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Abstract

This paper analyzes three cryptographic modules suitable for digital
designs of trusted virtual sensors into integrated circuits, using 90-nm
CMOS technology. One of them, based on the keyed-hash message
authentication code (HMAC) standard employing a PHOTON-80/20/16

lightweight hash function, ensures integrity and authentication of the vir-
tual measurement. The other two, based on CAESAR (the Competition
for Authenticated Encryption: Security, Applicability, and Robustness)
third-round candidates AEGIS-128 and ASCON-128, ensure also confi-
dentiality. The cryptographic key required is not stored in the sensor
but recovered in a configuration operation mode from non-sensitive data
stored in the non-volatile memory of the sensor and from the start-up
values of the sensor SRAM acting as a Physical Unclonable Function
(PUF), thus ensuring that the sensor is not counterfeit. The start-up val-
ues of the SRAM are also employed in the configuration operation mode
to generate the seed of the nonces that make sensor outputs different
and, hence, resistant to replay attacks. The configuration operation mode
is slower if using CAESAR candidates because the cryptographic key
and nonce have 128 bits instead of the 60 bits of the key and 32 bits
of the nonce in HMAC. Configuration takes 416.8 microseconds work-
ing at 50 MHz using HMAC and 426.2 microseconds using CAESAR
candidates. In the other side, the trusted sensing mode is much faster
with CAESAR candidates with similar power consumption. Trusted
sensing takes 212.62 microseconds at 50 MHz using HMAC, 0.72 mi-
croseconds using ASCON, and 0.42 microseconds using AEGIS. AEGIS
allows the fastest trusted measurements at the cost of more silicon area,
4.4 times more area than HMAC and 5.4 times more than ASCON. AS-
CON allows fast measurements with the smallest area occupation. The
module implementing ASCON occupies 0.026 mm2 in a 90-nm CMOS
technology.

1 introduction

Virtual sensors estimate the value of a variable that is very difficult or
costly to measure physically from others that can be measured easily with
low-cost commercial sensors. The estimation usually makes use of models
obtained with neural networks, fuzzy logic, or other types of approximation
techniques such as piecewise affine (PWA) approaches. Among the latter,
simplicial PWA (PWAS) functions were first employed for virtual sensors
in [23] and, later, hyper-rectangular (PWAR) functions were used for their
further simplicity in [15]. PWAR-based models partition the domain of the
input variables (those easily measured) into hyper-rectangles and estimate
the output (the virtual measurement) as an affine function whose parameters
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Figure 1: Bi-dimensional example of a PWAR function and its hyper-rectangular
partition

depend on the hyper-rectangle which the inputs belong to [8]. Figure 1

shows an example of a PWAR model that partitions a bi-dimensional input
domain into 12 hyper-rectangles.

Since the early 1980s, the use of virtual sensors has increased continu-
ously in a wide number of applications [13, 17]. Many virtual sensors are
implemented as software. However, taking into account the big size of the
sensor market size, CMOS Integrated Circuit (IC) solutions are very adequate
to achieve a minimum unitary cost as well as high performance in terms
of area, power and response time. Another advantage of CMOS ICs that
implement PWAR virtual sensors is that their SRAMs (Static Random Access
Memories) can be programmed to be employed in different applications. An
algorithm was presented in [15] to find the best values of the programmable
parameters given a set of empirical or simulated input-output data.

Nowadays, virtual sensors are usually part of ubiquitous and distributed
networks such as critical infrastructures. Hence, sensor security is becoming
very important [25]. The receiver of the sensing data must trust in the data
originated from the sensor. The way is to confirm that data have not been
tampered with, altered or changed. Not only data integrity but also sensor
integrity must be ensured. The reliability of the data should be ensured
by authentication of their origin. Message authentication codes (MACs)
are the usual constructions employed to ensure data integrity [21]. The
MAC construction that has become more popular over the last decade is the
HMAC. HMAC, standardized in [26], is an approach to implement MAC
using a two-pass hash-based MAC that avoids the weakness of previous
constructions. The problem with many existent HMACs is that their primary
targets are high transmission rates of data with long key spaces, but do not
pay so much attention to area or power consumption. This makes them
not suitable for resource constrained scenarios like sensors, which have
limited computational and memory capabilities. Lightweight cryptographic
primitives should be employed. Specific lightweight hash functions based on
sponge constructions have been proposed, as is the case of SPONGENT [7],
Quark [5], and Photon families [12, 9]. The latter one has been selected for
the trusted virtual sensor analyzed herein [14].

