
Enhancing Logic Synthesis of Switching Lattices by
Generalized Shannon Decomposition Methods

Anna Bernasconia, Valentina Cirianib, Luca Frontinib, Valentino Liberalic,
Gabriella Truccob, Tiziano Villad

aDipartimento di Informatica, Università di Pisa, Italy, anna.bernasconi@unipi.it
bDipartimento di Informatica, Università degli Studi di Milano, Italy,
{valentina.ciriani, luca.frontini, gabriella.trucco}@unimi.it

cDipartimento di Fisica Università degli Studi di Milano, Italy, valentino.liberali@unimi.it
dDipartimento di Informatica, Università degli Studi di Verona, Italy, tiziano.villa@univr.it

Abstract

In this paper we propose a novel approach to the synthesis of minimal-sized lat-
tices, based on the decomposition of logic functions. Since the decomposition
allows to obtain circuits with a smaller area, our idea is to decompose the Boolean
functions according to generalizations of the classical Shannon decomposition,
then generate the lattices for each component function, and finally implement the
original function by a single composed lattice obtained by glueing together ap-
propriately the lattices of the component functions. In particular we study the
two decomposition schemes defining the bounded-level logic networks called P-
circuits and EXOR-Projected Sums of Products (EP-SOPs). Experimental results
show that about 34% of our benchmarks achieve a smaller area when implemented
using the P-circuit decomposition for switching lattices, with an average gain of at
least 25%, and about 27% of our benchmarks achieve a smaller area when imple-
mented using the EP-SOP decomposition, with an average gain of at least 22%.

Keywords: Logic synthesis for emerging technologies, Switching lattices,
Generalized Shannon decomposition

1. Introduction

A switching lattice is a two-dimensional lattice of four-terminal switches linked
to the four neighbors of a lattice cell, so that these are either all connected, or dis-
connected. A Boolean function can be implemented by a lattice associating each
four-terminal switch to a Boolean literal, so that if the literal takes the value 1 the

Preprint submitted to Embedded Hardware Design (Microprocessors and Microsystems)November 21, 2017

corresponding switch is ON and connected to its four neighbors, otherwise it is
not connected. The function evaluates to 1 if and only if there exists a connected
path between two opposing edges of the lattice, e.g., the top and the bottom edges
(see Figure 1 for an example). The synthesis problem on a lattice thus consists in
finding an assignment of literals to switches in order to implement a given target
function with a lattice of minimal size.

The idea of using regular two-dimensional arrays of switches to implement
Boolean functions is old and dates back to a seminal paper by Akers in 1972 [1].
Recently, with the advent of a variety of emerging nanoscale technologies based
on regular arrays of switches, synthesis methods targeting lattices of multi-terminal
switches have found a renewed interest [2, 3, 4]. Consider for instance a nanowire
array, where each crosspoint is controlled by an input voltage. In this paper, we
consider crosspoints that behave like four-terminal switches controlled by an in-
put signal and therefore the proposed nanowire crossbar array can be modeled
as a lattice of four-terminal switches. Note that, in general, crossbars can also
be modeled by programmable contacts (see for instance [5]). Nanowire cross-
bar arrays may offer substantial advantages over conventional CMOS when used
to implement programmable architectures. Conventional implementations typi-
cally employ SRAMs for programming crosspoints; other techniques have been
suggested for implementing programmable crosspoints such as bistable switches
that form memory cores, molecular switches and solid-electrolyte nanoswitches
(see [3] for more details and bibliographic references).

In this paper we show how the cost of implementing a switching lattice could
be mitigated by applying Boolean function decomposition techniques in lattice-
based implementations. Decomposition of logic functions is a widely studied field
in multi-level logic; here we focus on two particular decomposition methods that
are based on different generalizations of the classical Shannon decomposition and
that give rise to the families of bounded-level logic networks called P-circuits
[6, 7, 8, 9] and EXOR-Projected Sums of Products (EP-SOPs) [10, 11, 12, 13].
These two methods have been selected, among other known decomposition tech-
niques, mainly because Shannon-based decomposition methods allow to keep the
number of logic levels bounded, in addition to the fact that they have been already
exploited with good results in CMOS technology.

In the framework of switching lattices synthesis, where the available mini-
mization tools are not yet as developed and mature as those available for CMOS
technology, reducing the synthesis of a target Boolean function to the synthesis of
smaller functions could represent a very beneficial approach. This expectation has
been confirmed by our experimental results, which demonstrate that in about 35%

2

of the analyzed cases the synthesis of switching lattices based on a decomposition
of the logic function into smaller sub-functions allows to obtain a smaller area in
the final resulting lattice.

This paper is an extended version of the conference paper in [14], where only
the decomposition with P-circuits was described, and is organized as follows. Pre-
liminaries on switching lattices are reviewed in Section 2, while P-circuits and
EP-SOP forms are described in Section 3. Section 4 shows how the proposed
decomposition schemes can be exploited for the synthesis of switching lattices.
Section 5 provides the experimental results and Section 6 concludes the paper.

2. Switching Lattices

In this section we briefly review some basic notions and results on switching
lattices [1, 3, 4]

A switching lattice is a two-dimensional array of four-terminal switches. The
four terminals of the switch link to the four neightbours of a lattice cell, so that
these are either all connected (when the switch is ON), or disconnected (when the
switch is OFF).

A Boolean function can be implemented by a lattice in terms of connectivity
across it:

• each four-terminal switch is controlled by a Boolean literal;

• each switch may be also labelled with the constant 0, or 1;

• if the literal takes the value 1, the corresponding switch is connected to its
four neightbours, else it is not connected;

• the function evaluates to 1 if and only if there exists a connected path be-
tween two opposing edges of the lattice, e.g., the top and the bottom edges;

• input assignments that leave the edges unconnected correspond to output 0.

For instance, the 3×3 network of switches in Figure 1 (a) corresponds to the lattice
form depicted in Figure 1 (b), which implements the function f = x1x2x3+x1x2+
x2x3. If we assign the values 1, 1, 0 to the variables x1, x2, x3, respectively, we
obtain paths of gray square connecting the top and the bottom edges of the lattices
(Figure 1 (c)), indeed on this assignment f evaluates to 1. On the contrary, the
assignment x1 = 0, x2 = 0, x3 = 1, on which f evaluates to 0, does not define
any path from the top to the bottom edge (Figure 1 (d)).

3

x2

x2 x2

x1 x3

x3 x2 x2

TOP

BOTTOM

(b)

x2

x1 x3

x3 x2 x2

x2

TOP

BOTTOM

(a)

(c) (d)

x1

x2 x2

x2 x2

x1 x3

x3 x2

TOP

BOTTOM

x2

x2 x2

x1 x3

x3 x2 x2

TOP

BOTTOM

x2

x1 x1

Figure 1: A four terminal switching network implementing the function f = x1x2x3 +
x1x2+x2x3 (a); its corresponding lattice form (b); the lattice evaluated on the assignments
1,1,0 (c) and 0, 0, 1 (d), with grey and white squares representing ON and OFF switches,
respectively.

The synthesis problem on a lattice consists in finding an assignment of literals
to switches in order to implement a given target function with a lattice of minimal
size. The size is measured in terms of the number of switches in the lattice.

A switching lattice can similarly be equipped with left edge to right edge con-
nectivity, so that a single lattice can implement two different functions. This fact
is exploited in [2, 3] where the authors propose a synthesis method for switching
lattices simultaneously implementing a function f according to the connectivity
between the top and the bottom plates, and its dual function fD according to
the connectivity between the left and the right plates. Recall that the dual of a
Boolean function f depending on n binary variables is the function fD such that
f(x1, x2, . . . , xn) = fD(x1, x2, . . . , xn). This method produces lattices with a size
that grows linearly with the number of products in an irredundant sum of product
(SOP) representation of f , and consists of the following steps:

1. find an irredundant, or a minimal, SOP representation for f and fD: SOP (f) =
p1 + p2 + · · ·+ ps and SOP (fD) = q1 + q2 + · · ·+ qr;

2. form a r × s switching lattice and assign each product pj (1 ≤ j ≤ s) of
SOP (f) to a column and each product qi (1 ≤ i ≤ r) of SOP (fD) to a
row;

4

3. for all 1 ≤ i ≤ r and all 1 ≤ j ≤ s, assign to the switch on the lattice
site (i, j) one literal which is shared by qi and pj (the fact that f and fD are
duals guarantees that such a shared literal exists for all i and j).

