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Abstract

Flash-based storage systems offer high performance, robustness, and reliabil-
ity for embedded applications; however the physical nature of flash memory
means that there are limitations to its usage in high reliability applications.
In previous work, we have developed RAID architectures and associated con-
troller hardware that increase the reliability and lifespan of these storage
systems. However, flash memory needs regular garbage collection and this
presents two issues in a high reliability context. The first issue concerns re-
sponse times as when a garbage collector is active, the flash memory cannot
be used by the application layer. This non-determinism in terms of response
is problematic in high reliability systems that require real-time guarantees.
The second issue concerns lifespan of flash chips. If the garbage collector is
allowed free rein over erase operations while garbage collecting, this affects
management of the lifespan of each SSD in the array.

In this paper we present an enhanced, dynamic, real-time garbage collec-
tion method for SSD RAID that does not ignore the strict age distribution
management, while offering deterministic response times for access. Real-
time efficiency is further improved by dynamically coordinating garbage col-
lection across each device in the array. Our simulation results indicate that
the dynamic garbage collection technique maintains the age distribution at
a level that does not affect reliability of individual devices. This is evidences
using various synthetic and realistic traces dominated by random I/O loads.

Keywords: , Solid state storage, Redundant array of independent disk, Real
time storage, Garbage collection
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1. Introduction

Flash memory is used as a primary storage medium for embedded sys-
tems because of a number of properties including high performance, low
power consumption, shock resistance, and small physical size. The price of
flash memory continues to decrease while density keeps growing with new
technologies such as Multi-level cell (MLC) and Triple-level cell (TLC).

Although these technologies increase the density of flash memory, they
suffer from lower erase endurance than Single Level Cell (SLC). Unlike mag-
netic disks, the lifespan of each flash cell depends upon the amount of erase
operations as these slowly wear out cells. To mitigate this, Error Correc-
tion Codes (ECCs)—usually stored in meta data of each page— are used [1].
However, this technique is insufficient for MLC and TLC devices, and for
component failures due to the limited size of the meta data area.

Conventionally, Redundant Array of Independent Disk (RAID) systems
have been used to provide data protection against individual device failure,
and to improve integrity of storage. However, RAID can not be directly
applied to SSD arrays because of the risk of wearing out individual devices
simultaneously [2]. [3] addresses this problem using a RAID architecture that
prevents simultaneous wearing out of components by distributing parity data
unevenly across all devices in the array. However this ignores the determin-
istic response time requirements of hard real time systems—primarily due to
uncoordinated garbage collection.

Write and read operations are performed at page level (the smallest stor-
age unit) but erase operations are performed at block level (a number of
pages). A page can not be reused until the whole physical block is erased.
An erase is the most time consuming operation of flash memory—nearly
ten times longer than that of write. When applying an update-in-place pol-
icy (as used in magnetic devices), each update invokes an additional block
erase—which slow downs system performance to an unacceptable level. To
overcome this, flash employs out-of-place updates where the updated data
is located to a new (free) place, invalidating the old data. After a period of
time the memory suffers from a lack of free space due to these invalid pages.
To reclaim them, garbage collection is performed.

These cleaning operations significantly degrade system performance and
directly affect the lifetime of the device, and so there have been many tech-
niques proposed to minimise these effects such as [4, 5, 6, 7]. Existing mech-
anisms are mostly triggered based on the amount of free space remaining
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[8]. Once started, the garbage collector blocks all incoming requests for a
non-deterministic time. This is problematic for real time system where guar-
anteed response times are required.

In [9] a pre-emptive mechanism is presented where incoming requests are
served at predefined points. The algorithm employs two triggering threshold
levels to distinguish the priority of garbage collection over I/O requests.
However it is challenging to set suitable thresholds for pre-emption where
the flash memory is used in a concurrent architecture such as our RAID
array where strict management over ageing ratios is required. As each device
has different workload weight due to (intentional) unevenly parity, constant
thresholds do not increase the number of erasure for individual devices at
the same rate. This causes the age distribution ratios to diverge.

In this paper we introduce a garbage collector into our RAID architecture
that dynamically adjusts the thresholds of the pre-emptive method, taking
into account age distribution ratios. We improve real time efficiency, deter-
ministic access times, and system performance by globally coordinating the
state of each garbage collector in the array.

