Reactive Side-channel Countermeasures:
Applicability and Quantitative Security Evaluation

Giovanni Agosta?, Alessandro Barenghi?®, Gerardo Pelosi®*, Michele Scandale®

“Politecnico di Milano. Department of Electronics, Information and Bioengineering — DEIB. Piazza Leonardo da Vinci, 32. 20133 Italy

Abstract

The security of cryptographic implementations running on embedded systems is threatened by side-channel attacks. Such attacks
retrieve a secret key from a computing device observing the information leaking on unintended channels such as the energy con-
sumed during a computation. The vast majority of the countermeasures proposed against such attacks aims at preventing the attacker
from exploiting fruitfully the information leaking on the side-channel either altering it or hiding it within a higher noise envelope.
Whilst all these countermeasures provide a quantitative security margin against an attacker, they do not provide an indication of
having been successfully overcome, thus forsaking the possibility of taking a reactive action upon an eventual security breach. In
an effort to propose a reactive countermeasure, we describe our proposal suggesting the introduction of redundant computations
employing fixed fake keys (a.k.a. chaffs) to pollute the leaked information with plausible albeit deceitful one. We provide an
in depth analysis of the proposed approach, highlighting the constraints to its effective applicability, and the boundary conditions
which allow its employment for the securization of a system. We detail the attacker model considered, and the reactive security
margin provided by the proposed scheme, highlighting the extent of the realizability of a reactive countermeasure, given the na-
ture of the side-channel information. To provide experimental backing to our analysis, effectiveness and efficiency results on the
Advanced Encryption Standard (AES) cipher implementation as well as lightweight block ciphers implementations running on an

ARM Cortex-M4 processor are shown.

Keywords: Applied cryptography, embedded systems security, computer security, automated countermeasure application,

reactive countermeasures

1. Introduction

In recent years, the use of cryptographic primitives became
essential for embedded systems due to their widespread adop-
tion in several security-sensitive domains such as health-care,
automotive and industrial control. Modern cryptographic sys-
tems are designed to withstand both protocol-level and mathe-
matical cryptanalyses; as a consequence, attackers often focus
on the analysis of the side effects of the computation performed
by the device. There is a vast corpus of academic and indus-
trial literature proving how the physical access to an embedded
device may enable the recovery of sensitive information (typ-
ically, the secret key employed in a cryptographic algorithm),
which is otherwise supposed to be hidden, through exploiting
the side-channel leakages of the underlying computing plat-
form [1-3].

Among the possible cryptanalyses employing the side-
channel leakage, Differential Power Analysis (DPA) and Dif-
ferential Electro-magnetic Analysis (DEMA) are very well
known [3, 4]. Both analyses follow a common work-flow:

*Corresponding author
Email addresses: giovanni.agosta@polimi.it (Giovanni Agosta),
alessandro.barenghi@polimi.it (Alessandro Barenghi),
gerardo.pelosi@polimi.it (Gerardo Pelosi),
michele.scandale@polimi.it (Michele Scandale)

Preprint submitted to Microprocessors and Microsystems

first they record a measurement of either the power consump-
tion or the electro-magnetic (EM) emissions of the target de-
vice (the measurements being known as power- or EM-traces)
for a large number of runs with different input values. Subse-
quently, they select an intermediate operation of the algorithm
employing a part of the secret key, and compute a consump-
tion/emissions prediction for every possible value of the secret
key portion, according to a model of the triggered switching ac-
tivity (e.g., the Hamming weight of the output of the operation).
Finally, the predicted consumption/emission values are statisti-
cally matched against each sample of the recorded power/EM
traces to assess which key hypothesis yields the prediction fit-
ting best the actual measurements. In this fashion, the secret
key can be recovered, one part at time, even if the relevant in-
formation is stored within the device in a non accessible way.
DPAs and DEMAs have been proven practically viable
against production grade implementations of ciphers, both in
hardware and software, even with an inexpensive equipment. A
significant amount of research effort has been directed to de-
vise effective and efficient countermeasures. The most adopted
strategies to design countermeasures focus on the principles of
masking [3, 5, 6], hiding [3], and morphing [7-9] and aim at
reducing the effective side-channel leakage. Masking aims at
invalidating the link between the predicted hypothetical emis-
sion/power consumption values (bound to the selected interme-
diate operation) and the actual values processed by the crypto-

March 17, 2018

graphic primitive. In a masked implementation, each sensitive
intermediate value is concealed through splitting it in a number
of shares, which are then separately processed. Hence, the cryp-
tographic primitive is modified to correctly process each share
and recombine them only at the end of the computation. Hid-
ing methods aim at concealing the relation between the emis-
sion/power consumption of the device and the operations per-
formed by the cryptographic primitive. In software cipher im-
plementations, these strategies are based on execution flow ran-
domization via instructions rescheduling (e.g., permuting the
sequence of accesses to look-up tables) and/or on inserting ran-
dom delays made of dummy operations. The morphing tech-
nique prevents an attacker from being able to construct a reli-
able model of the side-channel behavior of the device, changing
how a cryptographic primitive is computed at each execution of
the algorithm. The first proposed technique to achieve this com-
bines the implementation of the chosen cryptographic primitive
with a polymorphic engine which dynamically re-writes the bi-
nary code of the sensitive instructions to be protected, at run-
time [7]. This strategy enables the generation of many different
versions of the protected code at the designer’s will, at each
run of the cipher, thus preventing any attacker both from recog-
nizing the exact point in time where the selected intermediate
operation is executed, and from understanding how such oper-
ation is actually computed. The former effect can be classified
as hiding-in-time, while the latter one prevents the formulation
of a proper consumption model. Tackling the issue of platforms
where the code memory is not writable, the approach described
in [8] picks at random among a set of semantically equivalent
code fragments to obtain different execution paths at each run
of the same protected algorithm implementation.

All the aforementioned countermeasure strategies aim at ei-
ther reducing the actual side-channel leakage or preventing its
exploitation altogether, as the prime and only way to hinder
side-channel attacks. None of the aforementioned strategies ac-
tually leave the leakage intact and blend it within a crowd of
plausible, albeit fake, pieces of information. By contrast, it is
commonplace, and a well established practice, in the network
and system security communities, to provide intentionally vul-
nerable, worthless targets to the adversaries [10]. The purpose
of such targets is to act as a red herring for adversaries, enabling
the detection of malicious intentions towards the networks and
hosts owned by the legitimate users (e.g., intrusion attempts).
Other notable examples of using decoy resources to detect secu-
rity breaches is found in the practice of deploying either phony
credentials (such as credit card numbers) to discover their theft,
or fabricated documents to act as bait for possible inside adver-
saries aiming at violating the system’s usage policy [11].