This synthesis algorithm thus produces a lattice for f whose size depends on
the number of products in the irredundant SOP representations of f and fD,
and it comes with the dual function implemented for free. For instance, the
lattice depicted in Figure 1 has been built according to this algorithm, and it
implements both the function f = x1x2x3 + x1x2 + x2x3 and its dual fD =
x1x2x3 + x1x2 + x2x3.

The time complexity of the algorithm is polynomial in the number of products.
However, the method does not always build lattices of minimal size for every tar-
get function, since it ties the dimensions of the lattices to the number of products
in the SOP forms. In particular this method is not effective for Boolean functions
whose duals have a a very large number of products. Another reason that could
explain the non-minimality of the lattices produced in this way is that the algo-
rithm does not use Boolean constants as input, i.e., each switch in the lattice is
always controlled by a Boolean literal.

In [4], the authors proposed a different approach to the synthesis of minimal-
sized lattices, which is formulated as a satisfiability problem in quantified Boolean
logic and solved by quantified Boolean formula solvers. This method uses the
previous algorithm to find an upper bound on the dimensions of the lattice. It then
searches for successively better implementations until either an optimal solution
is found, or else a preset time limit has been exceeded. Experimental results
show how this alternative method can decrease lattice sizes considerably. In this
approach the use of fixed inputs is allowed, moreover the lattice considers only
the top-to-bottom paths and implements the function f , but not its dual.

3. P-circuits and EP-SOP forms

We now review two slightly different bounded-level logic networks called P-
circuits and EXOR-Projected Sums of Products forms (EP-SOP). Both networks
are based on generalizations of the standard Shannon decomposition, and can be
seen as special logic architectures which realize a Boolean function by projecting
it onto overlapping subsets. They were introduced in [6, 7, 8] and in [10, 11, 12],
and further studied in [9, 13].

We first give some preliminary definitions.

5

A completely specified Boolean function f is a function f : {0, 1}n → {0, 1}.
A completely specified Boolean function can also be interpreted as the set of
points x ∈ {0, 1}n such that f(x) = 1.

An incompletely specified Boolean function is a function f : {0, 1}n →
{0, 1,−}, where − is called the don’t care value of the function. An incompletely
specified function can be described by three sets of points: the on-set, the off-set
and the don’t care set, which characterize the points in {0, 1}n with images 0, 1,
and −, respectively.

Given the Boolean space {0, 1}n described by the set {x1, . . . , xn} of n bi-
nary variables, a literal is a variable or its complement; a cube is conjunction (or
product) of a set of literals, and a minterm is a cube when it represents only one
point, i.e., when it is a conjunction of n distinct literals. Finally, a multiple-output
Boolean function f is a function f : {0, 1}n → {0, 1,−}m; it can be considered
also as a vector of Boolean functions {f1, f2, . . . , fm}.

P-circuits and EP-SOPs are extended forms of Shannon cofactoring, where
the expansion is with respect to an orthogonal basis xi ⊕ p (i.e., xi = p), and
xi⊕ p (i.e., xi 6= p), where p is a function defined over all variables except for the
critical variable xi (e.g., the variable with more switching activity or with higher
delay that should be projected away from the rest of the circuit).

More precisely, let f be a completely specified Boolean function depending
on the set {x1, . . . , xn} of n binary variables. Consider the classical Shannon
decomposition

f = xif |xi
+ xif |xi

,

and the more general EXOR-based decomposition [15] [16]

f = (xi ⊕ p)f |xi=p + (xi ⊕ p)f |xi 6=p ,

that corresponds to the classical one when p = 0 (as before, p is a function non-
depending on xi). This decomposition partitions the Boolean space {0, 1}n into
two subsets: the subset of points where xi = p and the subset of points where
xi 6= p. The characteristic functions of these two subsets are (xi⊕p) and (xi⊕p),
respectively.

Note that these two subsets have always the same cardinality, for any function
p non-depending on xi. This is due to the presence of the EXOR operator in their
characteristic functions: indeed, for any minterm x ∈ {0, 1}n, x belongs to the
subset where xi = p, i.e., the subset where (xi⊕p) = 1, if and only if the minterm
obtained complementing the i-th bit of x belongs to the subset where xi 6= p, i.e.,
where (xi⊕p) = 1. The cofactors f |xi=p and f |xi 6=p correspond to the projections

6

of f onto the two subsets with xi = p and xi 6= p, respectively. Observe that this
decomposition is suitable for keeping xi disjoint from the rest of the circuit, but is
not oriented to area minimization. In fact, f |xi=p, and f |xi 6=p do not depend on the
variable xi, but the cubes of f intersecting both subsets xi = p and xi 6= p may be
split into two smaller subcubes when they are projected onto f |xi=p, and f |xi 6=p,
respectively.

P-circuits and EP-SOPs try to overcome this problem in different ways.

3.1. P-circuits
The main idea in P-circuits synthesis is to keep unprojected some of the points

of the original function. For this purpose, let I = f |xi=p∩f |xi 6=p be the intersection
of the two cofactors f |xi=p and f |xi 6=p. Note that the intersection I contains the
cubes whose products do not contain xi and that cross the two sets. In order to
overcome the splitting of these crossing cubes, we could keep I unprojected, and
project only the minterms in f |xi=p \ I and f |xi 6=p \ I , obtaining the expression

f = (xi ⊕ p)(f |xi=p \ I) + (xi ⊕ p)(f |xi 6=p \ I) + I .

Note that p, f |xi=p \ I , f |xi 6=p \ I and I do not depend on xi. However, the points
that are in I could be exploited to form bigger cubes in the projected sets. There-
fore, if a point is in I and it is useful for a better minimization of the projected
parts, it can be kept both in the projection and in the intersection. Moreover, if
a point is covered in both the projected sets, it is not necessary to cover it in the
intersection. From these observations, we can infer that the projected sub-circuits
should cover at least f |xi=p \ I and f |xi 6=p \ I , and must be contained in f |xi=p and
f |xi 6=p, respectively. Moreover, the part of the circuit that is not projected should
be contained in the intersection I .

In summary, we can define a P-circuit as follows, where S(f) indicates a SOP
circuit implementing a Boolean function f .

Definition 1 ([9]). A P-circuit of a completely specified function f is the circuit
P (f) denoted by the expression:

P (f) = (xi ⊕ S(p))S(f=) + (xi ⊕ S(p))S(f 6=) + S(f I)

where

1. (f |xi=p \ I) ⊆ f= ⊆ f |xi=p

2. (f |xi 6=p \ I) ⊆ f 6= ⊆ f |xi 6=p

7

1 01 0

1

1

01

0

1

1

0

01

0

0
00 01 11 10

00

01

11

10

x6 x7
x3 x4

x1 = 0

1 10 0

1

0

11

0

1

1

1

00

1

0
00 01 11 10

00

01

11

10

x6 x7
x3 x4

x1 = 1

Figure 2: Karnaugh map of the benchmark z = z4(2). The cells in grey show the minterms
that belong to the intersection between the cofactors z|x1=0 and z|x1 6=0.

3. ∅ ⊆ f I ⊆ I

4. P (f) = f .

This definition can be easily generalized to incompletely specified Boolean func-
tions f = {f on, fdc}. For the sake of simplicity, suppose that f on ∩ fdc = ∅;
otherwise, following the usual semantics, we consider f on \ fdc as the on-set of
f . Let I be the intersection of the projections of f onto the two sets xi = p and
xi 6= p:

I = (f on|xi=p ∪ fdc|xi=p) ∩ (f on|xi 6=p ∪ fdc|xi 6=p).

Definition 2 ([9]). A P-circuit of an incompletely specified function f = {f on, fdc}
is the circuit P (f) denoted by the expression:

P (f) = (xi ⊕ S(p))S(f=) + (xi ⊕ S(p))S(f 6=) + S(f I)

where

1. (f on|xi=p \ I) ⊆ f= ⊆ f on|xi=p ∪ fdc|xi=p

2. (f on|xi 6=p \ I) ⊆ f 6= ⊆ f on|xi 6=p ∪ fdc|xi 6=p

3. ∅ ⊆ f I ⊆ I

4. f on ⊆ P (f) ⊆ f on ∪ fdc.