There is also a growing interest in the use of lightweight cryptographic
protocols for sensors so as to ensure that data transmitted are confidential,
which is required by applications using sensitive information [16, 22]. In
these cases, not only message authentication but also message encryption
is required. CAESAR competition is evaluating different authenticated en-
cryption schemes that are fast in software and efficient in hardware [3]. The
idea is to combine encryption and authentication into a single algorithm,
called Authenticated Encryption, so as to obtain smaller area and power
consumption compared to two separate algorithms. Among the CAESAR
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candidates, AEGIS [27, 15] and ASCON [1, 10] have been selected for the
trusted virtual sensor analyzed herein. AEGIS is based on the AES encryp-
tion round function while ASCON is based on sponge constructions like
PHOTON.

The usual way to ensure the integrity of a device (in this case a sensor) is
to check that the sensor knows a cryptographic key. However if the key is
stored in the sensor memory, it can be attacked [24] and a counterfeit sensor
can be fabricated. The problem of counterfeit chips is so significant that the
Semiconductor Industry Association (SIA) maintains an anti-counterfeiting
task force. A solution is the use of Physical Unclonable Functions inside
the sensor hardware, which ensures that the sensor has a unique inherent
identity given, in general, by the variability of its manufacturing process [11].
Among the wide number of PUFs proposed in the literature, SRAM-based
PUFs are selected in this paper since the CMOS sensor requires SRAMs
for its virtual sensing functionality. The start-up values of the SRAM cells
are employed to generate the random seeds required by the cryptographic
primitives as well as to recover the cryptographic key [6]. The key is not
stored anywhere but recovered whenever needed by using a Helper Data
Algorithm that employs non-sensitive data (known as Helper Data) and the
response of the PUF (in this case the start-up values of SRAM cells) [11]. An
impostor sensor is not able to provide a similar PUF response and, hence,
is unable to recover the key while the genuine sensor is able to prove its
authenticity against aging and variations of the operation conditions, namely,
temperature and power supply voltage [15].

This paper analyzes three cryptographic modules suitable for trusted
virtual sensors into CMOS integrated circuits. One of them, based on a
lightweight HMAC construction, ensures integrity and authentication. The
other two, based on CAESAR third-round candidates, ensure also confiden-
tiality. To the best of authors’ knowledge, no other work has addressed the
comparison of such trusted virtual sensors into ICs. The paper is organized
as follows. Firstly, the three cryptographic modules are briefly described in
Section 2. Their integration in a trusted virtual sensor is presented in Section
3, describing the architecture of the resulting sensor as well as its behavioral
modes related to configuration and virtual sensing. Then, Section 4 compares
the three modules implemented in a 90-nm CMOS technology in terms of
area and power consumption as well as sensor memory requirements and
timing performance. Finally, conclusions are given in Section 5.

2 description of cryptographic modules

A virtual sensor provides one output variable that is virtually measured.
The inclusion of cryptographic primitives allows ensuring the integrity,
authenticity, and confidentiality of the virtual measurement achieving a
trusted virtual sensor. Several options have been evaluated to address this
goal.

In order to detect possible manipulations of measurements, a first ap-
proach includes a module to solve the problem of data integrity and au-
thenticity based on MACs. The second approach to increase the level of
security is the use of authenticated ciphers to ensure not only the integrity
of the provided virtual measurement but also to encrypt it at the same time.
Two authenticated encryption algorithms, which are third-round candidates
of the CAESAR competition, have been considered. The three alternatives
were implemented in a 90-nm CMOS technology, as part of a virtual sensor
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integrated circuit, to compare their performance. Their features are briefly
summarized in the following.

2.1 Hash-based Message Authentication Code (HMAC) based on the Photon hash
function

HMAC is a specific type of MAC involving a cryptographic hash function
(hash) and a secret cryptographic key. Simultaneously, it verifies both the
data integrity and the authentication of a message.