The focus of this work is to provide an in depth description
and security analysis of the reactive defense strategy presented
in [9], against a side-channel attacker who has complete knowl-
edge of the details of a software implementation of a block ci-
pher primitive, and is trying to exfiltrate the secret key exploit-
ing the information leakage during the decryption of a cipher-
text. The attacker is assumed to have no means of access to
the output of the decryption on the device, can only observe the
actions performed by the attacked security system, and should

not be able to distinguish an incorrectly decrypted plaintext
from a correct one without interacting with the system itself.
Practical application scenarios include keyless entry systems,
physical authentication systems based on the transmission of
an encrypted cryptographic token, or broadcast authentication
schemes for wireless sensor networks. The chaff countermea-
sure, proposed in [9], swarms the attacker with dummy side-
channel leakages among which the real one is blended. This
allows the system designer to detect side-channel attacks when-
ever the adversary employs an incorrect value to produce forged
encrypted content to be fed into the attacked system. This, in
turn, allows a prompt response to the breach attempt before the
attack succeeds, a much welcome feature in domains such as
automotive, sensor networks and industrial control. We note
that, since the fake leakage is not distinguishable from the real
one, the security of the proposed defense strategy is not altered
even when pitted against profiled cryptanalyses, as the fake
leakage will provide the same information of the correct one to
them. This is in contrast with leakage suppression techniques
proposed in the current state-of-the-art (e.g., masking and hid-
ing), where the defender attempts at hindering the exploitation
of the leaked information raising the required technical effort to
lead the attack.

We describe the application scenario of such a countermea-
sure, pointing out the applicative context and attacker model,
and providing a hint of how the recently proposed Honey En-
cryption scheme [12, 13] may be employed to broaden the num-
ber of viable application scenarios where the chaff countermea-
sure can be applied; thus, expanding and improving the discus-
sion with respect to the one in [9]. We report how to automat-
ically apply the proposed countermeasure to software cipher
implementations, and implement it as a transparent compiler
pass in the LLVM compiler suite. Subsequently, we provide a
new and detailed security analysis, highlighting the extent of
the protection provided by the use of chaff-keys both against
a single side-channel attack, and against a cascade of attacks.
To practically ground our security analysis, we report experi-
mental results on execution time and code size overheads due
to the introduction of chaff-based countermeasures on a range
of block ciphers, suitable to the use case scenario for which the
chaff countermeasure is proposed. We provide results on the
AES cipher, as it is a widely used standard employed also in
current high security keyless entry systems (e.g., NXP ACTIC-
4G [14], Atmel ATAS5795C [15]), and was analyzed in [9], al-
beit with a lower number of chaff keys. We extend our exper-
imental campaign, with respect to the one in [9], considering
the computing requirements and code sizes of the lightweight
ciphers XTEA [16], Speck 128/128 [17], Smmon 128/128 [17],
PrESENT and CrerFia. Present and CLeriA are the ISO standard
lightweight ciphers [18].

The rest of the article is organized as follows: in Section 2
we point out the scenario and the applicability conditions of the
chaff-based countermeasure, as well as the attacker model. In
Section 3 we highlight the property of a chaff-protected imple-
mentation and describe the methodology and tool to automati-
cally apply the countermeasure. In Section 4 we detail the se-
curity analysis of the chaff-based approach, while in Section 5

. 1 . . 1 . 1
Message Production 1 Message Transmission 1 Message Decryption Message Use
1 1 1
' Transmission | | '
. . — . N - . L - Content
— > Encryption : > over insecure : > Decryption : > Fruiti
Content 1 Encrypted transport 1 Deployed 1 Decrypted ruition
to Protect 1 Content , Content 1 Content
1 Eavesdropping 1 Side-Channel 1
1 1 1

Figure 1: Information flow in the typical scenario where the side-channel chaff countermeasure can be applied. The attacker may gain knowledge of the data in the
message transmission phase directly via eavesdropping, and try to retrieve the secret key in the message decryption stage via side-channel attacks. The message

production and message use stages are considered to be safe

we provide our experimental evaluation, highlighting the ad-
vantages of applying the chaff-countermeasure to lightweight
ciphers. Finally, in Section 6 we draw our conclusions.

2. Scenario

The scenario where the reactive chaff-based countermeasure
is deployed is the one where the system manufacturer desires
the deployed equipment to take an active stance against side-
channel adversaries through reacting to an attack attempt, e.g.,
signal to the data owner the malicious action or wipe the secret
key in the device.

The typical information flow of the scenario where it is possi-
ble to put into being a reactive countermeasure is the one repre-
sented in Figure 1. In this setting, a message produced in a safe
environment and encrypted by means of a symmetric cipher, is
sent to the device targeted by the side-channel attacker. The en-
crypted content is sent over a transport layer, which is assumed
to be completely open to the attacker’s eavesdropping actions.
The message confidentiality during transmission is provided by
the symmetric encryption layer, while unintentional transmis-
sion errors are prevented by an error correction code applied
to the encrypted message. The content is decrypted by the de-
ployed device into which the secret key is stored by the manu-
facturer in a non-extractable fashion. This decryption action is
the actual target of side-channel attacks, with the final purpose
of employing the derived key to forge fake contents to be fed
into the device. In this context, the augmentation of the side-
channel information with fake leakage induced by chaff keys
may induce an attacker to employ an incorrect key to forge the
contents to be fed to the device, thus enabling detection. We
note that the augmented decryption activity on the attack-target
side does not require any change in the rest of the content deliv-
ery chain; namely no extra data should be enciphered and sent,
save for the correct plaintexts. V In the following, we explicitly
state the capabilities of a side-channel attacker in the reported
scenario and the applicability conditions for a proper instantia-
tion of a chaff-based countermeasure.

Attacker Model. The attacker knows the complete details of
the whole implementation, i.e., has full access to the binary
code of the cipher running on the platform, save for the value of
the secret- and the chaff keys. The attacker may intercept any
communication relaying the enciphered content either while be-
ing transmitted over the network, or sent to the device by a
neighboring storage, e.g., Flash memory. The attacker will try
to retrieve the key piecewise exploiting side-channel leakage

from the device, and may do so combining the results of one
or more side-channel attacks. The attacker has no means of
verifying whether a ciphertext decrypted under any given key
(in particular, one retrieved via side-channel) is correct or not
without direct interaction with the protected system.

The chaff-based side-channel countermeasure can be effec-
tively employed as a reactive measure in the considered com-
munication scenario, with the specified attacker model, if three
general conditions are met by the system.

Applicability Conditions. Condition i): the result of the de-
cryption primitive is not output by the destination circuit in any
informative enough format. Condition ii): the use of the de-
crypted plaintext within the implementation does not leak in-
formation on the side-channel, which can be exploited to de-
termine it. Condition iii): the plaintext format is such that it
is not possible for an attacker to distinguish a correct decryp-
tion outcome from an incorrect one relying on features of valid
plaintexts. For example, it is not possible to distinguish the cor-
rect decryption outputs, relying on them not being uniformly
distributed over all the possible bit-strings with the same length.

It is worth noting that the last condition is fundamental to
instate a reactive countermeasure, as it forces the attacker to
interact with the system without checking, in advance, the va-
lidity of a set of candidate keys on a different computational
platform. A practical scenario, satisfying the aforementioned
conditions, is the one where a transmitter encrypts a randomly
and uniformly generated plaintext, which is decrypted by the
receiving end, and employed as an authentication token to per-
form an action, e.g., unlock a door in a keyless entry system, or
execute a broadcast authenticated command on sensor network
nodes. Indeed, condition i) is satisfied as the receiving and de-
crypting device does not output the value of the plaintext at
all. Condition ii) can be met protecting the comparator match-
ing the decrypted plaintext with the expected one. This can
be effectively and efficiently achieved with common, proactive,
side-channel countermeasures such as Boolean masking, since
the computation to be performed is remarkably small. Finally,
condition iii) is satisfied as the correct randomly generated code
cannot be distinguished from an incorrect decryption outcome
by the attacker.