The paper is organized as follows: in Section 2 we present motivation and
related work. The architecture of the mechanisms is described in Section 3.
Section 4 presents the dynamic threshold mechanism for garbage collection,
with the dynamic thresholds calculations presented in Section 5. The mode
controller mechanism for performance enhancement is presented in Section
6, and Section 7 presents our experimental results. Finally, in Section 8 we
draw conclusions and describe future plans.

2. Motivation and Related Work

In studies such as [10] it is shown that the amount of garbage collection is
significantly affected by workload type. For instance, small random write and
update operations increase and slow down the amount of garbage collection,
shown in [11]. As the reliability mechanism in [3] specially focuses on ap-
plications with high amounts of random and small sizes of write operations,
garbage collection needs to be controlled.

One of the key points for efficient garbage collection is to determine an
optimum threshold for triggering cleaning. This is particularly true of a pre-
emptive mechanism such as [9] which provides deterministic response times
without need for extra memory space. However, the limitation of [9] is that
there is a tension between thresholds and our reliability concerns.
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Figure 1: Normalized erase counts by varying triggering thresholds
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Figure 2: Comparison of age distributions varying triggering thresholds

Figure 1 presents experimental results conducted using the MSR SSD
simulator[12], using the financial trace in [13], based on an array of five de-
vices with uneven parity distribution. Threshold levels are described in terms
of the percentage of free blocks remaining—the first of each pair indicates a
low, and the second a high priority threshold. Results show that the nor-
malized total erase count increases with thresholds, and significantly so as
parity percentages increase (devices 4 and 5). Figure 2 presents these results
in terms of ageing ratios of the first four devices relative to the fifth (most
aged) device. These results show how ageing ratios deviate from the optimal
levels (see [2]) for reliability (results for the first threshold level are omitted
as they are similar to that for the second). For instance, device 4 wear outs
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13% more than optimum, while device 1 wears out 21% less with thresh-
olds of (5%; 3%)—firstly due to the fact that the ageing formula assumes a
workload of pure random writes, and secondly due to the differing number of
erase operations. The wear imbalancing technique is described in [14], and a
known property of this mechanism is that there is not an optimum garbage
collection threshold level, nor deterministic response times.

2.1. Related Work

Real time properties of flash garbage collection were first studied in [4],
using a garbage collector thread for each real time task. [5] proposed a real
time FTL that guarantees an upper bound for I/O operations of NAND
flash using a partial block cleaning policy. [11] presents a real time FTL that
employs a distributed garbage collection policy. A pre-emptive policy was
proposed in order to suspend cleaning at pre-emption points in [9]. Most of
the real-time solutions require additional buffer or memory to provide deter-
ministic access guarantees but the pre-emptive solution does not—enhancing
suitability in resource constrained systems. While these works offer guaran-
teed response times for I/O, they only consider non-determinism at a single
chip level—not on storages with multiple chips. Additionally, these tech-
niques do not consider the effect of real time algorithms on the life time of
the chips—for instance those in a RAID configuration.

RAID technology has been applied to SSD storage in order to improve
reliability, data integrity, and system performance [15, 16, 17]. In particular,
RAID 0 redundancy has been studied to provide enhanced performance in
[15]. A delayed partial parity update is presented in [16]. A configurable
RAID mechanism that reduces parity overheads has been presented [17].

RAID 4 and RAID 5 hold parity to reconstruct original data in case
of block errors (see [18]). However, the use of these techniques with SSD
reveals the problem of simultaneously wearing out all devices. RAID based
architectures were presented in [2, 3] that enhanced the reliability of SSD
storage systems by mitigating this problem. These techniques employ uneven
parity distribution to prevent simultaneous wearing out of the devices in the
array. Maximum reliability is achieved only in the presence of random write
workloads in [2], but [3] exhibits improved reliability for both sequential and
random writes via a forced random write mechanism, as further described in
[14]. Although those mechanisms enhance reliability, they ignore providing
deterministic access times. The device replacement process with respect to
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Figure 3: The architectural design

real time was discussed in [19] and enhanced with semi-hybrid RAID in [20].
However this technique does not address garbage collection.

An adaptive garbage collection threshold mechanism for a single device
was presented in [21]. Global co-ordination to improve performance is pro-
posed in [6]. A hybrid SSD architecture, using PRAM is presented in [22]
and with combination of MLC and SLC flash memories in [23] to improve
system throughput. However, these mechanisms only consider performance,
and ignore deterministic access time.