The HMAC inputs are a cryptographic key and the message to be au-
thenticated denoted as text. The HMAC provides an authentication code as
follows:

(1)HMAC(key, text) = hash
[(

Ko ⊕ opad
)
|| hash

[(
Ko ⊕ ipad

)
‖ text

]]
where:

• key is the secret key

• text is the message to be authenticated

• hash is a cryptographic hash function

• Ko is another secret key, derived from key, to have a multiple of the
hash input block size

• ⊕ denotes exclusive or (XOR)

• ipad and opad are, respectively, the inner and outer pads given by the
standard

• || denotes concatenation

If the virtual sensor only provides one output variable (y), the input
message of HMAC will be the virtual measurement (y) and a number called
nonce, which is attached to y:

(2)text = nonce || y

The nonce is an arbitrary number that can only be used once. The use of
nonce helps to improve the security since it ensures that old communications
cannot be reused in replay attacks. This is specially important since the
virtual measurement, y, can be the same for different messages.

Hash functions, which implement compression functions, can process an
arbitrary-length message and produce a fixed-length output. This is achieved
by segmenting the input into a series of blocks of equal size that are processed
sequentially. The hash value of the input message is then defined as the
output of the last iteration of the compression function. There are two general
types: dedicated and block cipher-based hash functions [21]. Dedicated hash
functions are algorithms that have been custom designed such as MD4, MD5,
RIPEMD and SHA family. The alternative is to construct hash functions using
block cipher chaining techniques using the Matyas-Meyer-Oseas construction
[21].

Among dedicated hash functions, sponge constructions are very popular
since the winner of the SHA-3 contest of the National Institute of Standards
and Technology (NIST) uses them. The sponge construction has an internal
state S of t bits, composed of the c-bit capacity and the r-bit bitrate (t=c+r).
First, all the bits of the state are initialized to zero. The input message is
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padded and cut into r-bit blocks. Then, it proceeds in two phases: the absorb-
ing phase followed by the squeezing phase. In these phases the first r bits of the
state and the remaining t-r bits or capacity c, are treated differently. During
the absorbing phase, the message blocks (m0, m1, ..., ma) are XORed with
the first r bits of the state, interleaved by applying the permutation P. Once
all message blocks have been handled by this absorbing phase, the sponge
construction switches to the squeezing phase. The sponge construction
successively outputs the final hash value (z0, z1, ..., zb) by extracting r bits
from the bitrate part of the internal state and then applying the permutation
P on it. An extended version of the sponge framework allows a different
number of r′ bits extracted during each iteration of the squeezing process.
The sponge construction is illustrated in Figure 2.

Specific lightweight hash functions based on sponge constructions have
been proposed for hardware implementation into tiny devices, such as
the PHOTON family [12]. The HMAC is implemented with a PHOTON-
80/20/16. The input block size of this hash function is 20 bits. Hence, the
message to authenticate must be divided into blocks of 20 bits. During
absorbing steps, each 20-bit input block is XORed with 20 bits of the internal
state of the hash function. The 80-bit hash output is built by concatenating
five successive outputs of 16 bits obtaining after each squeezing phase.
PHOTON-80/20/16 has an internal state of 100 bits (80 out of these 100
bits are never affected by the input blocks and never output the function;
they correspond to the capacity of the function). After absorbing a block, a
permutation operation is performed to the internal state, represented as a
5× 5 matrix of 4-bit cells. The permutation operation is composed of four
operations, AddConstant, Sub-Cell, ShiftRows and MixColumnsSerial, which
are repeated 12 times, changing the values of the 4-bit cells. In the designed
HMAC, these operations are implemented serially, following the proposal in
[12], so as to obtain a module with low area and power consumption.

2.2 AEGIS Authenticated Cipher

There are two main approaches to authenticate and encrypt a message. One
approach is to apply the encryption and authentication separately. The
plaintext is encrypted with a block cipher or stream cipher, and then, a MAC
algorithm is used to authenticate the ciphertext. Another approach is an
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Figure 2: The sponge construction implemented by the hash function
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authenticated encryption algorithm that shares the computation of both tasks
authentication and encryption.

There are three approaches to design an integrated authentication encryp-
tion algorithm. The first approach is to use a block cipher in a special mode,
for instance, CCM [18] and GCM [19] are operation modes for authenticated
encryption according to NIST recommendation. The second approach is
to use a stream cipher dividing keystream into two parts, one part for en-
cryption and another part for authentication. An example of this approach
is Grain-128a [4]. The third approach is to design dedicated authenticated
encryption algorithms. AEGIS is a dedicated authenticated algorithm that
belongs to the third type of approaches [27]. It is constructed from the AES
encryption round function, providing the advantage of a computational cost
about half that of AES. If the nonce is not reused (which should be the case
for a true nonce), AEGIS provides a high security since the state and the key
can only be recovered by exhaustive search.