As an example of P-circuit decomposition, let us consider the benchmark z4
taken from LGSynth93 [17], and in particular its third output z4(2), simply de-
noted by z. This function, represented by the Karnaugh map in Figure 2, depends
on seven variables (x1, x2, . . . , x7), two of which (x2 and x5) are nonessential.
Consider the P-circuit decomposition with respect to the first variable x1 and to

8

z = z ≠ z I

1 01 0

1

1

00

0

1

0

0

01

0

0
00 01 11 10

00

01

11

10

x6 x7
x3 x4

1 10 0

1

0

11

0

0

1

1

00

1

0
00 01 11 10

00

01

11

10

x6 x7
x3 x4

0 00 0

0

0

01

0

0

1

0

00

0

0
00 01 11 10

00

01

11

10

x6 x7
x3 x4

Figure 3: Karnaugh maps of the sets z=, z 6=, and zI defining an optimal P-circuit for
z = z4(2) with respect to x1 and to the function p = 0. The minterms in the intersection
between z|x1=0 and z|x1 6=0, now distributed among z=, z 6=, and zI , are highlighted in
grey.

the projection function p = 0. The three sets z=, z 6=, and zI that define an opti-
mal P-circuit representation of z = z4(2), with respect to x1 and to the function
p = 0, are depicted in Figure 3. Observe that the two minterms 0010 and 1000 in
the intersection between the cofactors z|x1=0 and z|x1 6=0 have been removed from
zI since they have been kept in both sets z= and z 6= in order to get smaller SOP
forms. Moreover, the other two points of the intersection, 0101 and 1111, are kept
both in zI and in the projection z 6=, where they are used to form bigger cubes. The
P-circuit representation of z = z4(2) is then given by the expression

P (z) = x1 S(z
=) + x1 S(z

6=) + S(zI)

where S(z=) = x3x4x6+x3x4x6+x3x6x7+x3x6x7, S(z 6=) = x3x4x6+x3x4x6+
x3x6x7+x3x6x7+x3x4x6x7+x3x4x6x7, and S(zI) = x3x4x6x7+x3x4x6x7 are
the SOP representations of z=, z 6=, and zI , respectively.

As we have seen, the idea for synthesis of P-circuits is to construct a network
for f by appropriately choosing the sets f=, f 6=, and f I as building blocks. Several
algorithms for performing such a choice have been studied and proposed in the
literature [6, 7, 8, 9]. In particular, in [9], it is shown how the structural flexibility
of P-circuits can be completely characterized by using Boolean relations, and how
the associated optimal P-circuit decomposition problem, with respect to a given
variable xi and a function p, can be efficiently solved using a Boolean relation
minimizer.

9

3.2. EP-SOP forms
Let us now consider the alternative decomposition methods leading to the def-

inition of EXOR-Projected Sums of Products (EP-SOPs). These forms are derived
as a special case of the generalized Shannon decomposition with remainder

f = (xi ⊕ p)(f |xi=p \R) + (xi ⊕ p)(f |xi 6=p \R) +R

that restructures a logic function into subsets of points defined by the generalized
cofactors with a remainder R containing the cubes that we do not want to split. In
particular, EP-SOP forms correspond to the special case p = xj , with i 6= j:

f = (xi ⊕ xj)(f |xi=xj
\R) + (xi ⊕ xj)(f |xi 6=xj

\R) +R .

Note that, while the intersection set I in the P-circuit decomposition scheme does
not depend on the variable xi, the remainder R depends in general on all the input
variables and is defined as the set of all minterms of f that could form a crossing
cube, i.e., a cube of f intersecting both subsets xi = xj and xi 6= xj . In the
particular case p = xj , crossing cubes can be precisely identified as those cubes
described by products that do not depend on both xi and xj; thus the remainder
R contains all points x in the on-set of f such that f takes the value 1 on at least
one of the two points obtained complementing in x the i-th or the j-th variable. In
other words, R contains all cubes described by products of literals

1. that depend on xi, but not on xj;
2. that depend on xj , but not on xi;
3. that depend neither on xi, nor on xj .

If we denote with x(k) the point obtained complementing the k-th bit of x, we get

R = {x | f(x) = 1 ∧ (f(x(i)) = 1 ∨ f(x(j)) = 1)} .

Moreover, the two cofactors (f |xi=xj
and f |xi 6=xj

) can be equivalently defined as
incompletely specified Boolean functions depending on all input variables, in the
following way: 1) f on|xi=xj

(f on|xi 6=xj
) is the on-set of the original function f

such that xi = xj (resp. xi 6= xj); 2) fdc|xi=xj
(fdc|xi 6=xj

) is the set of points such
that xi 6= xj (resp. xi = xj). These don’t cares can be inserted in the cofactor
f |xi=xj

since, in the decomposition, this function is multiplied by (xi⊕xj), which
evaluates to 0 when xi 6= xj . A symmetric observation holds for f |xi 6=xj

. In the
present paper, we will adopt this alternative definition, so that all three functions
occurring in the decomposition may depend on all input variables (xi included).

10

1 10 1

0

1

01

0

0

0

1

11

0

1
 00 01 11 10

00

01

11

10

x3 x4
x1 x2

- -- -

0

-

01

-

0

-

1

11

-

1
 00 01 11 10

00

01

11

10

x3 x4
x1 x2

1 10 1

-

1

--

0

-

0

-

--

0

-
 00 01 11 10

00

01

11

10

x3 x4
x1 x2

1 10 0

0

0

01

0

0

0

0

01

0

1
 00 01 11 10

00

01

11

10

x3 x4
x1 x2

(a) f (b) R

(c) f |x1 = x2 (d) f |x1 ≠ x2

Figure 4: (a): A minimal SOP form for the function f . (b), (c) and (d): the remainder
R, and the cofactors f |x1=x2 and f |x1 6=x2 , together with the corresponding covers fR =
x1x3x4 + x1x3x4, f= = x3, and f 6= = x3x4, used in a minimal EP-SOP expression for
f with respect to the pair of variables x1 and x2.

For example, consider the function f in Figure 4(a), i = 1 and j = 2. In the
figure, the subset of the Boolean space where x1 = x2 (x1 6= x2, resp.) is depicted
in gray (white, resp.). Figure 4(b) shows the remainder for f . Finally, the (non-
projected) cofactors f |x1=x2 and f |x1 6=x2 are represented in Figures 4(c) and 4(d),
respectively. Note that f |x1=x2 corresponds to f for the points where x1 = x2 and
contains don’t care conditions where x1 6= x2. These don’t cares can be inserted
in f |x1=x2 since, in the decomposition, this function is multiplied by (x1 ⊕ x2),
which evaluates to 0 when x1 6= x2. A symmetric observation holds for f |x1 6=x2 .

A clear advantage of this representation is that don’t care points can be used
to form bigger cubes. Consider, for instance, the two distinct cubes x1x2x3 and
x1x2x3 in Figure 4(a). In the function f |x1=x2 , the corresponding cubes are merged
together in a bigger cube, i.e., x3, using don’t cares, as shown in Figure 4(c). In-
stead, the cube x1x3x4 in Figure 4(a) is an example of crossing cube: it is split
into two minterms: x1x2x3x4 in Figure 4(c) and x1x2x3x4 in Figure 4(d) that are
covered by two different cubes (x1x4 and x1x3, resp.). Observe that, if we keep
and cover this crossing cube only in the remainder R, then we do not need to cover
its minterms in the two cofactors; thus, the cubes x1x4 and x1x3 will not appear
in the final EP-SOP expression.

11

As for the P-circuit scheme, we can observe that the minterms in the remainder
R could be exploited to form bigger cubes in the projected sets, i.e., if a point is
in R and is useful for a better minimization of one of the cofactors, it can be kept
both in the projected cofactor and in the remainder. Therefore, in order to cover
any point of the function at least once and get a minimal decomposition form,
with respect to the variables xi and xj , we can decide to cover any minterm x
in the remainder: 1) only in the remainder, 2) only in the corresponding cofactor
(i.e., f |xi=xj

if xi = xj or f |xi 6=xj
if xi 6= xj), 3) both in the remainder and in the

corresponding cofactor. The last choice can be convenient when x is useful for
forming bigger cubes for both the remainder and the cofactor. For instance, in the
running example, the point 1100 can be used in f |x1=x2 to form the cube x3 and
in the remainder R to form the cube x1x3x4 with the point 1000.

In summary, we can rephrase the definition of an EP-SOP-circuit given in [11]
as follows (as before, S(f) indicates a SOP circuit implementing a Boolean func-
tion f).

