informs the device as to whether or not there
is a second valid copy in the array, and incurs a very minimal performance
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Algorithm 4 Supporting read in Semi Hybrid RAID

1: while 1 do
2: request ← RequestQueue()
3: if request.type == read ∧ HR == 1 then
4: location ← CheckMetaData(request.data)
5: if location.backup == null then
6: data ← Read(data, location.new)
7: else
8: if GC ∨ DR then
9: data ← Read(location.backup)

10: else
11: data ← (Read(data, location.new)
12: ⊕ Read(data, location.backup))
13: end if
14: end if
15: else
16: We are not using a semi hybrid configuration
17: end if
18: end while

overhead as the meta data status table is stored in local nvRAM. If the data
is not backed up with a semi hybrid arrangement (such as device 3 in Figure
3) location.backup will be null (line 5) and the data is read as normal (line
6). If the data is stored in a chip backup with semi hybrid raid but there is
garbage collection or device replacement taking place on the new chip (line
8) then data is read solely from the backup location (line 9), otherwise the
data is read in parallel from both devices (line 11) which brings a slight per-
formance enhancement. If the semi hybrid raid configuration is not active,
or the original request was not a read (line 14) then all access requests are
processed as normal. Any data writes are considered in an analogous man-
ner: if the semi hybrid raid is not active then data is written as normal. If
it is active, data is always written to the new device but meta data is also
checked to ensure that any backup copy is invalidated.
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8. Experimentation, Results, and Discussion

Experiments have been conducted using the Microsoft SSD simulator [25].
Each of the techniques presented have been implemented in the simulator,
and experiments performed simulating device replacement. The experimental
SSD array consists of five initial and five spare devices. The configuration
parameters are as follows: reserved free blocks are set at 15%, minimum free
blocks at 5%, and a chip contains a single SSD device with 1024 blocks per
device, 64 pages per block, and a page size of 4 kB. Page read latency is set
at 0.025 ms, write latency at 0.2 ms, block erase latency at 1.5 ms, and page
stripe size at 4 kB. The primary reasons for selecting these parameters are
consistency with previous reliability mechanism experiments. Experiments
were conducted with synthetic traces (as published captured traces are not
sufficient to age devices to desired levels) to analyse performance, device
replacement time, and write amplification. Usage characteristics parameters
required for the traces were set with a request size of 4 kB, an inter arrival
time of 3 ms, and a probability of read access of 0.2 as default.

8.1. Performance Evaluation

In this section two performance evaluations are given. Firstly, system
response times are measured during the replacement process to evaluate ef-
ficiency of the proactive hot swapping and coordinated data migration. Sec-
ondly, read performance of the system is evaluated with the semi hybrid
RAID once a device replacement is completed. Inter arrival time of requests
is varied over a normal distribution with average times of 2, 3, and 4.2 mil-
liseconds (ms). Only traces dominated by random I/Os that cause frequent
update operations on the parity device are considered as maximum reliability
is achieved with a workload of small random writes. Basic idle time detection
approach for garbage collection and device replacement tasks is used.

Figure 4 illustrates performance characteristics of three mechanisms—
the online reconstruction of Section 5, the proactive hot swapping without
garbage collection of Section 4, and the proactive hot swapping with garbage
collection of Section 5. For a short inter arrival rate (2 ms), proactive hot
swapping exhibits improvement in response time by 16% over basic online
reconstruction; as inter arrival increases, proactive hot swapping exhibits fur-
ther improvements. The system with co-ordinated garbage collection exhibits
the most significant improvement across the range of inter arrival times—
most clearly demonstrated by the results for an inter arrival time of 4.2 ms.
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Figure 5: Standard Deviations of re-
sponse times varying inter-arrival time
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Figure 6: Average read response time after device replacements

Standard deviations of system response times are given in Figure 5, and
they reflect similar positive results. Both the proactive method, and the
proactive method with co-ordinated garbage collection exhibit smaller de-
viations across all three inter arrival times—with the co-ordinated garbage
collection approach showing the smallest deviation in all three experiments.

Figure 6 shows a comparison of read performances of the proactive hot
swapping using the parity distribution of [1] and the semi hybrid RAID
of Section 7 after two and five device replacements. Request size of read
operations was fixed at 8 kB and probability of read access configured as
0.4. Results exhibit only marginally better performance in the semi hybrid
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parity redistribution
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Figure 8: Write amplification for random
write workloads

architecture. However, the read performance of the semi hybrid RAID can
be further improved with lesser parity percentage on the most aged device.
Typically the most aged device holds 80% of total parity and 20% data and
so the amount of migrated data is low when device replacement is triggered.
As the percentage of data migrated to a new devices increases, the possibility
of incoming read requests hitting rises, and so lesser parity percentages will
improve the hit rate and consequently performance.

8.2. Device Replacement Time

Device replacement time refers to the wall clock time it takes from initi-
ating a device replacement, to completing the process. This is important as
the longer a replacement takes, the more likely it is that another device will
tend towards an endurance threshold. Figure 7 presents the results of com-
paring device replacement time of the on line cost effective parity distribution
of Section 6 to the off line Diff-RAID mechanism of [2]. Default configura-
tion parameters are used, and inter arrival times varied. Device replacement
times are normalized to enable direct comparisons. The cost effective par-
ity distribution mechanism exhibits a speed up of 34% over Diff-RAID—this
is entirely due to proactive hot swapping. As inter arrival time increases so
does the performance benefits due to co-ordination of idle time periods. This
means that the total time taken to replace a device is approximately 35%
shorter when proactive hot swapping is used.
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8.3. Write Amplification Analyses

Figure 8 shows the effect on write amplification under two different garbage
collection approaches for Diff-RAID and the cost effective parity distribution
with proactive hot swapping of Section 6. The first is idle time based, where
cleaning takes place in the background. The second is threshold based where
cleaning is triggered based on the amount of free space remaining. Both
employ a greedy policy which selects the dirties blocks to clean. Under both
garbage collection approaches, cost effective parity distribution mechanism
exhibits improved write amplification with the idle time approach exhibiting
the largest percentage improvement—Diff-RAID exhibiting an amplification
factor of nearly 3, and cost effective parity distribution of only 2.

9. Conclusions and Future Work

In this paper we presented investigations into several techniques that en-
hance real time and performance capabilities of our SSD RAID array design
such that they could be implemented in our FPGA based FTL. The proac-
tive hot swapping mechanism predicts and initiates in advance when swap-
ping will be required thereby maintaining system availability and reducing
overheads of the on-line reconstruction. This eliminates a non-deterministic
behaviour with respect to time. Garbage collection aware data migration fur-
ther improves system performance during the replacement process. Simula-
tion results demonstrate that the proactive garbage collection aware replace-
ment mechanism significantly enhances I/O response time with low standard
deviation during device swapping, which gives confidence in moving towards
a system that provides real time guarantees. The results also indicate the on
line parity redistribution technique improves write capability and replace-
ment time compared to other existing works. Moreover, the semi hybrid
RAID improves read performance after device replacement is complete.

As future work, we intend to investigate enhancing our mechanism with a
real time garbage collector to determine the worst case execution time during
replacement to address this potential area of non-determinism. A further
important area of investigation is to measure the implementation costs of
each of the techniques presented in a Verilog implementation as part of our
system-on-chip design in order to determine real estate efficiency on different
FPGA architectures upon which our FTL controller may be synthesised.
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