AEGIS algorithm takes the cryptographic key, a nonce, and a plaintex, in
this case the virtual measurement, y, and provides a ciphertext, C, and an
authentication tag.

[C, tag] = AEGIS(key, nonce, y) (3)

There are three variations of the algorithm. AEGIS-128 processes a 16-
byte message block with five AES round functions in parallel. It consumes
the least resources, but it is the slowest for large messages. AEGIS-128L
processes a 32-byte message block with eight AES round functions in parallel.
In terms of resource consumption, it is the biggest version, but it is also the
fastest. Finally, AEGIS-256 processes a 32-byte message block with six AES
round functions. Then, it offers an intermediate performance in terms of
resource consumption and time response. Since the virtual measurement (y)
is smaller or equal to 128-bits, only one 16-byte state has to be processed.
Hence, AEGIS-128 is more adequate in this application, since it is as fast as
AEGIS-128L, using less resources.

AEGIS-128 uses a 128-bit key and a 128-bit nonce. The algorithm is
based on the function StateUpdate(Si , mi) described in Algorithm 1 where
the function AESRound(A) is the AES encryption round function being A
the state. The main operations in the AES round are SubBytes operation,
ShiftRows and AES-MixColumns. The state update function of AEGIS is
illustrated in Figure 3.
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Figure 3: The state Update function of AEGIS-128
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Algorithm 1 State Update function.

1: function StateUpdate(Si , mi)

2: Si+1,0 =AESRound(Si,4)⊕ Si,0 ⊕mi

3: Si+1,1 =AESRound(Si,0)⊕ Si,1

4: Si+1,2 =AESRound(Si,1)⊕ Si,2

5: Si+1,3 =AESRound(Si,2)⊕ Si,3

6: Si+1,4 =AESRound(Si,3)⊕ Si,4

7: return Si+1

8: end function

Algorithm 2 Pseudo-code of AEGIS algorithm.

Require: key, nonce, y

1: S−10,0 = key ⊕ nonce

2: S−10,1 = constant1

3: S−10,2 = constant2

4: S−10,3 = key ⊕ constant1

5: S−10,4 = key ⊕ constant2

6: for i = −10 : −1 do

7: if i is odd then

8: mi = key ⊕ nonce

9: else

10: mi = key

11: end if

12: Si+1 = StateUpdate(Si , mi)

13: end for

14: Ct = y⊕ S0,1 ⊕ S0,4 ⊕ (S0,2&S0,3)

15: S1 = StateUpdate(S0, y)

16: tmp = S1,3 ⊕ 128

17: for i = 1 : 6 do

18: Si+1 = StateUpdate(Si , tmp)

19: end for

20: tag = S7,0 ⊕ S7,1 ⊕ S7,2 ⊕ S7,3 ⊕ S7,3

21: return Ct, tag

The pseudo-code of the AEGIS-128 applied to the virtual measurement is
described in Algorithm 2. The main steps of the algorithm are to initialize
the state (line 2.1), process the nonce (line 2.6), process the measurement (y),
and generate the ciphertext (line 2.14), and generate the authentication tag
(line 2.20). constant1 and constant2 are two 128-bit constants fixed by the
algorithm. The designed AEGIS followed the VHDL code provided in [2].
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2.3 ASCON Authenticated Cipher

ASCON is a family of authenticated encryption designs [1]. The inputs for
the authenticated encryption procedure are the plaintext, that is, the virtual
measurement (y) in this case, a secret key, and a nonce. The outputs are the
authenticated ciphertext C, and an authentication tag:

[C, tag] = ASCON(y, key, nonce) (4)

The operation mode of ASCON is based on duplex sponge modes like
MonkeyDuplex, but using a stronger keyed initialization and a keyed fi-
nalization function. During the initialization, the sponge state is obtained
by concatenating an Initialization Vector (IV) , the key, and the nonce. The
permutation functions (pa, pb) operate on the state with a rate of r bits and
a capacity c. There is an initialization and finalization permutation (pa)
with a rounds, and intermediate permutations (pb) with b rounds. Both
permutations differ only in the number of rounds that are tunable security
parameters. The permutations iteratively apply a Substitution-Permutation
Network (SPN)-based round transformation. Plaintext is absorbing during
intermediate rounds.

The recommended parameters for ASCON are 128 bits for the key and
nonce, 64 bits for the rate r, 320 bits for the state, and then, a capacity of
c = 320 − r = 256 bits. The selected numbers for the rounds are 12 for
permutation pa and 6 for permutation pb.