Among the applicability conditions of the chaff-based coun-
termeasure, the third condition is often the most stringent one
with respect to the possibility of applying the reactive coun-
termeasure. However, it is possible to broaden the spec-
trum of the application of reactive countermeasures, thanks to
the recent proposal of the so-called Honey Encryption (HE)

Message Message Message Message
Production Transmission Decryption Use
Random value Secret key Secret key
l Encoded l l Encoded
Plaintext | Distribution | Plaintext Symmetric Ciphertext Symmetric Plaintext | pivrext Plaintext
»| Transforming > Encr ption Decryption > Decodin
Encoding y P &

) Side Channel
Eavesdroppmg Information

Figure 2: Information flow of a reactive countermeasure amenable scenario involving the use of the honey encryption scheme. The attacker is assumed not to be
able to extract any knowledge from the message use phase, in the same fashion as the common scenario

scheme [12, 13]. The scenario where the chaff-based counter-
measure can be deployed is extended as depicted in Figure 2.
The honey encryption scheme performs a randomized encod-
ing of the plaintext with a Distribution Transforming Encoding
function (DTE), resulting in an encoded plaintext, which is uni-
formly distributed among all the possible bit-strings with the
same length. Such an encoding takes as an ancillary input a
random value so to allow the encoding of the same plaintext
to take different values at each time. The encoded plaintext is
subsequently encrypted by means of a symmetric cipher, em-
ploying a secret key and, finally, transmitted. The decryption
primitive of the HE scheme starts by deciphering the received
ciphertext, and proceeds to perform a deterministic decoding
procedure on the result. The decoding procedure is designed
so that it outputs a value which can be plausibly assumed to
be a valid plaintext for any value fed to it. In [13], the au-
thors provide practical constructions for the DTE and the de-
coding stage, specialized for the encryption of credit card num-
bers, PINs, CVVs and RSA secret keys. Thus, considering the
proposed constructions, an HE scheme enables a generic sce-
nario (as the one in Figure 2) to satisfy the condition iii) from
the applicability conditions of a reactive countermeasure. To
prevent the attacker from exploiting the side-channel leakage
which the implementation will produce during the HE decod-
ing and “message use” phase, it is possible to protect them with
conventional proactive side-channel countermeasures, thus ful-
filling also the applicability conditions ii). We also note that a,
possibly computationally cheaper, alternative to the protection
of the message HE decoding stage with proactive side-channel
countermeasures is to perform it for all the decryption outputs,
both the correct one and the ones obtained with chaff keys. If
such a solution is chosen, the side-channel information leaked
by the HE decoding stage will show that all the plaintexts, both
the correct one and the chaffs are being treated equally.

3. Chaff countermeasure

Under the assumption that both the scenario and the attacker
model considered by the designer fit the ones described in the
previous section, it is possible to provide a reactive side-channel
countermeasure by means of implementing the block cipher to

be protected so that its side-channel leakage satisfies the fol-
lowing property.

Chaff Leakage Property. The countermeasure adds to the cho-
sen side-channel leakage one or more chaff leakages, i.e., it in-
tentionally leaks information on the side-channel behaving as
if one or more incorrect keys were actually being employed to
perform the encryption. The effect of the observed information
leakage is to have the side-channel attack matching more than
one key as the correct one, without providing any hint to which
ones are fake. In particular, the correct key should not be dis-
tinguishable either comparing the goodness-of-fit of the correct
hypothesis to the actual measured side-channel against the one
of the fake keys, nor through performing inferences on which
instant in time is characterized by said goodness-of-fit.

To achieve this, the computations employing the fake keys
should mimic exactly the correct one for all the portion of the
cipher subject to side-channel attacks. This in turn implies that,
for each attempt to retrieve a portion of the secret key, the at-
tacker will in fact obtain both the correct value and one or more
incorrect ones, which will appear equally likely considering the
results provided by the performed side-channel analysis. How-
ever, executing sequentially replicas of the cipher instructions
is not sufficient to fully blend the behavior of the chaff keys
into the one of the real one. It is in fact typical during the at-
tacks to compute the fitness of the key-dependent hypothesis to
the measurements in a time-wise fashion, effectively obtaining
goodness-of-fit values for each time instant. Thus, the attacker
is able to distinguish when the key hypothesis fits best the be-
havior of the device and, employing the information coming
from the knowledge of the cipher algorithm (code), bind the
time instants in which the hypotheses fit to the executed in-
structions of the cipher. Finally, checking on the cipher code
which instructions are employing the correct key, the attacker
will discard the hypotheses related to the chaff keys safely.

To achieve the chaff property, the device behavior should
both report more than one key-dependent behavior as correctly
fitting, and make such fitness happen in the same time instants.
To achieve this, we resort to an execution trace randomiza-
tion technique similar to the one described in [8] so that ei-
ther the instruction computing the real cipher result, or one of
its chaff is executed randomly at each cipher run. Such a ran-

Chaff Insertion Pass

—
L Ci—% (:) é -—% o~
28 (2| |E| 8] | g e g | 58 =
2SS |5 I3 |85 |® 25 g 3 g: Cos
S o s 2 N3 N & E ER = S5
o O <] = S g & o = o= < 8
o = S o £2 = = 9 (= S @ o8
L 3 ~ o] 8% a = = =g s “6
A o e L IS 2 g - = &= O [
R A S g o E = 5 o &
4 O S
o, (&}
A~ —
<) 2 00
o £ 8 o £ = 5 . 2 = I =
o o 9 (<} o 9 = 5 ~ o S = - 9
= a o & = 20 » 0 = = ire) [SER
B £ = O B~ 2 3 & < 3] == QB
N 8 B C B N & o B = 2 £ o 5O
= m o 5 O = /m __Qm—bom = A, v =
ESITIE 2l T1ES |22 |2 &l |2[1S % le¢e
28| [El |24 (28| |22 |83 |5]| |2 |EE
o % = = o 9 < 3 A 7] < g < &
< I\ 2 < @ [}
[a¥ [a¥ o

Figure 3: LLVM compiler pipeline with the modifications highlighted in grey, and the new passes highlighted by larger gray boxes. Rounded boxes depict (sets of)

compiler passes, while square ones represent the data being processed

domized scheduling causes the fitness for multiple keys to peak
simultaneously, since the side-channel analysis needs to com-
bine a statistically significant amount of measurements from
different runs together to compute the fitness of the hypotheses
time-wise. The execution trace randomization will thus select,
through a Random Number Generator (RNG) switch-case like
construct, one out of many alternate code fragments, each one
of which should contain both the real instruction and the corre-
sponding chaff ones. The random choice of the execution path
guarantees that all paths are eventually taken. Particular care
should be taken in the scheduling of the instructions of each
alternate branch of the switch-case construct. Their schedules
should be chosen in such a fashion that each instruction is ex-
ecuted an equal amount of times over the same clock cycle,
across different runs. A straightforward approach to building
these schedules is to emit (#chaff+1)! alternate code fragments,
each of which is made of a permutation of the aforementioned
instructions. However, the overhead introduced by such an ap-
proach grows very quickly in the number of chaff keys. A
viable efficient alternative is to build #chaff+1 alternate code
fragments obtaining each one of them as a sequence of 1 in-
struction rotations, starting from an arbitrary schedule. The re-
sulting code fragments set fits the chaff property requirements,
while retaining an overhead which grows only linearly with the
number of chaff keys.