The contribution of this paper is a dynamic garbage collection policy
for an existing real time garbage collection mechanism over RAID to provide
enhanced reliability and to improve guarantees for real time applications. We
introduce a mechanism that co-ordinates garbage collection, using different
modes of operation, by taking a holistic view of the system. This pre-emptive
mode controller reduces the down time of the array during erase operations
thereby causing fewer I/Os operations to be delayed.

3. Architecture and Design

Conventional FTL techniques usually allocate an independent and iden-
tical garbage collector for each device in an array, each of which has its own
channel and internal register as in [24]. To maintain consistency with the
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reliability mechanism, and to work towards real time performance, in this pa-
per we adapt the architecture first presented in [25], as illustrated in Figure
3. This includes SSDs for storing data, memory components (SRAM, nvS-
RAM) for meta data, and an FPGA based storage management component.
The FPGA based management component includes two main blocks.

Data Structure 1 The global view of the RAID array

struct RAID {

RD_type raid_type

integer length

sequence metadata ssd_array

stripe_map table

integer period

}

The first main block is the RAID controller. This is responsible for par-
titioning the actual data into chunks using page-level striping where each
incoming datum is divided into equal page sized parts (4 KB). The con-
troller dynamically allocates a device for each actual data and parity data
chunk as in [3], therefore a dynamic stripe mapping table is required. The
RAID array is described by the pseudo code in Data Structure 1. It consists
of the type of the array (RAID-4, RAID-5, Diff RAID, or flash-RAID; in this
case flash-RAID), the number of devices in the array, a sequence of meta
data structures describing the state of each device, the stripe mapping table
which contains details of all stripes of data stored in the system, and a period
to indicate how often dynamic garbage collection thresholds are calculated
. This stripe mapping table is stored in SRAM memory. Only the relevant
data structure elements are presented here for clarity.

The second main block is the Global FTL which takes a holistic view of
the whole array, rather than a specific device. The global view of a single
SSD is described by the pseudo code in Data Structure 2. For each device
a record is kept of the current garbage collection mode (none, normal, or
pre-emptive), the number of erasures performed, the number of free blocks
remaining and total blocks, the ratio of low, medium, and high threshold
priorities for changing status of pre-emptive garbage collection, the current
and optimal ages for that device, the garbage collection efficiency factor for

7



Data Structure 2 The global metadata view of a single SSD

struct metadata {

GC_type mode

integer erasures

integer free, total

priority low, medium, high

integer current, optimal

integer gce

integer parity

sequence block_metadata block

}

initiating/postponing cleaning, the parity percentage to be stored on the
device, and a sequence of meta data structures describing the state of each
block in the device. The Global FTL has three main components: address
mapping, dynamic garbage collection, and the pre-emptive mode controller.
The address mapping maintains a table of logical and physical addresses,
stored in SRAM for each SSD, based on a page-level mapping table. The page
status table is stored in NvSRAM to reduce the performance overhead of the
meta data operations. The dynamic garbage collector manages all cleaning
operations in the array. Finally, the pre-emptive mode controller manages
real time aspects relating to garbage collection. Each of these components
are described in detail in the following sections.

Data Structure 3 A single block

struct block_metadata {

integer total

integer free

integer invalid

}

An entry in the block meta data of Data Structure 2 is described by the
pseudo code in Data Structure 3 and consists of the total page number, the
total free page number and the total invalid page number.
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4. Dynamic Garbage Collection

The dynamic garbage collector adjusts triggering thresholds using meta
data (number of erasures and free space) on each device. Two types of
cleaning—high and low priority—are employed. The dynamic garbage col-
lector adjusts triggering thresholds with the aim of maintaining age distri-
bution ratios as close to optimum as possible. It also has the ability to
postpone garbage collection if the cleaning process involves high levels of
data migration (due to a large amount of valid pages in the victim block).