Figure 4 illustrates the encryption operation in ASCON. The 320-bit initial
state of ASCON is formed by an IV specified by the algorithm, the key, and
the nonce. In the initialization, 12 rounds of the permutation are applied
to the initial state, followed by an XOR with the key. After initialization is
finished, a single bit constant is XORed with the internal state.

The padding process is applied to the plaintext (virtual measurement
y) since ASCON has a message block size of r bits. The padding process
appends a single 1 and the smallest number of 0s to the plaintext, obtaining
a length of the padded plaintext that is a multiple of r bits and then, it is
split into t blocks of r bits.

During the encryption, each block of the virtual measurement (y1, y2, ...,
yt) is XORed with the first r bits of the state, followed by the extraction of
one ciphertext block Ci with (i = 1, 2, ..., t). For each block except the last one,
the internal state is transformed by the permutation using 6 rounds. In the
finalization, the key is XORed with the state and then, it is transformed by
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Figure 4: Encryption operation in ASCON
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the permutation using 12 rounds. The tag consists of the last k bits of the
state XORed with the key. ASCON returns the tag together the ciphertext
(C1, C2,..., Ct). The designed ASCON followed the VHDL code provided in
[2].

3 integration on a trusted virtual sensor

The output of the virtual sensor depends on the cryptographic module used.
If the HMAC is integrated, the sensor output is the virtual measurement, y, as
well as an authentication code that ensures the integrity and the authenticity
of the sensor data. Since the data can be the same for different measurements,
a nonce is attached to the measurement in order to avoid replay attacks.
Therefore, the output provided by the sensor is:

sensorout MAC = nonce ‖ y ‖ HMAC (key, nonce ‖ y) (5)

If an authenticated cipher is used, the output provided by the sensor
is the encrypted value (C) that is attached to an authentication code that
ensures the integrity, and authenticity of the sensor data:

sensorout AEGIS ASCON = nonce ‖ C ‖ tag (6)

The proposed sensor estimates the virtual measurement (y) from a PWA-
based model. Both PWAR and PWAS forms are able to approximate any
function and extract any black-box model. The PWAS form has been widely
explored for virtual sensors [23, 20]. However, the PWAR form is selected
herein since its implementation is simpler than PWAS implementation.

The integrity of the virtual sensor itself is ensured if the key employed
by the cryptographic module is not stored but recovered whenever needed
by using PUFs. The trusted sensor is able to recover the cryptographic key
shared with the receiver of the sensing data, while any impostor is unable
due to the uniqueness provided by the start-up values of the SRAM in the
sensor, which is exploited as a PUF. Non-sensitive Helper Data, H, are stored
to recover the key with a Helper Data Algorithm (HDA) based on an Error
Correcting Code (ECC) [11]. Helper Data do not reveal anything about the
cryptographic key because the start-up values of SRAM cells obfuscate it.
Similarly, Helper Data do not reveal anything about the intrinsic nature of
the sensor because the cryptographic key obfuscates it. A repetition ECC
was selected in the design of the sensor.

The sensor designed has two main behavioral modes. The configuration
mode is carried out whenever the sensor is powered up. It recovers the key,
generates a seed for a nonce, and establishes the PWAR relation between the
input data and the data to estimate. The trusted sensing mode is set once the
configuration mode is finished. It generates a PWAR virtual measurement,
authenticates it, and encrypts it in case of using AEGIS and ASCON.

The building blocks of the CMOS sensor designed are exposed in the
following. It is composed of three main units: the PWAR, the security,
and the control units. Figure 5 illustrates the block diagram of the sensor
architecture, including the main signals and buses that interconnect the
blocks. Note that the SRAM is shared by two units, thus saving resources
since it is not used simultaneously by both units.
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3.1 PWAR Unit

A generic PWA function with multiple inputs and one output is considered:
y (x) : D ⊂ Rn → R, that is represented as follows:

y (x) =
n

∑
j=1

fij · xj + fi0 ∀ x ∈ Pi (i = 1, . . . , P) (7)

where fi ∈ Rn+1, and Pi ⊂ D are P non overlapped regions ( Pi ∩ Pk =
∅ ∀i 6= k ), called polytopes, which form a polyhedral partition of the domain
D, so that

⋃p
i=1 Pi = D. In the case of regular PWAR functions, the domain is

partitioned into hyper-rectangular polytopes by dividing each j dimension
of the domain into Lj intervals with the same amplitude, thus resulting
P = ∏n

j=1 Lj polytopes. Figure 1 shows a bi-dimensional example of a regular
PWAR function with its domain partitioned into 12 = 4× 3 rectangles.