Definition 3 ([13]). An EP-SOP-decomposition, with respect to the variables xi

and xj , of a completely specified function f is the expression:

EP-SOP(f) = (xi ⊕ xj)S(f
=) + (xi ⊕ xj)S(f

6=) + S(fR)

where

1. (f on|xi=xj
\R) ⊆ f= ⊆ f on|xi=xj

∪ fdc|xi=xj

2. (f on|xi 6=xj
\R) ⊆ f 6= ⊆ f on|xi 6=xj

∪ fdc|xi 6=xj

3. ∅ ⊆ fR ⊆ R

4. EP-SOP(f) = f .

For our running example in Figure 4, we get the EP-SOP form EP-SOP(f) =
(x1 ⊕ x2)(x3) + (x1 ⊕ x2)(x3x4) + (x1x3x4 + x1x3x4), that contains fewer and
bigger cubes than a classical minimal SOP cover f = x1x2x3 + x1x2x3x4 +
x1x2x3 + x1x3x4 + x1x2x4. Note that any point of the function is covered at least
once, by f=, f 6=, or fR. For example, 0000 is covered by f=, 1100 is covered by
both f= and fR, and 1000 is covered by fR (note that 1000 is also covered by f=

but not by (x1 ⊕ x2)f
= in the final form).

This definition can be generalized to incompletely specified Boolean functions
f = {f on, fdc}. When f is an incompletely specified Boolean function, f |xi=xj

and f |xi 6=xj
can be defined as follows: 1) f on|xi=xj

(f on|xi 6=xj
) contains the points

of f on such that xi = xj (resp. xi 6= xj); 2) fdc|xi=xj
(fdc|xi 6=xj

) contains the

12

points of fdc such that xi = xj (resp. xi 6= xj) together with the points such that
xi 6= xj (resp. xi = xj).The definition of the remainder R can be immediately
generalized to incompletely specified Boolean functions, noting that the points
potentially included in a crossing cube can now be defined as the points x in the
on-set or in the dc-set of f , such that the two points obtained complementing in x
the i-th and the j-th variable are not both included in the off-set.

Definition 4 ([13]). An EP-SOP-decomposition, with respect to the variables xi

and xj , of an incompletely specified function f = {f on, fdc} is the expression:

EP-SOP(f) = (xi ⊕ xj)S(f
=) + (xi ⊕ xj)S(f

6=) + S(fR)

where
R = {x ∈ fon ∪ fdc |(x(i) ∈ fon ∪ fdc) ∨ (x(j) ∈ fon ∪ fdc)}

1. (fon|xi=xj \R) ⊆ f= ⊆ fon|xi=xj ∪ fdc|xi=xj

2. (fon|xi 6=xj
\R) ⊆ f 6= ⊆ fon|xi 6=xj

∪ fdc|xi 6=xj

3. ∅ ⊆ fR ⊆ R

4. fon ⊆ EP-SOP(f) ⊆ fon ∪ fdc.

As for P-circuits, the problem of EP-SOP synthesis can be nicely formalized and
efficiently solved using Boolean relations, as discussed and proved in [13].

We finally observe that both decomposition techniques could be recursively
applied to the cofactors f=, f 6=, and f I or fR, but this leads to an increase in the
number of logic levels. Thus, this recursive approach could be very interesting for
the synthesis of unbounded multilevel forms.

4. Decomposition with lattices

In this section we will discuss how the decomposition of Boolean functions
can be exploited in the synthesis of switching lattices. The basic idea of this
approach is to first decompose a function into some subfunctions, according to a
given functional decomposition scheme, and then to implement the decomposed
blocks with separate lattices, or physically separated regions in a single lattice.
Since the decomposed blocks usually correspond to functions depending on fewer
variables and/or with a smaller on-set, their synthesis should be easier and should
produce lattice implementations of smaller size.

Decomposition of logic functions is a widely studied field in multi-level logic,
see [18] for a review on this subject. Here we focus on the decomposition method

13

1

f

f g

0

0

0

…

g

1 1…

(a) (b)

Figure 5: Lattice implementation of f + g (a) and of f · g (b).

that gives rise to the bounded-level logic networks called P-circuits, described in
Section 3.

First of all, we recall from [4] that given the switching lattices implementing
two functions f and g, we can easily construct the lattices representing their dis-
junction f + g and their conjunction f · g using a padding column of 0s and a
padding row of 1s, respectively, as shown in Figure 5. Indeed, the column of 0s
separates all top-to-bottom paths in the lattices for f and g, so that the accepting
paths for the two functions never intersect. This, in turn, implies that there exists
a top-to-bottom connected path in the lattice for f + g if and only if there is at
least one connected path for f or for g. Of course, if the lattices for f and g have a
different number of rows, we add some rows of 1s to the lattice with fewer rows,
so that each accepting path can reach the bottom edge.

Similarly, the padding row of 1s allows to join any top-to-bottom accepting
path for the function f with any top-to-bottom accepting path for g, so that the
overall lattice evaluates to 1 if and only if both f and g evaluate to 1. As before, if
the lattices for f and g have a different number of columns, we add some columns
of 0s to the lattice with fewer columns, so that an accepting path for one of the
two functions can never reach the opposite edge of the lattice if the other function
evaluates to 0.

We can use these simple composition rules to derive a lattice describing a
P-circuit expression P (f) = (xi ⊕ S(p))S(f=) + (xi ⊕ S(p))S(f 6=) + S(f I)
for a given function f , using lattices for the three sets f=, f 6=, and f I and for
the projection functions (xi ⊕ p) and (xi ⊕ p) as building blocks, as depicted in
Figure 6.

We now formally prove that the lattice implementation of a P-circuit P (f)
described in Figure 6 correctly implements the function f .

Theorem 1. Let f be a Boolean function depending on n binary variables, and let

14

f = f ≠
1

f I

1

0
0

0

xi ⊕ pxi ⊕ p 00
0
0

0

1 1 1

1 1 1

Figure 6: Lattice implementation of a P-circuit.

0

0

0

0

f I

1

xi xi xi xi xi0

0

…

… …

…f =

1

xi

f ≠

(a)

1

0

111

0xj

1

xj

1

xi

1

00

xi 0

0

0…
…

1 1…

1

xj

xi xi

0

0…
…

1… f I

1
f =

0 0
0

f ≠

0

0

0

xj

0

0

0

(b)

Figure 7: Lattice implementation of a P-circuit with projection function p = 0 (a) and with
projection function p = xj (b).

15

P (f) = (xi⊕S(p))S(f=)+(xi⊕S(p))S(f 6=)+S(f I) be a P-circuit representing
f . The lattice obtained composing the lattices for the three sets f=, f 6=, and f I

and for the projection functions (xi ⊕ p) and (xi ⊕ p), as shown in Figure 6,
implements the function f .

Proof. In order to prove the theorem, we need to show that the function f evalu-
ates to 1 on a given input assignment if and only if there exists a connected path
between the top and the bottom edge of the lattice in Figure 6.

First suppose that f evaluates to 1 on a given input (x1, x2, . . . , xn). Then, at
least one of the three terms in the expression for P (f) must evaluate to 1. Suppose
that the first term (xi ⊕ S(p))S(f=) takes the value 1 on (x1, x2, . . . , xn). Then,
both (xi⊕S(p)) and S(f=) are equal to 1, giving rise to a top-to-bottom connected
path in the left side of the lattice. An analogous situation arises if the second or
the third term are equal to 1.

Now suppose that a given input assignment (x1, x2, . . . , xn) induces some con-
nected top-to-bottom paths on the lattice. Due to the presence of the two columns
of 0s, separating the left, center, and right portions of the lattice corresponding
to the implementations of the functions (xi ⊕ p) f=, (xi ⊕ p) f 6=, and f I , respec-
tively, each connected path is entirely contained in one of the three portions. This
implies that at least one of the three terms in input to the final OR gate of the
P-circuit representing f is equal to 1, and the thesis immediately follows.

The lattice description of the P-circuit can be simplified depending on the
chosen projection function. For instance, if we choose the P-circuit P (f) =
xi S(f

=)+xi S(f
6=)+S(f I) based on the generalization of the classical Shannon

decomposition with projection function p = 0, which experimentally represents a
very efficient and effective solution, we get the lattice shown in Figure 7 (a), where
the two padding rows of 1s have been substituted with one row of cells assigned
to the literal xi and one row of cells assigned to xi. Figure 7 (b) shows the lattice
implementation of the P-circuit P (f) = (xi⊕xj)S(f

=)+(xi⊕xj)S(f
6=)+S(f I)

corresponding to the choice p = xj . Both lattices correctly implement the func-
tion f , as proved in the following corollary.