3.1. LLVM Compiler Pipeline Modifications

We now describe how to perform the automated application
of the chaff countermeasure to a software cipher implementa-
tion by means of two new compiler passes and some modifi-
cations to the ones in the LLVM compiler pipeline, as high-
lighted in Figure 3. The modifications concern the front-end
of the compiler and the instruction selection pass in the com-
piler backend, while the two new passes perform the chaff coun-
termeasure insertion, and the pseudo-instructions lowering. In
this description we will say, according to the common compiler

technology terminology, that an instruction “defines” the vari-
able to which its result is assigned, and “uses” the ones which
appear as its inputs.

Front End Modifications. The front-end modification allows
the developer to specify which portion of the cipher should be
protected with the proposed countermeasure, and tag the vari-
ables containing the true key, plaintext, ciphertext and chaff
keys. To this end, the compiler frontend has been extended
to support five custom attributes. The keyword __chaff is pre-
fixed to a C code-block (i.e., a sequence of statements enclosed
between curly braces) to mark it as the portion of cipher where
the chaff countermeasure should be applied. We note that it
can be advantageous in terms of performance, although with no
security drawbacks, to protect only a portion of the block ci-
pher, as stated in [8], hence the freedom for the programmer to
choose to do so. The keywords __ptx, __ctx, __key are em-
ployed to mark the plaintext, the ciphertext and the key val-
ues, respectively. The attribute __chaff key(<key_length>,
<num_chaff>) marks the variable containing the chaff keys
and provides their number. The attributes tagging variables are
lowered into custom intrinsic instructions without side-effects,
which use the tagged variable and define a copy of it. In
this way, the tagging information is transparently preserved up
to the point of the middle-end where the chaff insertion pass
acts. The code block identified syntactically via the __chaff
keyword, is lowered into an LLVM code region employing a
method analogous to the one in [8]. The net effect is that no
code can be hoisted out of, or sank into the marked code region
by the middle-end optimizer passes. The LLVM Intermediate
Representation (IR), extended with intrinsics and code regions,
is fed to the compiler middle-end. The decorated IR is pro-
cessed by all the middle-end optimization passes yielding the
optimized IR employed as input by our chaff insertion pass.
For the sake of clarity, we will describe the inner working of
the chaff insertion pass as two separate stages, as depicted in
Figure 3: Chaff Instruction Insertion and Chaff Control Flow

rl =1i_key k r0 = i_ciph ¢

r2 = i_ chaff ch

i_keyrl, k

S

r3 = xor r0, rl

store r3, plain

(a) Optimized IR

___chaffregion

i_ciph r0, c
i chaff r2, ch
load rb5, rnd
and r5, rb, #1
L_switch: jmp [L_table, r5]
L_table: L casel
L case2

L_casel: i_xor r4, r0, r2

rl =1i_key k r0 = i_ciph ¢

r2 = i_ chaff ch

i xor r3, r0, rl
jmp L_ end

r3 = xor r0, rl r4 = xor r0, r2

store r3, plain i_hold r4

(b) IR with chaff instructions

g e S

i xor r3, r0, rl
i_xor r4, r0, r2
jmp L_end
store r3, plain
i_hold r4

L_ case2:

L__end:

(c) Assembly with pseudoinstructions

Figure 4: Depiction of the intermediate representation of the code of a toy cipher composed of a single xor operation, during its processing by the modified LLVM
compiler. In (a) is reported the IR after the middle end optimizer has completed its work, in (b), the one after the chaff instruction insertion has been performed,
in (c) is depicted the low level IR right before the custom pseudo instructions are removed. Chaff instructions are represented in boldface, intrinsic instructions are
prefixed by i, blue instructions constitute the additional control flow. Instructions in italics provide artificial uses so that the dead code elimination optimization

passes do not remove the chaffs

Construction. We also recall that the LLVM IR is expressed in
Single Static Assignment form, i.e., each instruction defines a
new variable, represented as a virtual register, save for store
and jump instructions. As a consequence, it is commonplace
to identify an instruction with the variable it defines, when-
ever possible. We will use as a running example a trivial cipher
where a single input variable is decrypted via a single xor. Fig-
ure 4(a) provides a depiction of the state of the LLVM IR upon
being fed to the chaff insertion pass, represented as its dataflow
graph. The intrinsic instructions employed to mark the chaff,
key and input ciphertext are represented as i_chaff, i_key,
and i_ciph. The protected LLVM code region is enclosed in
the dotted line.

Chaff Instruction Insertion. The chaff instruction insertion
needs to compute, as its first step, the set of instructions K con-
taining all the ones which use, directly or indirectly at least a
variable derived from the cipher key. This can be done follow-
ing the definition-use relation chains over the program IR, and
adding all the nodes belonging to the chains starting with the
intrinsics inserted by the front-end. We note that the set X con-
tains both the instructions computing the cipher and the ones
manipulating the keys before its combination with the input,
i.e., the code portion also known as the keyschedule. For the
sake of clarity, the reported running example does not have a
key schedule; as a consequence K={i_key, xor, store}. Sim-
ilarly, the set of all the instructions which use the input cipher-
text C, either directly or indirectly, is computed. This set en-
compasses all the instructions in the cipher computation, in-
cluding possibly some which do not interact with the cipher
key (e.g., the initial permutation in the DES cipher). In the ex-
ample, C={i_ciph, xor, store}. Once K and C have been

built, it is possible to locate the cipher instructions that will be
the target of side-channel attacks as the ones in K N C, i.e., the
ones combining variables derived from the input with the key.
To insert chaff keys during the whole computation, the instruc-
tions belonging to K N C and using only variables not in K NC,
indicated from now on as the roots of K N C, are identified.
The roots are the starting point from which the countermea-
sure should be applied on the cipher. In the example, there is
a single root, the xor operation, which is also the only node
in K N C contained in the __chaff region. Subsequently, the
chaff instruction insertion pass replicates all the instructions be-
longing to the keyschedule, using the chaff keys as their inputs,
and, for each duplicate, it memorizes which original keysched-
ule instruction is bound to the corresponding chaff in a map k.
This map is employed, throughout the whole pass, to track the
binding between original instructions and chaff ones. In our
example, the keyschedule duplication phase does not have any
effect, as there is no keyschedule. Once a keyschedule, identical
to the original one save for the processed data, has been inserted
for each chaff key, the pass proceeds to generate chaff instruc-
tions for the whole portion of KNC enclosed in the LLVM code
region specified by the programmer. This step is performed act-
ing on a working queue of instructions, which is initialized with
the roots of K N C, until the fix-point where the queue is empty
is reached. For each one of the elements, the pass duplicates it,
taking care to replace the uses of the original instruction com-
ing from correct-key derived variables, with the corresponding
ones from chaff-keys, as stored in the map 9. Figure 4(b) re-
ports the added chaff-xor, in boldface type, with its correct-
key use r1 replaced with the corresponding chaff-key value r2,
alongside its original counterpart (r3=xor r0,r1)eKXNC. Af-
ter this step, the map 9t is updated with the binding between