The partition and affine functions of a PWAR function can be adjusted
conveniently to provide a black-box model that approximates the relation
between input variables and sensing variable to estimate. Therefore, the
virtually measured output, y, is a PWA function of the inputs x = {x1, .., xn}.

The sensor can be configured for different PWAR functions. Therefore,
it can be used to sense different variables. The configuration data are the
number of inputs and the number of intervals in which each input is divided,
that is, the hyper-rectangular partition is configurable. The sensor is also
configurable in the affine functions by changing the value of the parameters
fi = { fi0, fi1, .., fin} associated to each hyper-rectangle, Pi. Prior to use the
sensor, the sensor manufacturers or their authorized distribution channels
program in a non-volatile memory (NVM) these configuration data and
parameters.

In the configuration mode, the PWAR parameters are read from the NVM
and stored in the SRAM. Each word of the SRAM contains a parameter, fi,
associated to an hyper-rectangle, Pi, of the input domain. The SRAM depth
is the number of hyper-rectangles. In the trusted sensing mode, the PWAR
unit receives the input data. The address generator block determines the
address of the SRAM where the parameters are stored. For that purpose,
it concatenates the pk most significant bits (MSBs) of each input xk. The
MSBs determine which of the 2pk intervals the input belongs to, and, hence,
determine the hyper-rectangle. Then, the arithmetic block computes in
parallel the operation in (7) for the input, x, and the parameters, fi.

3.2 Security Unit

The SRAM employed in the PWAR Unit is also employed in the Security
Unit as a PUF. As discussed in [6], there are SRAM cells whose intrinsic
conditions dominate over the external conditions. Hence, although the
external condition change (such as temperature or power supply voltage),
their start-up values are mostly the same. They will be named as ID cells.
There are also SRAM cells whose external conditions dominate over the
intrinsic conditions so that they are able to extract the noise of the external
conditions as a source of entropy. They will be named as RND cells.

The NVM stores which cells of the SRAM are ID cells (an ‘ID mask’ is in
charge of such information) and which ones are RND cells (an ‘RND mask’
stores such information). These masks have to be stored in the NVM by the
sensor manufacturers or their authorized distribution channels prior to use
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Figure 5: Architectural scheme of the proposed CMOS sensor

the sensor. These manufacturers or distributors follow a simple procedure to
classify the SRAM cells: the SRAM is powered-up and down several times
under different operating conditions. Each time, the start-up values are
compared with the values at the previous time. If the start-up value never
changes, the cell is classified as ID (it has not shown bit flipping). If the
start-up value changes, the cell is classified as RND. The ID cells are used
to recover the key while the RND cells are used to generate a seed for the
nonces.

HDA is used in order to recover the key. The key is not stored in
the NVM, and therefore, the attacks to obtain the key are forced to be
done with the sensor powered. Instead of the key, Helper Data, H, are
stored in the NVM prior to use the sensor. Helper Data do not reveal
information about the cryptographic key, so that the NVM does not re-
quire any special security feature. The way to generate the Helper Data
is as follows. Each bit of the cryptographic key key = [k1, .., ka] is re-
peated r times, so that keyr = [k11, .., k1r , .., ka1, .., kar]. A response, R, is
obtained by concatenating a · r values resulting from the start-up values
of a · r SRAM ID cells. Helper Data are obtained by XORing keyr and R,
H = keyr ⊕ R.

In the configuration mode, the key is recovered using the ID mask and the
Helper Data, H, as follows. The start-up values are extracted. An ID is gener-
ated with the start-up values of those cells that the ID mask indicates as ID
cells. A response, R′ (slightly different to R, since even ID cells may provide
some bit flipping) is obtained by taking a · r values of ID cells. Helper Data are
XORed with R′: key′ = H ⊕ R′ =
keyr ⊕ R⊕ R′. key is recovered by using the decoder of the error correcting
code: key = ECC(key′).

Besides, the seed of the nonces is generated with the start-up values of
those cells indicated by the RND mask as RND cells. Although the ID mask,
RND mask and the Helper Data, H are stored in the NVM, this fact does not
compromise security since the key cannot be recovered without the SRAM
start-up values. During the configuration mode, they are loaded from the
NVM into the lower part of the SRAM. The upper part of the SRAM is used
in the Security Unit to extract the start-up values.