Corollary 1. The two lattices in Figure 7 implement the function f through its P-
circuit representations with projection functions p = 0 and p = xj , respectively.

Proof. Let us consider the first lattice, corresponding to the P-circuit represen-
tation of f with projection function p = 0. As before, observe that each top-
to-bottom connected path must be entirely contained in one of the three portions
of the lattice, because of the two padding columns of 0s. Moreover, the row of

16

cells assigned to xi on top of the lattice for f= allows to derive a top-to-bottom
connected path for f from a connected path for f= if and only if xi = 0; analo-
gously, the row of cell assigned to xi on top of the lattice for f 6= allows to derive
a top-to-bottom connected path for f from a connected path for f 6= if and only if
xi = 1. Finally, any connected path for f I can be extended to a connected path
for f . Thus the thesis immediately follows from the definition of P-circuit and of
the terms f=, f 6 =, and f I (see Definitions 1 and 2).

Now consider the lattice in Figure 7 (b), corresponding to the P-circuit for f
with projection function p = xj . Any connected path for f I can be extended to a
connected path for f . Moreover, any connected path for f= can be extended to a
connected path for f if and only if both variables xi and xj assume the same value,
i.e., xi = xj , while any connected path for f 6= can be extended to a connected path
for f if and only if the two variables assume different values, i.e., xi = xj . Since
the presence of the two columns of 0s prevents the existence of top-to-bottom
connected paths intersecting different regions of the lattice, the thesis immediately
follows from Definitions 1 and 2.

As an example of synthesis of lattices based on the P-circuit decomposition,
let us consider the third output, here denoted by z, of the benchmark z4 taken
from LGSynth93 [17], whose P-circuit decomposition is shown in Figure 3 and
discussed in Section 3.1. We can derive a lattice implementation of z using lat-
tices for the three subfunctions z=, z 6=, and zI as building blocks, as depicted in
Figure 7 (a). Recall from Section 3.1 that the SOP representations of the three
subfunctions are

S(z=) = x3x4x6 + x3x4x6 + x3x6x7 + x3x6x7 ,

S(z 6=) = x3x4x6 + x3x4x6 + x3x6x7 + x3x6x7 + x3x4x6x7 + x3x4x6x7 ,

S(zI) = x3x4x6x7 + x3x4x6x7 ,

and contain 4, 6, and 2 products, respectively. The SOP expressions for the corre-
sponding dual functions are

S(z=
D

) = x3x6 + x3x6 + x4x7 ,

S(z 6=
D

) = x3x4x6 + x3x4x6 + x3x6x7 + x3x6x7 + x3x4x6x7 + x3x4x6x7 ,

S(zI
D

) = x4 + x7 + x3x6 + x3x6 ,

with 3, 6, and 4 products, respectively. Using the method described in [3], we can
compute the three sublattices for z=, z 6=, and zI , whose dimensions are 3×4, 6×6,
and 4 × 2. Finally, composing these three sublattices as shown in Figure 8, we

17

x7

1

x3

x4

1

x6

1

x3

x6

1
1

x4

x7

1

x6x3x40 x7 011 x4 x71 1
1 11 x6x3 x3x3 x71 x40 0

x71 x6x3x6 x7 01 x31 1 0
0

0
0

0

x4

x7

x1
x4

x3

x3

x1

x4x6

x1

x3

x3

x3

x1

x6

x6

x3

x6

x1
x3

x6

x3

x1
x6

0

0

0
0

x4 x7x4 x7

x1
x3

x6x3

x6

x1
x3

x1

x6x3

x6

x1

Figure 8: Lattice for the benchmark z = z4(2) based on the P-circuit decomposition. The
sublattices for z=, z 6=, and zI are highlighted in grey.

get an overall lattice of dimension 7× 14 for the benchmark z = z4(2). Note that
the synthesis method in [3] applied directly to z, without exploiting its P-circuit
decomposition, would produce a lattice of dimension 12× 12.

As already observed, the main idea behind this approach is that lattice synthe-
sis of the subfunctions f=, f 6=, and f I , which depend on n−1 variables instead of
n and have a smaller on-set than f , should be an easier task, and should produce
lattices of reduced size, so that the overall lattice for f - derived using minimal
lattices for f=, f 6=, and f I as building blocks - could be smaller than the one de-
rived for f without exploiting its decomposition in P-circuits. This expectation
has been confirmed by our experimental results (Section 5).

In a very similar way, we can synthesize on lattice a function f exploiting its
EP-SOP decomposition form. The decomposed lattice has the same structure of
the lattice shown in Figure 7 (b), with the lattice for the intersection f I replaced
with a lattice for the remainder fR. Also recall that now the three building blocks
f=, f 6=, and fR depend on n variables, but contain fewer points than the original
function f . The lattice obtained in this way correctly implements the function f ,
as stated in the following theorem, whose proof can be immediately derived from
the proofs of Theorem 1 and Corollary 1.

Theorem 2. Let f be a Boolean function depending on n binary variables, and
let EP-SOP(f) = (xi ⊕ xj)S(f

=) + (xi ⊕ xj)S(f
6=) + S(fR) be an EP-SOP

form for f . The lattice obtained composing the lattices for f=, f 6=, fR, and for
the projection function (xi ⊕ xj) implements the function f .

We finally observe that, applying recursively these decomposition methods,
we could further decompose each single lattice block. However, this approach

18

requires the insertion of additional padding rows and/or columns of 1s or 0s, that
in turn might lead to an increase of the dimension of the final overall lattice.

5. Experimental results

In this section we report the experimental results obtained by applying the de-
composition with lattices described in Section 4. The experiments have been run
on a machine with two AMD Opteron 4274HE for a total of 16 CPUs at 2.5 GHz
and 128 GByte of main memory, running Linux CentOS 6.6. The benchmarks
(in PLA form) are taken from LGSynth93 [17]. We considered each output as a
separate Boolean function, for a total of 1886 functions. Due to the limited space
available, we report in the following only a significant subset of the functions as
representative indicators of our experiments.

The algorithms for P-circuit and EP-SOP decomposition have been imple-
mented in C, using the CUDD library for OBDDs [19, 20, 21, 22] to repre-
sent Boolean functions, and BREL [23] to solve Boolean relations, as detailed
in [9, 13]. For the P-circuit decomposition model, we evaluate and report the
results for both projection function p = 0, using xi = x0, i.e. we decompose
with respect to the first input variable of each benchmark, and for p = xj , using
p = x1, that is we decompose with respect to the subspace x0 ⊕ x1 described by
the first two variables. This choice of variables is arbitrary, as the main objective
of this set of experiments is to evaluate how decomposition techniques allow to
mitigate the cost of implementing switching lattices. However, we recall here that
P-circuit decomposition should be performed with respect to critical signal that
should be pushed closer to the outputs, i.e., we should choose as xi the signal with
the highest switching activity (to decrease power consumption), or with higher
delay; on the other hand, the choice of the function p should be driven by other
considerations, for instance area reduction.

EP-SOP decomposition, originally introduced mainly for area minimization,
is performed in this experiments with respect to the pair of variables appearing
together most frequently among the products of a minimal SOP for the target
function, as suggested in [13].

In order to evaluate the utility of our approach, we compare our results with
the ones obtained by the methods presented in [3] and in [4]. We used ESPRESSO

to implement the method described in [3], and a collection of Python scripts for
computing minimum-area lattices by transformation to a series of SAT problems,
to simulate the results reported in [4].

19

Table 1: Proposed lattice sizes for standard benchmark circuits: a comparison of the proposed
method with the results presented in [3] and in [4]. All cases where the SAT-based synthesis
of a non-decomposed lattice (columns 4 and 5) is stopped after 10 minutes are marked with −.
Results for decomposed lattices are marked with ? when SAT-based synthesis [4] is stopped after
10 minutes and replaced with [3].