Algorithm 1 Dynamic adjustment of triggering thresholds

1: while true do
2: if (metadata.erasures mod RAID.period) = 0 then
3: for each RAID.length do
4: fbp ← (ssd array[i].free ÷ ssd array[i].total)
5: if ssd array[i].low > fbp > ssd array[i].high then
6: Update thresholds
7: else
8: Do not change thresholds
9: end if

10: end for
11: else
12: Do not change thresholds
13: end if
14: end while

Algorithm 1 informally describes the periodic adjustment of triggering
thresholds and age for each device, using current erase counts to determine a
suitable period (line 2), and if a sufficent period has passed then the threshold
evaluation and adjustment process begins and is performed sequentially on
each device (line 3). The mechanism first stores the free block percentage for
the given device in the variable fbp (line 4). If this free block percentage
lies between the two thresholds (line 5) the thresholds require updating (line
6). This is done by comparing the current ageing ratio of the SSD in question
(metadata[i].current) with its optimal level (metadata[i].optimal). If
this is not optimum, it changes the ageing speed of the device by adjusting the
threshold level. If the current ratio is greater than optimal the low threshold
is decreased, and if the current ratio is greater than optimal it is increased.
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However, the higher threshold may force an early cleaning on a block
with a high number of valid pages. This causes several bottlenecks. Firstly,
more valid pages in the victim block cause more data migration and thus
cleaning is prolonged. Secondly, fewer invalid spaces will be reclaimed and
cleaning efficiency may be quite low. Thirdly, if a number of incoming re-
quests arrive at the same time then performance may suffer. To prevent this,
garbage collection may be delayed if cost efficiency—in terms of time taken
to completion—is relatively low.

Algorithm 2 Initiation of cleaning requests

1: while true do
2: fbp ← (ssd array[x].free ÷ ssd array[x].total)
3: dirtiest ← find dirtiest block(ssd array[x])
4: ipp ← block[dirtiest].invalid ÷ block[dirtiest].total
5: if fbp ≤ ssd array[x].high then
6: ssd array[x].mode ← normal
7: Initiate cleaning
8: else if fbp ≤ ssd array[x].medium then
9: ssd array[x].mode ← pre-emptive

10: Initiate cleaning
11: else if fbp ≤ ssd array[x].low then
12: if ipp ≤ ssd array[x].gce then
13: Do not initiate cleaning
14: else
15: ssd array[x].mode ← pre-emptive
16: Initiate cleaning
17: end if
18: else
19: Do not initiate cleaning
20: end if
21: end while

Algorithm 2 informally describes the decisions to initiate or postpone
garbage collection for a given device x. The mechanism calculates the per-
centage of free space (line 2) and the invalid page percentage (line 4) of the
dirtiest block (line 3). If memory is running out (line 5) than normal cleaning
is initiated (line 6, line 7) otherwise the mechanism checks as to whether or
not cleaning should be postponed. If the free block ratio is tending towards
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its upper thresholds then postponing cleaning would result in long delays
due to high priority cleaning being initiated—therefore a medium threshold
level is checked (line 8). If it is lower than the medium threshold, then pre-
emptive collection is triggered as the free block ratio is nearing high priority
levels (line 9, line 10). If it is between the medium and low threshold, then
efficiency of cleaning the victim block is checked (line 12). If the invalid page
percentage of the dirtiest block is low, it is a high cost cleaning process and
therefore cleaning is not started (line 13). In the case of a low cost clean—
where the number of invalid pages is high—then it is initiated by generating
low priority cleaning tasks and inserting them into the I/O queue of the de-
vice (line 15, line 16). If the device has enough free space then cleaning is
not initiated at all (line 19).

As the performance overhead of high priority cleaning is higher and its
completion time cannot be predicted in advance, high priority cleaning is
avoided as much as possible, only being initiated when the system is starved
due to a free space shortage. For this reason, the threshold for high priority
cleaning is set as low as is practical and continually monitored.

5. Dynamic Thresholds

Low priority thresholds for a given device i are calculated using three
parameters: existing low priority threshold, current age ratio, and optimum
age ratio (metadata[i].low, current, and optimal respectively) where age
ratios are relative to the most aged device indexed n and the first device is
indexed 1. The calculation for the optimum age ratio of a device is given in
Equation 1. The purpose of calculating low priority thresholds is to establish
where it should lie in order to adjust the ageing speed of a device by increasing
or decreasing the activation of cleaning.

metadata[i].optimal′ =

(metadata[i].parity × (n− 1)) + (100−metadata[i].parity)

(metadata[n].parity × (n− 1)) + (100−metadata[n].parity)