Round 1 Round 2 Round 3

> > >
O & |2) % & g %) w & g |2 wn
5 S||E || & SR [[E]] e SIS ||E|]lE
5 e ll2|ls e |l ||I2||S e o112l S
® —i| & = \g’ — 3| | € — = \g’ > | £ = = '*2:’
= &l1g ||l AR R a&1§llg]|l&g
% AT AN R R S5 (o] %

k<l — ,\<I l/:li — \<‘ (/:L —

A A

Straightforward attack target

Cascade attack targets

Figure 5: First three rounds of an AES-128 decryption computation. The operations computing the intermediate values targeted by the straightforward attack and

the cascade one are highlighted in gray

the freshly inserted chaff instruction and the original one, so
to represent the relation between the values defined by them.
In our example the new relation is represented in Figure 4(b)
by the blue dotted line binding the original and the chaff-xor.
As the last action, all the instructions using the value defined
by the original instruction, within the region to be protected,
are added to the working queue. In the example, no such in-
structions are present, as the only use of (r3=xor r0,rl) lies
outside the __chaff region. In case there are no such instruc-
tions, the pass takes an extra action to prevent the dead code
elimination passes from removing the added chaff instructions.
In fact, in the current state, the result of such chaff instructions
((r4=xor r0,r2) in the example) is never used, thus marking
them for removal as dead code. To this end, the pass inserts
an intrinsic, defined to have generic memory side-effects on the
computation (named i_hold in Figure 4(b)), which uses the re-
sults of all the chaff instructions which were just inserted. From
now on, we represent both intrinsics and pseudo-instructions in
our examples prefixed with a i_, with a small notation abuse.
Since such an intrinsic cannot be optimized due to its unpre-
dictable side effects, and uses the variables defined by the chaff
instructions, they will no longer be considered dead code.

Chaff Control Flow Construction. The IR with the inserted
chaff instruction is subsequently processed by the chaff con-
trol flow insertion pass (Figure 3) where the actual RNG-driven
selection construct is created. To this end, the pass builds a
switch-case like control structure for each each relation stored
in the map M. Figure 4(c) reports the assembly with pseudo-
instructions which results from this construct after the instruc-
tion selection pass, for the sake of clarity. All the labels and
instructions related to the chaff control flow are highlighted in
blue. Two constraints must be tackled in building the switch-
case structure: all the execution paths must take the same time,
and no rescheduling of the instructions must be made. To
achieve a constant execution time on all the paths, the structure
of the switch case construct is built with a jump-table strategy.
The jump table strategy enumerates the target addresses of the
first instruction of each case (L_casel and L_case2 in our ex-
ample) in a constant table placed within the code (tagged by
the label L_table in Figure 4(c)). The random choice among
the cases is driven by a random integer (stored in r5 in our

example) which is reduced modulo the number of cases, and
subsequently employed as the offset in the branch table to com-
pute the target address by an unconditional indirect jump. The
body of each case must be built out of instructions which must
not be rescheduled, hoisted, sank or eliminated by the common
subexpression elimination pass. To this end, the chaff control
flow construction substitutes each of them with a correspond-
ing intrinsic, using and defining the same values, and declared
to have unmodeled side-effects on the computation. This al-
lows the pass to build the case code blocks enforcing the de-
sired instruction order, so to achieve the indistinguishability in
time effect. In the example, the i_xor pseudo-instructions cor-
responding to the lowering of the i_xor intrinsic are reported.

Instruction Selection and Pseudo-instruction Lowering.
The IR decorated with the custom intrinsics by the chaff in-
sertion pass is subsequently processed by the backend opti-
mization passes up to the instruction selection pass. Since the
IR contains our custom intrinsics, which are designed to be
opaque, and thus cannot be recognized by the instruction selec-
tion pass as representing any of the instructions of the underly-
ing ISA, we modified the pass so that each of them is lowered
into a corresponding pseudo-instruction. After the customized
instruction selection pass, the remaining backend passes (e.g.,
register allocation) are run, bringing the representation closer
to valid assembly for the target architecture. The resulting
machine instruction list, reported in Figure 4(c), is then pro-
cessed by a custom pseudo-instruction lowering pass, which
maps all the ones corresponding to actual machine instructions
back into their correct format, while removing the placeholder
ones aimed at avoiding dead code elimination. In the example,
the i_xor is translated into an actual eor for the ARM ISA,
while the marker pseudo-instructions i_key, i_ciph, i_chaff
are removed or substituted with mov instructions depending on
the register allocation. The i_hold place-holder is simply re-
moved. In this stage, it is also checked that all the exit jumps
from each case of the switch-case constructs (the ones to L_end
in the example) were emitted, as it is a commonplace optimiza-
tion to omit the last one, due to the natural execution flow falling
through to the next instruction anyways. Since this optimiza-
tion is detrimental to having all the cases with a constant time
execution, we insert the missing jumps whenever needed.

4. Security analysis

We provide the quantitative security analysis of the chaff
countermeasure against a simple attack (as the one considered
in [9]) and against a cascade attack strategy able to reduce the
uncertainty on which side-channel extracted key is the correct
one down to the minimum, i.e., picking one out of #chaff+1
possible keys. To illustrate the steps of both attacks, we will
employ as our running example an instance of AES cipher with
a 128-bit key, of which the first three rounds are depicted in
Figure 5. We start by recalling that the general framework of
a passive side-channel attack (SCA) retrieves the whole secret
key K piecewise guessing the side-channel behavior of the de-
vice during a precise time instant where an operation involving
a p-bits large subset of the bits of K is performed. The side-
channel behavior of such a time instant is predicted for all the
2P possible values of the small portion of K under considera-
tion. The correct prediction is distinguished from the other ones
by means of a statistical test gauging the goodness of fit of each
of the predictions against the measurements time-wise [3]. The
entire value of K is put together after retrieving it piecewise in
X different analyses performed on the same sampled data from
the side-channel, while changing the targeted intermediate op-
eration to guess different key bits. In our running example in-
volving the AES-128 cipher, an attacker may retrieve the whole
AES key in 8-bit portions, thus leading %:16 attacks on the
same measurements set. The recalled framework is known in
literature as a first order SCA as it exploits the knowledge of
a single time instant where an operation takes place to validate
the side-channel behavior prediction. More sophisticated at-
tacks exist where, out of the need of overcoming proactive SCA
countermeasures, the attacker employs the values measured on
the side-channel in more than one operation of the cipher, lead-
ing to the so-called high-order SCAs. In the following, we will
focus on first-order SCAs under the assumption that the imple-
mentation is protected only with the reactive chaff-based coun-
termeasure. An analogous line of reasoning can be followed as-
suming that other, proactive countermeasures are in place, and
the attacker is bypassing them via an high-order attack.