Standard Synthesis Decomp. with p = x0 Decomp. with p = x0 ⊕ x1 Decomp. EP-SOP
[3] [4] [3] [4] [3] [4] [3] [4]

X×Y A X×Y A X×Y A X×Y A X×Y A X×Y A X×Y A X×Y A
adr4(1) 36×36 1296 − − 37×19 703 37×19 703? 37×21 777 37×21 777? 30×21 630 25×19 475?
alu2(2) 11×10 110 7×3 21 13×7 91 10×6 60 14×8 112 11×8 88 12×11 132 8×6 48?

alu2(5) 14×13 182 − − 16×10 160 16×10 160? 17×10 170 17×10 170? 15×14 210 15×14 210?

alu2(6) 4×4 16 4×3 12 4×4 16 4×3 12? 4×4 16 4×3 12? 4×7 28 4×6 24?

alu3(0) 5×4 20 − − 7×4 28 7×4 28 8×6 48 8×6 48 7×5 35 7×5 35
alu3(1) 8×7 56 4×3 12 10×5 50 8×5 40 11×7 77 9×7 63 9×8 72 6×6 36?

b12(0) 4×6 24 3×4 12 4×6 24 3×4 12? 6×7 42 6×7 42? 5×7 35 4×6 24?

b12(1) 7×5 35 4×4 16 7×5 35 4×4 16? 8×7 56 6×7 42? 8×6 48 5×6 30?

b12(2) 7×6 42 4×4 16 8×6 48 8×5 40? 11×7 77 11×6 66 10×8 80 10×7 70
bcc(5) 9×27 243 − − 9×26 234 9×26 234? 10×23 230 10×23 230? 10×20 200 10×20 200?
bcc(7) 11×31 341 − − 12×29 348 12×29 348? 12×28 336 12×28 336? 12×26 312 12×26 312?
bcc(8) 12×31 372 − − 13×29 377 13×29 377? 13×27 351 13×27 351? 13×24 312 13×24 312?
bcc(12) 11×31 341 − − 11×30 330 11×30 330? 12×28 336 12×28 336? 12×25 300 12×25 300?
bcc(27) 19×38 741 − − 20×33 660 20×33 660? 20×31 620 20×31 620? 21×29 609 21×29 609?
bcc(43) 10×20 200 − − 11×16 176 11×16 176? 10×22 220 10×22 220? 12×20 240 12×20 240?

bcd.div3(1) 3×4 12 3×3 9 5×4 20 5×4 20 5×5 25 5×5 25? 4×5 20 4×5 20?

bcd.div3(2) 3×4 12 3×3 9 5×4 20 5×4 20 7×5 35 7×5 35 4×5 20 4×5 20?

bcd.div3(3) 3×5 15 3×4 12 4×4 16 4×4 16? 5×5 25 5×5 25? 5×4 20 5×4 20?

bench1(2) 24×45 1080 − − 33×29 957 33×29 957? 31×27 837 31×27 837? 31×23 682 31×22 682?
bench1(3) 16×31 496 − − 20×18 360 21×18 378? 23×22 506 23×22 506? 21×17 357 21×17 357
bench1(5) 2×50 1350 − − 32×28 896 32×28 896? 28×22 616 28×22 616? 31×26 806 31×26 806?

bench1(6) 21×35 735 − − 26×24 624 26×24 624? 28×30 840 28×30 840? 26×26 676 26×26 676?

bench1(7) 21×43 903 − − 27×20 540 27×20 540? 28×28 784 28×28 784? 29×30 870 29×30 870?

bench1(8) 24×44 1056 − − 31×26 806 31×26 806? 29×28 812 29×28 812? 26×24 624 25×24 600?

bench(6) 4×8 32 3×4 12 6×3 18 6×3 18 5×5 25 5×5 25? 8×6 48 8×6 48
br2(4) 8×18 144 − − 8×18 144 8×18 144? 8×20 160 8×20 160? 10×15 150 10×15 150?

br2(5) 4×14 56 − − 4×14 56 4×14 56? 4×16 64 4×16 64? 6×13 78 6×13 78?

br2(6) 5×16 80 − − 5×16 80 5×16 80? 5×18 90 5×18 90? 7×13 91 7×13 91?

clpl(2) 2×2 4 2×2 4 3×2 6 3×2 6? 7×5 35 7×5 35 5×4 20 5×4 20?

clpl(3) 6×6 36 6×3 18 9×6 54 9×6 54? 10×8 80 10×8 80? 10×9 90 10×6 60
clpl(4) 5×5 25 5×3 15 8×5 40 8×5 40? 9×7 63 9×7 63? 9×8 72 9×6 54
co14(0) 14×92 1288 − − 15×80 1200 15×80 1200? 15×71 1065 15×71 1065? 15×67 1005 15×67 1005
dc1(0) 4×4 16 3×3 9 5×4 20 4×4 16? 5×6 30 5×6 30? 4×6 24 4×6 24
dc1(1) 2×3 6 2×3 6 3×3 9 3×3 9? 5×6 30 5×6 30? 5×6 30 5×6 30
dc1(4) 4×5 20 3×4 12 5×4 20 5×4 20? 7×6 42 7×6 42 7×6 42 7×6 42
dc1(6) 3×3 9 3×2 6 4×2 8 4×2 8? 7×5 35 7×5 35 3×6 18 3×5 15
dc2(4) 9×10 90 4×5 20 10×9 90 8×5 40? 13×12 156 9×7 63? 10×11 110 8×7 56?

dc2(5) 6×6 36 2×6 12 7×7 49 5×6 30? 10×8 80 6×7 42? 6×9 54 2×9 18?

dk17(0) 2×8 16 2×6 12 4×4 16 4×4 16? 5×6 30 5×6 30? 4×4 16 4×4 16
dk17(1) 2×8 16 2×6 12 4×4 16 4×4 16? 5×6 30 5×6 30? 4×4 16 4×4 16
dk17(3) 3×11 33 2×7 14 4×7 28 6×3 18? 7×7 49 7×6 42? 9×6 54 9×6 54
dk17(4) 3×9 27 2×7 14 6×4 24 6×4 24 8×6 48 8×6 48 6×7 42 6×6 36
dk27(6) 1×2 2 1×2 2 1×2 2 1×2 2? 2×5 10 2×5 10? 1×3 3 1×3 3?

ex4(4) 6×17 102 − − 6×17 102 6×17 102? 6×17 102 6×17 102? 6×20 120 6×20 120?

ex4(5) 45×35 1575 − − 45×35 1575 45×35 1575? 45×35 1575 45×35 1575? 45×38 1710 45×38 1710?

ex5(31) 8×4 32 6×3 18 10×4 40 10×3 30 11×5 55 11×5 55 9×7 63 7×6 42?

ex5(32) 10×4 40 6×4 24 13×3 39 13×3 39 13×5 65 13×5 65 13×5 65 13×5 65?

ex5(33) 7×3 21 − − 7×3 21 7×3 21? 11×5 55 11×5 55 8×6 48 8×6 48?

ex5(36) 8×2 16 8×2 16 10×2 20 10×2 20 12×4 48 12×4 48 13×4 52 13×4 52
ex5(38) 9×4 36 6×4 24 13×3 39 13×3 39 13×5 65 13×5 65 13×5 65 13×5 65
ex5(39) 8×2 16 − − 11×3 33 11×3 33 10×4 40 10×4 40? 11×5 55 11×5 55
ex5(40) 12×6 72 − − 15×5 75 13×4 52 17×7 119 15×6 90? 13×9 117 13×9 117?

ex5(43) 14×8 112 − − 17×6 102 13×4 52? 17×8 136 13×6 78? 16×14 224 16×14 224?

exam(5) 6×11 66 − − 7×6 42 6×5 30? 8×7 56 7×7 49? 7×9 63 8×6 48?

exam(9) 30×59 1770 − − 38×30 1140 33×30 990? 42×29 1218 42×29 1218? 39×47 1833 39×47 1833?

max128(5) 17×14 238 − − 19×9 171 14×5 70 20×12 240 13×7 91? 18×9 162 11×6 66?
max128(8) 10×5 50 − − 11×4 44 10×4 40? 9×6 54 9×6 54? 9×5 45 9×5 45?

max128(17) 25×26 650 − − 26×15 390 26×15 390? 25×16 400 25×16 400 18×11 198 11×7 77
mp2d(6) 6×10 60 − − 6×10 60 3×7 21? 7×11 77 5×10 50? 7×11 77 5×10 50?

mp2d(9) 8×6 48 − − 9×6 54 9×4 36? 11×7 77 11×7 77? 10×7 70 10×6 60
mp2d(10) 3×6 18 3×4 12 4×5 20 4×5 20? 3×7 21 2×7 14? 5×7 35 5×7 35?

z4(0) 15×15 225 4×5 20 16×11 176 6×6 36? 18×6 108 10×6 60 16×16 256 7×7 49?

z4(1) 28×28 784 − − 30×16 480 10×7 70 22×16 352 10×8 80 22×19 418 24×23 552?