(1)

metadata[i].low′ =

metadata[i].low + metadata[i].optimal −metadata[i].current
(2)
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The threshold calculation (Equation 2) for devices other than the oldest
takes into account the difference between the current and optimum ages of the
device. The difference between them is summed with the current threshold
ratio to calculate the new threshold (metadata[i].low’). For example, if
metadata[x].current is 0.465, and metadata[x].optimal is 0.461, device
x has aged faster than is optimal. If the initial value of metadata[x].low

is 0.1, metadata[x].low’ will be 0.096. The new threshold is lower,and the
ageing speed of device x is reduced when this new threshold is applied.

metadata[n].low′ =

metadata[n].low − (
n−1∑
i=1

(metadata[i].optimal −metadata[i].current))

(3)
However, Equation 2 does not work for the most aged device (n), because

metadata[n].current and metadata[n].optimal are always equal to each
other as it is used as the reference point for the age ratios of all other devices
in the array. Equation 3 shows the calculation which considers the overall
ageing trends of the other devices in the array in order to calculate mean-
ingful thresholds for metadata[n].low’. If the overall trend is high then
metadata[n].low’ is increased. For example, if the overall trend (the sum-
mation Σ))is -0.02, it shows that either the ageing speed of the most aged
device is either slow, or the rest of the devices have increased ageing speeds.
In this situation Equation 3 returns metadata[n].low’ as 0.12—which will
increase the triggering threshold and reduce the ageing speed of device n.

metadata[i].high′ = priorityFactor ×metadata[i].low (4)

0 < metadata[i].high < metadata[i].medium < metadata[i].low < 0.5 (5)

High priority thresholds (metadata[x].high) are calculated as a multi-
ple of the metadata[x].low and the (empirically determined) user defined
variable priorityFactor, as shown in Equation 4. High priority thresholds
should be updated at the same time as low priority thresholds. An invariant
relationship between the thresholds and their bounds is given in Equation 5.

Initially the same threshold level is assigned to each device. When the
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Figure 4: An example problem of pre-emption

most aged device, which retains the majority of the parity data, reaches a
predefined age level then the current age ratio of all other devices in the
array is calculated. The garbage collector periodically updates these calcula-
tions, and assigns updated threshold levels to each individual device until the
most aged device reaches its endurance limit. This dynamic approach to cal-
culating and moving threshold levels preserves the reliability enhancement
mechanism but does not address performance issues. In order to address
performance, a controlled form of pre-emption is introduced.

6. Pre-emptive mode controller

Pre-emptive garbage collection (PGC) provides more deterministic re-
sponse times for a single device. However, its usage in a RAID array can
result in an increased number of requests arriving during erase operations,
and consequently the performance of the array suffers. This is because, in a
RAID array, an individual garbage collector does not have a global view of
the array, but read and write operations affect the whole array. For a RAID
mechanism which uses uneven parity distribution it is normal that devices
which retain more parity data will be garbage collected more in the case of
random write dominant workloads. Therefore, if pre-emptive garbage collec-
tion is naively applied, different devices can be in different garbage collection
states because of their varied workload rates. We use the term worst case
execution time (WCET) to refer to the total time that the garbage collec-
tor consumes (across the array) during erase operations. In this section, we
present a technique whereby the mode of the garbage collector is controlled
in order to ameliorate this problem and improve real-time performance.
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Figure 5: An example benefit of global pre-emptive mode control

An example of the problem stated above is presented in Figure 4. When
a write operation for data X arrives from the host and is split into the three
stripes X.1, X.2, and X.3, SSD 5 is in a state where the garbage collector has
just completed read and write operations (partial GC tasks), and initiated
an erase. As the FTL decision about where to physically place stripes is
placed purely on age distribution, in this example X.3 is destined for SSD
5. However the writing of stripe X.3 overlaps the erase operation and so
is delayed until the erase is complete—but the other stripes do not and so
are written immediately meaning that the rate determining step of writing
data X will be based on this erase time. A subsequent request to write data
Y exhibits the same problem. This scenario is highly probable in a RAID
architecture, particularly in the case of random write dominant traces. The
key issue is the WCET—the total length of time that erase operations may
be being performed anywhere in the array and therefore disrupting data
writes. To eliminate the problem, the pre-emptive mode controller makes
decisions about garbage collection by taking a view of the system as a whole.
The mechanism considers all devices in the array when selecting a garbage
collection state for an individual device.