Straightforward Attack. Let c be the number of chaff keys
employed by the considered cipher implementation, protected
with the methodology described in Section 3. Upon follow-
ing the aforementioned first order SCA procedure, a set of c+1
plausible values for each one of the n=% key portions is re-
trieved by the attacker. To this end, the attacker will need to
employ a computational effort which is Q(n-27-1), where ¢ is the
amount of samples gathered by the measuring equipment [3].
We note that, this is a strict lower bound where the attacker is
able to compute the statistical distinguisher of choice in con-
stant time, which is not usually the case. Once the n sets of key
portions are retrieved, the attacker needs to successfully recon-
struct the correct cipher key K picking the correct portions. The
value of p is chosen by the attacker, taking into account the fact
that increasing it implies an exponential increase in the amount
of computational effort required to lead the SCA, while decreas-
ing significantly the number of possible keys to be tried. In our
running example, n is commonly picked to be 16 as the adver-

sary tries to extract the key byte-wise (i.e., p=8). An example of
targeted result of an intermediate computation for such an SCA
is the table look-up action performed by the SusBytes™! prim-
itive of the first round of AES as marked in Figure 5. Such a
computation depends exactly on 8 key bits, and thus requires 23
consumption hypotheses to be made for each input. The lowest
publicly reported value for n is n=4, in case of an attack against
an AES-128 cipher retrieving p=32 key bits at once [19].
Once the possible candidate values for each key portion are
collected, the attacker will need to piece them together, with no
information to distinguish the chaff ones from the correct ones
within each set of collected key portions. However, we note
that the attacker is in knowledge of the order in which the can-
didate values are to be taken from the sets, as they are bound
to the intermediate value predicted during the attack, identify-
ing which portion of both the correct and the chaff keys was
retrieved. As a consequence, the number of plausible values
for the entire cipher key is (c + 1)". Since the attacker does
not have any kind of decryption oracle, exploiting the informa-
tion retrieved up to now (in this straightforward attack) would
require checking which one of the (c + 1)" keys is correct inter-
acting with the system [9]. Considering values of pe{8, 16, 32},
nef16, 8,4} and ¢=3 for our running example, we can conclude
that the attacker will succeed, in guessing the cipher key with a
single attempt, with probability 2732, 2716 and 278, respectively.

Cascade Attack. Despite the straightforward attack strat-
egy being effective [9], it is possible for an attacker to further
increase his advantage in guessing the correct key among the
chaff ones. Indeed, employing a cascade of first order attacks,
each one relying on the results of the previous one, the num-
ber of candidate values for the entire cipher key can be reduced
from (¢ + 1)" down-to c+1.

The key idea of the cascade attack is to exploit the natu-
ral data dependencies present in the cipher to validate the cor-
rect combination of a set of key portions (which is potentially
smaller than the entire key), thus discarding combinations mix-
ing correct key portions with chaff key portions.

To this end, assume an attacker has already executed a
straightforward attack obtaining n sets of candidate key por-
tions S,S2,...,S,, each one c+1 elements wide. Exploiting
the fact that any block cipher computation involves an increas-
ing portion of its cipher key (as its computation proceeds down
the rounds of the algorithm [5]), the attacker targets an inter-
mediate value further down the cipher computation, chosen as
it is depending on the values of 1<p’<n candidate key portions
picked from S, S2,...,5 .

To the end of predicting the side-channel behavior of the said
(second) intermediate value computation, the lowest number of
hypotheses for the involved key portion is (c+ 1)?’, as one (sub-
)portion for each of the p” involved should be picked from the
proper sets S;. The outcome of the attack will be c+1 plausible
values for the key portion involved, which in turn will be (p’- p)-
bit wide. Iterating such an attack will yield n':[[%] new sets of
candidate key portions, lowering the amount of valid values for
the entire keys to (c + 1) <(c + 1)".

The reason for the number of plausible values being reduced

is the fact that only correctly combined key portions will yield
a value upon which sensible intermediate values may be pre-
dicted. This, in turn, implies that only side-channel behavior
hypotheses deriving from correctly combined key portions will
show a correlation with the actual measured one, as no com-
putation employing a mixture of correct and chaff key bytes is
performed, and thus no such information leakage is present.

Continuing our running example, assume the attacker has
already performed a straightforward attack with p=8, retriev-
ing n=16 sets of (byte-wide) candidates for the key portions of
the considered AES-128 cipher implementation. The attacker
chooses to target one output byte of the MixCoLumns opera-
tion present in the second decryption round of the AES. One
such output byte depends on the values of four key portions
among the ones retrieved in the first attack, thus p’=4 in this
case. Considering three chaff keys are employed, ¢=3, the at-
tacker will formulate (3 + 1)*=256 different hypotheses, each
one 4-byte wide, among which only the c¢+1=4 made out of
bytes belonging from the same key will be predicting the side-
channel behavior of a part of the computation correctly. As a
consequence, n’:|'14—6'|:4 candidate sets are produced, leaving
(c + 1) =4*=256 plausible values for the correct cipher-key.

The cascade strategy can be iterated to further reduce the
number of plausible values for the cipher-key up to a single
set containing c+1 candidate values. Such a reduction will be
achieved as the attacker (once the computational effort is fea-
sible) will be able to predict the side-channel behavior of an
intermediate computation depending on the entire cipher-key.
Therefore, he will observe matches against the physical mea-
surements only for the correct values of both the cipher key and
the chaff ones. In our running example, this can be obtained
employing as the target of the side-channel attack, the output
of the SuBByTES primitive of the third decryption round (see
Figure 5). Since its output depends on the entire cipher-key,
comparing the predicted side-channel behavior for each one of
the 256 plausible key values will report actual correlation with
the measurements only c+1=4 times.

It is thus possible for an attacker, through a sequence of cas-
caded first order SCAs, to raise the probability of a successful
key guess out of the information obtainable via side-channel
up to ﬁ We note that no further information on which one
of the remaining key candidates is obtainable in the described
attacker model, as there is no information concerning the com-
putation of the value of the correct decryption alone available
to the attacker. This is a tight requirement, as if a computa-
tion involving the said value alone were to leak information on
the side-channel, a side-channel attack considering as target its
output could be successfully set up (see Condition ii) in Sec-
tion 2). Indeed, such an attack would reveal the value of the
correct key alone, as only the correct plaintext is processed and
employed in the device, while the ones coming from chaff key
decryptions are typically discarded. We recall, as described in
Section 2, that such an attack can be easily thwarted either pro-
tecting the computation employing the plaintext with conven-
tional proactive countermeasures, or duplicating it also for the
incorrect plaintexts. Finally, we note that the cascade first or-
der SCA strategy works even in cases where the key material

of a cipher is entirely composed of random values (i.e., the ci-
pher has no keEyscHEDULE). Indeed, the capability of an attacker
of progressively reducing the amount of viable candidates for
the entire key value relies on the progressive combination of
the correct key material with the state of the cipher during its
computation. In particular, the described cascade attack strat-
egy reduces the number of viable candidates for each guessed
key portion to c+1 elements after each first order attack is per-
formed. As a consequence, the cascade attack strategy is more
profitable in ciphers where the operations between two “key
additions” (i.e., the rest of the cipher round structure) yield a
result where each one of the bits processed by them depends
on all their inputs, a property commonly known as diffusion.
A cipher achieving full diffusion within a single round will in-
deed present the attacker with the possibility of reducing the
amount of candidates for the round key down to c+1 employ-
ing a cascade attack before any fresh key material is added to
the computation. Since diffusion is a crucial property in secure
block cipher design, the round of a block cipher is typically de-
signed to maximize it, thus allowing the attacker to effectively
come significantly close to the c+1 bound in practical cases.
For instance, in our running example, the AES round allows
the attacker to reduce the number of round key candidates to
4(c+1), as AES diffuses over a quarter of the round output val-
ues. The aforementioned strive of the cipher designers towards
achieving a good diffusion in turn implies that the number of
hypotheses to be made to extract each round key value will only
grow by a small multiplicative factor over c+1 as a consequence
of taking into account the values of the key material from pre-
vious rounds. We note that such factors do not accumulate over
the number of rounds, as only actually performed computations
will leak on the side-channel, thus allowing the attacker to de-
duce the correct combination of round key values following the
same line of reasoning of the cascaded attack. Finally, we note
that it is the indistinguishability in time among the operations
acting on a correct key portion and its corresponding chaffs that
constrains the attacker to resorting to a cascade attack strategy.
Indeed, the apparently viable approach of computing c+1 times
the same decryption primitive sequentially, once with the cor-
rect key and the remaining c times with chaffs (picking a key for
each decryption primitive in random order), allows the attacker
to exploit the information coming from the time-wise partition-
ing of the correlating measurement samples of the side-channel
behavior to determine to which key a given portion belongs.