Z5xp1(2) 11×12 132 − − 13×7 91 11×5 55? 13×9 117 13×7 91? 13×8 104 11×7 77?

Z5xp1(3) 18×18 324 − − 19×11 209 10×6 60? 19×12 228 13×7 91? 14×13 182 13×6 78?

20

Table 2: Proposed lattice synthesis times for standard benchmark circuits: a comparison of the
proposed method with the results presented in [3] and in [4]. All cases where the SAT-based
synthesis of a non-decomposed lattice (column 3) is stopped after 10 minutes are marked with −.

Standard Synthesis p = x0 p = x0 ⊕ x1 EP − SOP
[3] [4] [3] [4] [3] [4] [3] [4]
t(s) t(s) t(s) t(s) t(s) t(s) t(s) t(s)

adr4(1) 0 − 1.14 1.14 0 0 2.87 2.59
alu2(2) 0 5420.91 0.95 2.02 0 53.012 1.36 1470.75
alu2(5) 0 − 2.87 2.87 0 0 4.63 4.61
alu2(6) 0 5420.91 2.98 4.702 0 1.734 4.89 6.642
alu3(0) 0 − 0.03 0.03 0 0 0.07 0.07
alu3(1) 0 1.749 0.18 0.923 0 0.759 0.58 5.7
b12(0) 0 2.485 0 0.872 0 0 0.01 0.197
b12(1) 0 94.477 0.01 3.292 0 1.841 0.02 1271
b12(2) 0 309.477 0.11 4.672 0 4.505 0.63 5881
bcc(5) 1.09 − 0.39 0.4 0 0 3.51 3.51
bcc(7) 1.09 − 0.58 0.54 0.03 0.03 3.63 3.63
bcc(8) 1.09 − 0.66 0.65 0.03 0.03 1.09 3.7
bcc(12) 1.09 − 0.98 0.97 0 0 4.13 4.12
bcc(27) 1.09 − 2.35 2.32 0.03 0.03 12.55 12.36
bcc(43) 1.09 − 11.51 11.62 0 0 58.65 58.43
bcd.div3(1) 0 0.331 0.02 0.03 0 0 0.05 0.05
bcd.div3(2) 0 0.315 0.05 0.06 0 0 0.09 0.09
bcd.div3(3) 0 0.599 0.08 0.09 0 0 0.11 0.1
bench1(2) 0.04 − 13.45 13 0.332 0.03 11.73 11.71
bench1(3) 0.04 − 15.73 19.8 0 3.72 14.16 83.2
bench1(5) 0.04 − 23.76 23.88 0 0 20.56 20.58
bench1(6) 0.04 − 27.1 27.25 0 0 23.74 23.75
bench1(7) 0.04 − 30.21 32.547 0 0 27.08 27.07
bench1(8) 0.04 − 33.92 34.08 0 0 30.2 32.097
bench(4) 0 1.546 0.41 0.41 0 0.115 0.76 1.094
bench(5) 0 0 0.44 0.44 0 0 0.83 0.83
bench(6) 0 2.668 0.51 0.51 0 0 1.1 1.11
br2(4) 0 − 0.07 0.08 0 0 0.19 0.19
br2(5) 0 − 0.09 0.1 0 0 0.26 0.25
br2(6) 0 − 0.11 0.13 0 0 0.31 0.3
clpl(2) 0 0 0.24 0.23 0 0 0.44 0.42
clpl(3) 0 2953 0.96 10.078 0 9.127 1.19 308.15
clpl(4) 0 52.9 1.46 2.324 0 0.86 1.71 10.258
co14(0) 0 0.98 0.97 0 0 0.6 0.6
dc1(0) 0 0.413 0.01 0.207 0 0 0.04 0.04
dc1(1) 0 0 0.02 0.02 0 0 0.06 0.06
dc1(4) 0 0.585 0.04 0.04 0 0 0.14 0.14
dc1(6) 0 0.198 0.06 0.06 0 0 0.35 0.17
dc2(4) 0 1452.36 0.44 15.284 0 117.233 1.42 16.69
dc2(5) 0 35.305 0.52 2.424 0 5.72 1.54 45.741
dk17(0) 0 58.086 0.07 0.07 0 0 0.05 0.05
dk17(1) 0 56.658 0.14 0.14 0 0 0.1 0.1
dk17(3) 0 890.945 0.48 74.169 0 0.92 0.58 0.58
dk17(4) 0 788.761 0.66 0.67 0 0 0.68 1166
dk27(6) 0 0 0.11 0.13 0 0 0.08 0.08
ex4(4) 0.07 − 2.98 3 0 0 5.24 5.24
ex4(5) 0.07 − 8.34 8.36 0 0 10.69 10.68
ex5(31) 0.02 14.408 0.41 1.967 0 1.544 0.41 43.511
ex5(32) 0.02 2192.91 0.94 0.91 0 0 0.92 0.91
ex5(33) 0.02 − 1.23 1.21 0 0 1.24 1.23
ex5(36) 0.02 0.02 2.38 2.39 0 0 2.73 2.72
ex5(38) 0.02 1027.5 3.38 3.39 0 0 3.84 3.83
ex5(39) 0.02 − 3.83 3.84 0 0 4.32 4.31
ex5(40) 0.02 − 4.6 7.348 0 252.83 5.11 5.1
ex5(43) 0.02 − 6.18 96.164 0 819.055 6.96 6.94
exam(5) 0.03 − 4.89 40.155 0 67.401 4.94 16.151
exam(9) 0.03 − 11.19 7113.73 0 0 10.84 11.642
max128(5) 0 − 2.24 5266.51 0 10602.8 2.27 400.61
max128(8) 0 − 2.84 7.372 0 0 3.19 3.22
max128(17) 0 − 8 9.503 0 0 8.63 876.63
mp2d(6) 0 − 2.18 3164.15 0 433.23 2.62 424.213
mp2d(9) 0 − 2.37 2.847 0 0 2.99 3.05
mp2d(10) 0 1.704 2.37 2.4 0 0.327 3.01 3.279
z4(0) 0 1888.26 0.89 7.31 0 5.358 0.97 274.141
z4(1) 0 − 2.51 7329.12 0 6816.19 2.22 10.065
Z5xp1(2) 0 − 0.55 46.701 0 200.352 0.72 8.902
Z5xp1(3) 0 − 0.58 2279.54 0 9393.85 1.79 195.769

21

In Table 1 we report dimensions and areas of lattices, in Table 2 we report
simulation times. Each row of the tables lists the results for any separate output
function of the benchmark circuit.

More precisely, in Table 1, the first column reports the name and the number of
the considered output of each instance. The following columns report dimension
(X × Y) and area (Area = X · Y) of lattices for each method. In particular,
the first group refers to the synthesis of the lattices, as described in [3] (columns
2 and 3) and in [4] (columns 4 and 5) without any decomposition; the second
group refers to the synthesis of the lattices, as described in [3] (columns 6 and
7) and in [4] (columns 8 and 9), based on the P-circuit scheme decomposition
with p = 0; the third group refers to the synthesis of the lattices, as described
in [3] (columns 10 and 11) and in [4] (columns 12 and 13), based on the P-circuit
scheme decomposition with p = xj; finally, the last group refers to the synthesis
of the lattices, as described in [3] (columns 14 and 15) and in [4] (columns 16
and 17) based on the EP-SOP decomposition. For each function, we bolded the
best area. We marked with − all cases where the synthesis of a non-decomposed
lattice is stopped.

Moreover, in some cases the method proposed in [4] fails in computing a result
in reasonable run time. For this reason, we set a time limit (equal to ten minutes)
for each SAT execution; if we do not find a solution within the time limit, the
synthesis is stopped. In the synthesis of sublattices, whenever [4] is stopped, we
use the respective sublattice synthesized with [3], because without a sublattice it
would be impossible to complete the synthesis of the overall decomposed lattice.
We marked these cases with ?. Note that, for many benchmarks, the method in [4]
did not find a solution within the fixed time limit for at least one sublattice, and
had to be replaced with [3]. We also note that some benchmarks (e.g., exam(5) or
mp2d(9)) show an overall area reduction with respect to the decomposed lattice
synthesized only with [3], even if only one or two sublattices are synthesized
with [4].