The effects of the pre-emptive mode controller can be seen in Figure 5.
Unlike naive pre-emptive cleaning, the mechanism considers all devices. In
this example when space on a given device falls below the soft threshold
garbage collection may be enabled for that device—but the mode controller
also checks the other devices. This is what is shown for devices 2, 4, and
5—device 5 has reached a triggering threshold (as in the previous example).
At the trigger, the pre-emptive mode controller has noted that devices 2 and
4 could also benefit from some cleaning and taken the decision to advance

14



cleaning on these devices also. The resultant parallel cleaning minimises the
total time (WCET) spent in erase operations and the rate determining step
for any delayed I/O operation reduces accordingly.

However, forced mode changes can result in overly aggressive early clean-
ing on a block with a small number of invalid pages. This can reduce the
lifetime of a device more quickly and increase the cleaning cost as more valid
pages are migrated. To overcome this, the mode controller checks the effi-
ciency of cleaning a particular device before forcing the garbage collector to
initiate a cleaning process, reducing the number of unnecessary erases.

Algorithm 3 Pre-emptive Mode Controller

1: ssd array[all].mode ← none, RAID.length + 1
2: ipp ← block[dirtiest].invalid ÷ block[dirtiest].total
3: while true do
4: if ssd array[x].mode 6= none then
5: for each RAID.length do
6: dirtiest ← find dirtiest block(ssd array[i])
7: if ipp > ssd array[i].gce ∧ i 6=x then
8: ssd array[i].mode = ssd array[x].mode
9: Initiate cleaning on the dirtiest block

10: else
11: Do not perform forced cleaning
12: end if
13: end for
14: else
15: Do not perform forced cleaning
16: end if
17: end while

The decision process of the pre-emptive controller is informally described
in Algorithm 3. Initially the states of all devices are set to no garbage collec-
tion as there is no need for cleaning (line 1). If any device (identified by the
index x) changes garbage collection state to any other (line 4) the mecha-
nism checks all other devices in turn for forced cleaning (line 5). The dirtiest
block on the device under inspection is determined (line 6). If the invalid
page number (ipp )of the dirtiest block is higher than the pre-determined
gce of that device, garbage collection state is set to the same as that of
device x, and cleaning commences (line 8, (line 9)). Forced cleaning is not
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invoked if the number of invalid pages of the dirtiest block is low (line 11),
or when there is no cleaning anywhere else in the array (line 15).

7. Experimental results

In this section the reliability and performance of the dynamic garbage
collector and pre-emptive mode controller in a system employing parity dis-
tribution is evaluated under several experiments. We extend the simulator
[12] with the requirements of Section 3 incorporating the RAID controller
with uneven parity distribution and address mapping tables.

Configuration parameters are: reserved free blocks set at 15%, minimum
free blocks at 5%. A device contains 2 flash chips, 1024 blocks per chip, 64
pages per block, and a page size of 4 kB. Page read latency is set at 0.025 ms,
write latency at 0.2 ms, block erase latency at 1.5 ms, page stripe size at 4 kB,
the ratio h for calculating high thresholds at 0.02 of the low threshold, and
the medium threshold at 1% of the total number of blocks. The reason for
selecting these parameters is to maintain consistency with previous exper-
iments on reliability and to adopt generic SSD parameters. A number of
synthetic and realistic traces are used to analyse age distribution variances.
The default values of the synthetic traces used in our experiments are a re-
quest size of 4 kB, an inter arrival time of 3 ms, and a probability of read
and sequential access of 0.2. We only consider traces which are dominated
by random I/O that cause frequent update operations on the parity device,
because maximum reliability of our RAID mechanism is achieved with a
workload of small random writes. To create a variety of workload scenar-
ios with synthetic traces an exponential and normal distribution is used for
varying request sizes and inter-arrival times of requests. An array of four
devices is used to enable direct comparisons with previous results.

7.1. Reliability Analyses

Two techniques are evaluated—pre-emptive garbage collection [9] with
our reliability mechanism [3], and the dynamic garbage collection mechanism
of Section 4, against optimal age distributions of [26].