5. Experimental Evaluation

In this section, we provide the result of the experimental cam-
paign both validating the effectiveness of the chaff countermea-
sure approach, and measuring its efficiency in terms of running
time and code size overheads as a function the number of in-
serted chaff keys. The chosen platform for our evaluation is an
STM32F407 microcontroller (uC) based on the ARM Cortex-
M4 core with 192 kiB of SRAM and 1 MiB Flash memory
mounted on a commercial grade 32F407CDISCOV- ERY board
from STMicroelectronics. The core was clocked at 84 MHz
during the whole experimental campaign. We chose to target a

067 T T T T T T T T T
&=
[}
3 No—
&)
g 04f 1
=
g
S o2 .
3
o
&
ol ! ! ! ! ! ! ! ! !
0O 05 1 15 2 25 3 35 4 45 5

Number of Traces x 10*

(a) Unprotected - Peak correlation coefficient vs. number of traces

T
g 04] |
3
Q
€ 02} :
S
Z 0 "
g
Z 02} :
S —04| .
| | | | | | | | | |
0 01 02 03 04 05 06 07 08 09 I

Time [us]

(c) Unprotected - Timewise correlation coeff. with 50k traces

0.1

Peak Correlation Coeff.

! ! ! ! !
1.5 2 25 3 35

Number of Traces x 10*

45 5

(b) Protected - Peak correlation coefficient vs. number of traces

T

= 021 |

R

Q

&

Q

S

e 0

.S

=

[0}

g

o —0.2 B
| | | | | | | | | | |
0 01 02 03 04 05 06 07 08 09 1

Time [us]

(d) Protected - Timewise correlation coeff. with 50k traces

Figure 6: Results of a DEMA attack to the SubBytes primitive the AES (1 byte key hypothesis) both without and with two chaff keys, respectively. Correct key
in black, chaff keys in green and blue, wrong keys in grey. Figures (a) and (b) report the peak correlation coefficient against the number of traces employed to
compute it. The peak correlation coefficients of the chaff keys are close to the one of the actual key (with the differences determined by statistical artifacts) providing
indistinguishability. Figures (c) and (d) report the timewise correlation coefficients computed employing 50k measurements of the EM emissions of the pC. The
timewise correlation of the three keys (correct and two chaffs) take place in the same time interval, providing indistinguishability in time

32-bit uC as our experimental platform to follow the increasing
trend towards the adoption of 32-bit uCs even in low-cost and
power constrained environments [20-22]. All the C cipher im-
plementations employed were compiled with a modified LLVM
3.4 compiler suite and release-grade optimizations (-O3) target-
ing the Thumb-2 instruction set.

The validation of the effectiveness of the approach has been
conducted with both the instruction cache and data cache of the
microcontroller, for the sake of obtaining a setup most favorable
to the attacker. For the same reason, a standard compliant soft-
ware AES implementation C based on a single S-Box was em-
ployed to minimize algorithmic noise. However, results similar
to the ones reported were reported on the 7-Tables based imple-
mentation of AES employed in both OpenSSL and PolarSSL,
an SSL library specially tailored for embedded systems. The
side-channel of choice for our validation are the electromag-
netic (EM) emissions of the microcontroller during the com-
putation of the cipher. The EM measurements were made by
means of a loop probe obtained out of a 50 Q coax cable, ampli-
fied through two stages of Agilent INA-10386 amplifiers, and
sampled at 500 Msamples/s with a Picoscope 5203 DSO. The
measurement trigger was driven by a signal coming from one of
the uC GPIOs, which was raised at the beginning of each block
cipher computation. The intermediate value chosen for carry-
ing out the straightforward DEMA attack is a byte of the output
of the first SuBBYTEs primitive, as described in the running ex-
ample of Section 4, and we employed its Hamming weight as

10

the emission model. The implementation under attack was pro-
tected instructing the compiler to add two chaft-keys.

Figure 6 reports the results of the analysis of the EM emis-
sions of the uC, both as a function of time and of the num-
ber of measurements performed. In particular, Figures 6(a)
and 6(b) show how the correlation coefficient reported for both
the correct key and the chaff ones is substantially the same,
with the differences among them being determined by measure-
ment noise in this instance of the side-channel measurement. In
particular, the confidence intervals for two estimates are over-
lapping for any confidence level between 80% and 99.999%.
Figures 6(c) and 6(d) report the evolution of the values of the
correlation coeflicients in time for both the unprotected and
chaff-protected implementation respectively, showing a close-
up view in time for the sake of clarity. Thanks to the random-
ization among different schedules of the correct and chaff com-
putation, it is not possible for the attacker to distinguish the
correct key from the chaff ones through exploiting a time-wise
partition of the correlation peaks pointing to when the actual
computation takes place. Note that the small difference in time
between the unprotected and protected peaks of fitness in the
plots is due to cropping issues, for clarity in representation.

The actual time difference is greater than the depicted one
(which is around 2 clock cycles) due to the higher number of in-
struction being executed in the chaff-protected version. The re-
sults in Figure 6 thus show how the chaff property described in
Section 2 is provided by the described implementation method.

Table 1: Execution times for the examined set of block ciphers as a function of the total number of keys c¢+1 employed. Dashed-out cells indicate that the resulting
binary cannot be fit within the device Flash memory. Gray cells highlight the best performer for a given number of chaff keys employing the chaff-property providing
technique (upper table). Timing results employing a naive repeated cipher execution with different keys are reported for comparison (lower table)

Time [us]
baseline chaff-based approach
c+1 1 2 4 8 16 32 64
AES-T 17.17 111.5 1685 3089 678.4 1,572 -
CLEFIA 81.9 573.8 8824 1,676 3,624 - -
PRESENT 168.4 4992 896.6 1,928 3,993 8,356 -
Sivon 128/128 23.7 61.35 2585 505.0 996.6 2,009 4,174
Speck 128/128 15.11 28.82 70.46 235 433.8 874.1 1,894
XTEA 13.01 2529 1369 2483 520.9 1,069 2,150
Time [us]
baseline naive approach
c+1 1 2 4 8 16 32 64
AES-T 17.17 345 68.8 137.5 274.8 549.6 1,099.0
CLEFIA 81.9 164.6 3284 656.0 1,311.2 2,621.6 5,2424
PRESENT 168.4 3384 6752 1,348.8 2,696.0 5,3904 10,779.2
Smvon 128/128 23.7 476 95.0 189.8 379.4 758.6 1,517.0
Speck 128/128 15.11 30.3 60.5 121.0 241.9 483.6 967.1
XTEA 13.01 26.1 52.1 104.2 208.2 416.4 832.7