The nonce counter is initialized with the seed during the configuration
mode. During the trusted sensing mode, it increases the count to generate a
new nonce.
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The core of the Security Unit is the cryptographic module that is one of
the modules described in Section 2.

3.3 Control Unit

The Control Unit is a finite state machine (FSM) that enables and disables
the blocks depending on the states. The main states are shown in Fig. 6.
Two parts are differentiated, the left part corresponding to the configuration
mode and the right part corresponding to the trusted sensing mode. When
the sensor is powered up, the configuration mode starts.

3.3.1 Configuration mode

• The ID mask, RND mask, and Helper Data are read from the NVM.

• The key is recovered. The seed for the nonces is generated and the
nonce counter is initialized with the seed.

• The PWAR configuration data and parameters are read from the NVM
and stored in the SRAM.

Additionally, during the configuration mode, the key is absorbed if
HMAC is used, or the key is read if AEGIS or ASCON is used.

The sensor remains in the state IDLE until it receives new input data. The
sensor is set to the state OFF-ON by the FSM whenever it is powered-on,
thus achieving the sensor is always configured before entering the trusted
sensing mode. This also guarantees correct performance of the sensor under
unexpected suspension of power supply.

3.3.2 Trusted sensing mode

• Input data (x) are read.

• The hyper-rectangle where the input data is located (x ∈ Pi) is deter-
mined.

• The parameters ( fi) associated to the hyper-rectangle, Pi are extracted.

• The PWAR unit output y(x) is generated and the nonce counter is
updated.

• The cryptographic module takes the key, the nonce and the measure-
ment y, and provides the authentication code attached to the measure-
ment if HMAC is used, or, the ciphertext C and the authentication tag
in the case of AEGIS and ASCON.

• The trusted virtual sensor output is provided.

OFF-

ON
IDLE

Configuration mode

states
End

Trusted sensing mode 

states

Figure 6: State diagram of the control unit
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4 results and comparative analysis

The trusted virtual sensor was synthesized in a 90-nm CMOS technology
provided by Taiwan Semiconductor Manufacturing Company (TSMC). A
standard low-power dual-port SRAM IP module was employed for the SRAM.
The register-transfer level specifications of the other blocks were synthesized
using Design Vision tool from Synopsys.

4.1 Features of the design

• PWAR unit. The maximum number of input variables, n, is 4. The
bits of the input variables {x1, , x4} and the parameters that define
affine functions are 12. The bits of the output variable, y, are 26. The
maximum number of hyper-rectangles, P = 2p, is 4096 (p = 12), and
the maximum number of intervals per input, Lk = 2pk , is 128 (pk = 7).
Hence, the SRAM has 4096× 60 bits.

• Security Unit. Table 1 shows the size of the key and the nonce used by
each cryptographic module. A binary repetition code with codeword
length r = 29 is employed to recover the key in the HDA block.

Table 1: Features of the Security Unit depending on the cryptographic modules

key (bits) nonce (bits)

HMAC 60 32

AEGIS / ASCON 128 128

• NVM. This memory has an output bus with 12 bits. AEGIS and
ASCON need more memory than HMAC since they employ larger
key and nonce sizes, as shown in Table 1. The size of the Helper Data
depends on the key size and the length of the error correcting code. A
length of 29 was proven enough to cope with the maximum bit flipping
measured experimentally in the SRAM employed. The sizes of the
masks were proven enough according to the average ID and RND cells
found experimentally in the SRAM employed. The bits required by the
PWAR Unit are 245,796.

The size of the parameters stored in this memory depends on the
selected cryptographic module as shown in Table 2. The parameters
for the PWAR configuration are independent of the module.

Table 2: Features of the NVM depending on the cryptographic modules

RND mask (bits) ID mask (bits) Helper Data (bits)

HMAC 480 2040 1740

AEGIS / ASCON 1860 4320 3720

4.2 Comparative analysis

Independently of the cryptographic module employed, the configuration of
the sensor finishes once the NVM is completely read, since other required
operations are executed in parallel. Figure 7 (a) shows how the parallelization

13



(a)