Figure 6, Figure 7, and Figure 8 illustrate ageing characteristics with
varying read access probabilities. Results show that the dynamic garbage
collector exhibits improvement in ageing distributions over PGC-RAID in
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Figure 6: Age distributions with probability of read access 0.2
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Figure 7: Age distributions with probability of read access 0.4
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Figure 8: Age distributions with probability read access (0.6)
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Figure 9: Age distributions with dynamic mechanism (Financial trace)

0

0.2

0.4

0.6

0.8

1

1.2

0.96 0.99 1

N
or

m
al

iz
ed

E
ra

su
re

C
ou

n
ts

PGC-RAID Threshold 2 PGC-RAID Threshold 3 Dynamic

Figure 10: Normalized total number of erasures (Financial trace)

all cases. For instance, the age distribution of SSD 3 is 7% closer to its opti-
mum level. As probability of read access increases the dynamic mechanism
continues to perform better in terms of converging towards optimum levels.

Using the random write dominant realistic trace of [13], Figure 9 shows
dynamic cleaning largely eliminates deviations in age distribution levels when
coordinating low and high priority thresholds. For instance the ageing ratio
of SSD 4 is much closer to optimum than PGC-RAID (by nearly 10%), and
the ageing ratio of SSD 1 is 19% closer to its optimum level. This is because
dynamic garbage collection has raised thresholds for SSD 1 while lowering
them for SSD 4 when the deviation in age distribution is detected.

To observe the effect of garbage collection over the lifetime of the storage
we compare it with existing techniques using constant thresholds for pre-
emption. Threshold 2 is set with a soft level of 5% and a hard level of 3%,
and threshold 3 is set with a soft level of 8% and a hard level of 5%. Figure
10 illustrates that the dynamic garbage collector has a slightly higher erase
count than PGC-RAID—4% more erasure operations than PGC-RAID with
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Figure 11: WCET comparisons

threshold 2, and no tangible difference with threshold 3. When threshold
levels increase for PGC-RAID, erasure count continues to rise also. Results
also indicate that reducing the period of the dynamic garbage collector for
calculating thresholds helps ensure that age distribution converges towards
optimum levels, but has a detrimental effect on device lifetime.

Overall, results demonstrate that the dynamic garbage collector improves
the age distributions of devices and therefore reliability, along with offering
upper bounds for I/O response, with minimal impact on device lifespan.

7.2. WCET and Performance Analysis

Real time efficiency of PGC-RAID [9] with the reliability mechanism [3],
and the pre-emptive mode controller Section 6, is evaluated using a number
of synthetic traces. Three different probabilities of read access were tested—
0.2, 0.3, and 0.4. factor was set at 15% and average inter arrival time at
1.2ms. Figure 11 shows the amount of I/O requests arriving during active
erases. For a read probability of 0.2, 40% more tasks are delayed by PGC-
RAID over the pre-emptive mode controller. As read probabilities increase,
so do improvements offered by the pre-emptive mode controller. Moreover,
the pre-emptive mode controller shows enhanced average response times of
around 6% over PGC RAID for all traces.

Standard deviation of response times are given in Figure 12 for the same
experiments. For all cases the pre-emptive mode controller combined with
dynamic garbage collection shows improvement over PGC-RAID. For a write
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Figure 12: Standard deviations of response times varying read acccess probability

dominant workload of 0.2 read access probability this improvement is 15%
over PGC-RAID. As probability of read access increases the improvements
decrease—10% for 0.3, and 7% for 0.4, and with negligible differences above
0.4 due to garbage collection being invoked much less frequently. These
results indicate that the pre-emptive mode controller combined with dynamic
garbage collection provides more deterministic response times over PGC-
RAID, due to the global co-ordination.

8. Conclusions and Future Directions

In this paper we presented enhanced real time garbage collection mech-
anisms for SSD RAID arrays. We identified that existing real-time garbage
collection techniques have undesirable effects on our reliability mechanism.
In order to ameliorate the impact, we introduced a dynamic garbage collec-
tion mechanism that dynamically adjusts thresholds levels for each SSD to
achieve the optimum ageing distribution ratios for the reliability mechanism.
Moreover, the pre-emptive mode controller improves real time efficiency by
globally coordinating garbage collection states. Simulation results demon-
strate that the dynamic garbage collector provides better real time access
guarantees and also maintains the reliability mechanism. The pre-emptive
mode controller reduces the down time of the array during erase operations,
thereby causing fewer writes to be postponed and with low standard devia-
tion compared to other published techniques.
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As future work, we aim to improve WCET with an architecture that
completely avoids I/O requests from being blocked by erase operations by
exploiting the inherent concurrency of the architecture. We are also continu-
ing progress towards a full Verilog FPGA implementation of garbage collector
for integration with our existing implementation and test beds.
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