The first column of Table 2 reports the name and the number of the consid-
ered output of each instance. The following columns report the execution times
for each considered method. The time values include the time for the decompo-
sition plus the time for the synthesis of lattices used to compose the final lattice.
For each function, we bolded the best execution time. Note that the execution
times for the method in [3] are often equal to zero. To synthesize the lattices we
used ESPRESSO that has a time granularity of 0.01s; smaller synthesis-times are
indicated as zero.

In Table 3 we summarize the improvements of synthesis with decomposition

22

Table 3: Results of the decomposition. The values indicate the improvement with respect to the
standard synthesis methods. When [4] does not complete, it is compared with [3].

Smaller area Average area gain Less time Average time gain
[3] [4] [3] [4] [3] [4] [3] [4]

p = x0 34% 15% 25% 30% 6% 25% -2900% 53%
p = x0 ⊕ x1 27% 13% 22% 27% 53% 50% 98% 57%
EP − SOP 27% 35% 28% 33% 2% 3% -4900% 90%

vs. synthesis without decomposition. Every line of the table shows a different type
of decomposition. The first column shows the considered decomposition scheme.
The second and third columns report the percentages of lattices with smaller area
with respect to the results reported in [3] and in [4], respectively. Columns four
and five report the average area gain of the lattices that have a smaller area after
the decomposition. Columns six and seven show the percentages of lattices taking
less time for synthesis (not necessary with a more compact area); finally the last
two columns report the average gain of execution time. The negative values of
time gain in column eight are due to the poor granularity of ESPRESSO time. The
synthesis in [3] is performed using ESPRESSO, and in many cases it takes less than
0.01 s. There are negative values because the time for decomposition is usually
less than few seconds, and therefore it has a negligible impact on total synthesis
time with respect to area gain.

By comparing the two projection function p = 0 and p = xj for the P-circuit
decomposition model, we observe that we obtain better area results considering
the p = 0 choice, at the expense of a limited increase in the run time needed to
decompose the input functions.

By comparing our results with the ones obtained in [4], we obtain a higher
percentage of benchmarks with a smaller area by applying the EP-SOP circuit de-
composition scheme (35% of smaller area, in contrast to 15% and 13% obtained
with the P-circuit scheme), with an average gain of about 33%. The difference
between P-circuit-based and EP-SOP-based synthesis results is only partially ex-
plained by the fact that two decomposition methods differ in the way they handle
crossing cubes. Most likely, this difference is a consequence of the fact that the
two decompositions are performed with respect to different input variables. In
particular, EP-SOP decomposition is performed with respect to the pair of vari-
ables appearing together most frequently among the products of a minimal SOP
for the target benchmark, while for P-circuits we used the first two variables x0 and
x1. Thus, these results clearly indicate that the simple frequency-based heuristic

23

should be applied in the P-circuit scheme as well.

6. Conclusions

In this paper we proposed a new method for the synthesis of minimal-sized lat-
tices, preprocessing the logic functions with a decomposition based on P-circuits
and EP-SOP forms. The results demonstrate that lattice synthesis benefits from
these Boolean decompositions, yielding smaller circuits with an affordable com-
putation time (even less in some cases). Future work includes assessing the impact
of more complex types of decompositions, with more expressive projection func-
tions.

7. Acknowledgments

This project was partially funded by the European Union Horizon 2020 re-
search and innovation programme under the Marie Skłodowska-Curie grant agree-
ment No 691178.

References

[1] S. B. Akers, A Rectangular Logic Array, IEEE Trans. Comput. 21 (8) (1972) 848–
857.

[2] M. Altun, M. D. Riedel, Lattice-Based Computation of Boolean Functions, in: Pro-
ceedings of the 47th Design Automation Conference, DAC 2010, Anaheim, Califor-
nia, USA, July 13-18, 2010, 2010, pp. 609–612.

[3] M. Altun, M. D. Riedel, Logic Synthesis for Switching Lattices, IEEE Trans. Com-
puters 61 (11) (2012) 1588–1600.

[4] G. Gange, H. Søndergaard, P. J. Stuckey, Synthesizing Optimal Switching Lattices,
ACM Trans. Design Autom. Electr. Syst. 20 (1) (2014) 6:1–6:14.

[5] Y. Chen, G.-Y. Jung, D. A. A. Ohlberg, X. Li, D. R. Stewart, J. O. Jeppesen, K. A.
Nielsen, J. F. Stoddart, R. S. Williams, Nanoscale molecular-switch crossbar cir-
cuits, Nanotechnology 14 (4) (2003) 462–468.

[6] A. Bernasconi, V. Ciriani, G. Trucco, T. Villa, On Decomposing Boolean Functions
via Extended Cofactoring, in: Design Automation and Test in Europe (DATE), 2009,
pp. 1464–1469.

24

[7] A. Bernasconi, V. Ciriani, G. Trucco, T. Villa, Logic Synthesis by Signal-Driven
Decomposition, in: K. Gulati (Ed.), Advanced Techniques in Logic Synthesis, Op-
timizations and Applications, Springer New York, 2011, pp. 9–29.

[8] A. Bernasconi, V. Ciriani, V. Liberali, G. Trucco, T. Villa, Synthesis of P-Circuits
for Logic Restructuring, Integration 45 (3) (2012) 282–293.

[9] A. Bernasconi, V. Ciriani, G. Trucco, T. Villa, Using Flexibility in P-Circuits by
Boolean Relations, IEEE Trans. Computers 64 (12) (2015) 3605–3618.

[10] A. Bernasconi, V. Ciriani, R. Cordone, EXOR Projected Sum of Products, in:
IFIP/IEEE VLSI-SoC 2006 - International Conference on Very Large Scale Inte-
gration of System-on-Chip,, 2006.

[11] A. Bernasconi, V. Ciriani, R. Cordone, On Projecting Sums of Products, in: 11th Eu-
romicro Conference on Digital Systems Design: Architectures, Methods and Tools,
2008, pp. 787–794.

[12] A. Bernasconi, V. Ciriani, G. Trucco, T. Villa, Projected Don’t Cares, in: Euromicro
Conference on Digital Systems Design: Architectures, Methods and Tools (DSD),
2012, pp. 57–64.

[13] A. Bernasconi, V. Ciriani, G. Trucco, T. Villa, Minimization of EP-SOPs via
Boolean relations, in: IFIP/IEEE VLSI-SoC 2013 - International Conference on
Very Large Scale Integration of System-on-Chip, 2013, pp. 112–117.

[14] A. Bernasconi, V. Ciriani, L. Frontini, V. Liberali, G. Trucco, T. Villa, Logic Syn-
thesis for Switching Lattices by Decomposition with P-Circuits, in: 2016 Euromicro
Conference on Digital System Design, DSD 2016, Limassol, Cyprus, August 31 -
September 2, 2016, 2016, pp. 423–430.

[15] J. C. Bioch, The Complexity of Modular Decomposition of Boolean Functions, Dis-
crete Applied Mathematics 149 (1-3) (2005) 1–13.

[16] V. Kravets, Constructive Multi-Level Synthesis by Way of Functional Properties,
Ph.D. thesis, Computer Science Engineering, University of Michigan (2001).

[17] S. Yang, Logic Synthesis and Optimization Benchmarks User Guide Version 3.0,
User guide, Microelectronic Center (1991).

[18] T. Sasao, Switching Theory for Logic Synthesis, Kluwer Academic Publishers,
1999.

25

[19] R. Bryant, Graph Based Algorithm for Boolean Function Manipulation, IEEE Trans-
actions on Computers 35 (9) (1986) 667–691.

[20] S. Minato, Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems,
in: ACM/IEEE 30th Design Automation Conference (DAC), 1993, pp. 272–277.

[21] A. Bernasconi, V. Ciriani, L. Lago, On the error resilience of ordered binary decision
diagrams, Theor. Comput. Sci. 595 (2015) 11–33.

[22] A. Bernasconi, V. Ciriani, Index-resilient zero-suppressed bdds: Definition and op-
erations, ACM Trans. Design Autom. Electr. Syst. 21 (4) (2016) 72:1–72:27.

[23] D. Bañeres, J. Cortadella, M. Kishinevsky, A Recursive Paradigm to Solve Boolean
Relations, IEEE Transactions on Computers 58 (4) (2009) 512–527.

26