40

clock cycles

Read RND_mask

170

clock cycles

Read ID_mask

170

clock cycles

Read start-up values

145

clock cycles

Read Helper Data

2040

clock cycles

Generate ID

460

clock cycles

Generate seed

1
clock

cycle

Initialize the Nonce Counter

5
clock

cycles

Recover the key

20483

clock cycles

Read configuration and parameter PWAR data

2124

clock cycles

Absorb key

155

clock cycles

Read RND_mask

360

clock cycles

Read ID_mask

360

clock cycles

Read start-up values

310

clock cycles

Read Helper Data

4320

clock cycles

Generate ID

1860

clock cycles

Generate seed

1
clock

cycle

Initialize the Nonce Counter

5
clock

cycles

Recover the key

4
clock

cycles
Process the key with the AEGIS or ASCON block

20483

clock cycles

Read configuration and parameter PWAR data

(b)

Figure 7: Timing of configuration mode for (a) HMAC, (b) AEGIS/ASCON

is carried out when HMAC is used. In total, configuration mode takes
40+170+145+20,483=20,838 clock cycles. Timing for the configuration of
sensors using authenticated ciphers is illustrated in Figure 8 (b). It takes
more time due to the larger number of bits required by the RND mask,
ID mask, and Helper Data. The total number of clock cycles increases up to
155+360+310+20,483=21,308 clock cycles.

Figure 8 shows the timing of the trusted sensing mode depending on
each particular cryptographic module. Again the operations have been paral-
lelized to accelerate the trusted virtual sensing mode as much as possible. A
sensor using HMAC provides the trusted measurement in 7+10,624= 10,631

clock cycles. The PHOTON-80/20/16 needs 708 clock cycles to permute a
block. Since one block has 20 bits and the key has 60 bits, the three blocks
of the key are absorbed in 708x3=2124 clock cycles. This is done during
configuration mode, as shown in Figure 8 (a). During trusted sensing mode,
since the message size is 58 bits (32 bits of the nonce and 26 bits of the PWA
output), the HMAC absorbs 3 20-bit blocks in the first hash and squeezes
4 20-bit blocks to generate the first 80-bit output. In the second hash, 4

20-bit blocks are absorbed and squeezed. Hence, the HMAC block takes
708x(3+4+4+4)=10,620 clock cycles to provide the authentication tag. In case
of using authenticated ciphers, the output is provided in 1+10+1+9= 21 clock
cycles using AEGIS and 1+15+7+13=36 clock cycles using ASCON.

(a)

(b)

(c)
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Generate PWAR virtual measure
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clock
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Update the nonce
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clock cycles
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Figure 8: Timing of trusted virtual sensing mode for (a) HMAC, (b) AEGIS, (c)
ASCON
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Table 3 shows the area and power consumption during trusted sensing
mode of the different cryptographic modules provided by Design Vision
tool from Synopsys. In terms of area, ASCON offers the most competitive
result. The simulations estimate a similar power consumption working at a
frequency of 50MHz. Table 3 also shows the clock cycles required by each
cryptographic module during trusted sensing module. In terms of speed,
AEGIS offers the most competitive result.

Table 3: Silicon area of cryptographic modules and their power consumption and
required clock cycles during trusted sensing mode

Area (mm2) Power (mW) @50MHz Nclk

HMAC 0.032 0.69 10620

AEGIS 0.140 0.77 20

ASCON 0.026 0.92 35

5 conclusion

The third-round candidates AEGIS-128 and ASCON-128 of the Competi-
tion for Authenticated Encryption: Security, Applicability, and Robustness
(CAESAR) are very well suited to design trusted virtual sensors into CMOS
integrated circuits. They make the sensor ensure integrity, authenticity
and confidentiality of the measurements at very low cost in area occupa-
tion, power consumption and clock cycles of processing time. They offer
much better performance than a solution based on the standard Keyed-
Hash Message Authentication Code (HMAC) that uses the lightweight hash
function PHOTON 20/80/16, which ensures integrity and authenticity but
not confidentiality. Considering a 90-nm CMOS technology, ASCON-128 is
the smallest module (it occupies 0.026 mm2, HMAC occupies 0.032 mm2,
and AEGIS occupies 0.140 mm2). In terms of trusted measurement time,
AEGIS-128 allows the fastest response (0.42 microseconds using AEGIS, 0.72

microseconds using ASCON, and 212.62 microseconds using HMAC, all
considering an operation frequency of 50 MHz). Since the key and nonce
required by these cryptographic modules can be provided by exploiting
the uniqueness and randomness of the start-up values of the static random
access memory (SRAM) inside the virtual sensor, the sensor is also ensured
to be non-counterfeit.
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