After providing the experimental evidence of the effectiveness
of the approach, we report the computational and code size
overheads of chaff-based side-channel countermeasures, on a
set of block ciphers including the Advanced Encryption Stan-
dard (AES); the ISO standard lightweight block ciphers [18]:
CrLeria and PresenT; the widely deployed reduced fingerprint
cipher [16] XTEA; and the constrained environment block ci-
pher proposals by US National Security Agency (NSA) [17]:
Speck 128/128 and Smon 128/128. The choice of the ciphers
was made targeting possible block cipher candidates for a small
embedded system, fitting the scenarios previously mentioned
in Section 2, where a reactive side-channel countermeasure
provides an effective improvement over purely proactive ones.
Timing measurements were made sampling a signal coming
from one of the uC GPIOs, which was asserted at the begin-
ning of the cipher computation, and de-asserted at the end of
it. The GPIO was sampled at 500 Msamples/s with a Picoscope
5203 DSO, achieving a 2 ns resolution. All the timings are the
result of an average of 30 executions of the primitive.

Table 1 reports the running times for all the benchmarked
block ciphers, changing the number of chaff keys ¢ to obtain a
successful guess probability by the attacker in the 27'-2° range
when a cascade attack strategy is employed. Together with the
timing obtained from the implementation employing the strat-
egy described in Section 3, we also report the ones coming
from iterating the entire cipher primitive, employing sequen-
tially one of the c+1 keys for the sake of comparison. We recall
that, while the former strategy forces the attacker to perform
a “cascade attack”, the latter does not provide indistinguisha-
bility in time of the power/EM traces related to the real and
the chaff keys and will yield the same security margin of the
chaft-based approach even if only a “straightforward attack” is

11

carried out. Dashed out cells indicate that the resulting binary
could not be deployed on the target platform as its size does not
allow it to fit in the Flash memory of the target device. The
results show how the standard AES block cipher implemented
with T-tables provides sub-millisecond computation for all the
considered choices up to 15 chaff keys (i.e., c+1=16), providing
an effective solution for interactive load based computation on
embedded systems. However, AES—T', CLeFIA and PRESENT are
affected by larger absolute overheads in computation time with
respect to SimoN 128/128, Speck 128/128 and XTEA. This be-
havior is to be ascribed to the round structure of the latter three
cipher proposals, which is built out of a very reduced amount
of modulo-23? arithmetic and Boolean operations around a few
word-sized variables. This results in a lower register pressure,
reducing the amount of spills and fills during compilation.

Comparing the timing results of the naive approach to pro-
viding fake side-channel leakage with the chaff one we note
that the latter is roughly twice as slow as the former one. Such
a slowdown is to be ascribed to the overhead imposed by the
control managing instructions, and is a constant factor regard-
less of the number of employed chaff keys.

Table 2 reports the code sizes provided, computed directly
from the binaries to be uploaded on the platform, considering
the entire .text section, which is stored on the Flash memory
of the target uC. All the ciphers did not undergo a loop un-
rolling transformation for the main round-repeating loop: this
in turn led to a small performance penalty with respect to the
performance results provided in [9], although yielding a sig-
nificant code size reduction. The code sizes reported concern
only the chaff-based implementations as the overhead over the
baseline caused by the outer loop iterating over the keys is neg-
ligible. We note that the best performers in terms of code size,

Table 2: Code size overheads for the examined set of block ciphers. Dashed-
out cells indicate that the resulting binary cannot be fit within the device Flash
memory. Gray cells show the best performer for a given number of chaff keys

Code Size [kiB]
c+1 1 2 4 8 16 32 64
AES-T | 246 5.0 9.7 285 126.5 596.6 -
CLEFIA 6.26 143 29.1 87.0 4075 - -
Present | 2.73 44 85 220 715 273.8 -
SimoN 249 34 4.5 10.6 313 1449 648.5
SPECK 211 2.7 3.7 6.4 17.7 579 303.0
XTEA 1.74 2.1 3.0 5.3 17.7 67.3 2835

namely Speck 128/128 and XTEA fit into less than 10% of
the target Flash memory when employing up to 31 chaff keys.
On the other hand, the spill prone nature of the other cipher
implementations raises their code size significantly, as a non-
negligible number of load-store operations are added to the
binary. This, in turn, causes AES, CLerFia, and PRESENT not to
be usable with all the examined number of chaff keys. An in-
teresting consideration is the fact that lightweight ciphers such
as XTEA, even when protected with the chaff countermeasure,
still retain a code size below the one of the unprotected CLEFIA
(namely, up to c+1=8) and AES (up to c+1=2). This can be
seen as an opportunity to exploit the performance and code size
advantage provided by a lightweight cipher to insert a reactive
countermeasure, while keeping its code size below the alterna-
tive provided by an unprotected non-lightweight one.

6. Conclusion

In this work we described a reactive countermeasure against
side-channel attacks, by means of the addition of chaff compu-
tations. We pointed out the scenario where such a countermea-
sure can be employed and reported a detailed security analy-
sis. We have shown how the actual security margin provided by
the countermeasure grows linearly in the amount of chaff keys
employed, whenever a cascade side-channel attack strategy is
employed, as opposed to a straightforward one. We described
an automated application strategy for the chaff countermeasure
as a set of LLVM compiler passes, and analyzed it on a plat-
form constituted by software block cipher implementations on
a Cortex-M4 microcontroller. The results report chaff-protected
implementations with 7 to 15 chaff keys, while keeping sub-ms
running times and the code size smaller than 20 kiB.

Acknowledgements

This work was supported in part by the EU grants for the ac-
tions: “SafeCOP” (ECSEL RIA) Grant agreement no. 692529,
and “M2DC” (H2020 RIA) Grant agreement no. 688201.

References

[1] J. L. Galea, E. D. Mulder, D. Page, M. Tunstall, SoC It to EM: Elec-
troMagnetic Side-Channel Attacks on a Complex System-on-Chip, in:

Cryptographic Hardware and Embedded Systems - CHES 2015 - 17th
Int.I Workshop, Saint-Malo, France, September 13-16, 2015, Proceed-

ings, Vol. 9293 of LNCS, Springer, 2015, pp. 620-640.

12

[2]

(3]
(4]

[3]

(6]

(7]

(8]

[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

C. H. Gebotys, B. A. White, A Sliding Window Phase-Only Correlation
Method for Side-Channel Alignment in a Smartphone, ACM Trans. Em-
bedded Comput. Syst. 14 (4) (2015) 80.

P. C. Kocher, J. Jaffe, B. Jun, P. Rohatgi, Introduction to Differential
Power Analysis, J. Cryptographic Engineering 1 (1) (2011) 5-27.

J. Heyszl, S. Mangard, B. Heinz, F. Stumpf, G. Sigl, Localized electro-
magnetic analysis of cryptographic implementations, in: Topics in Cryp-
tology - CT-RSA 2012, San Francisco, CA, USA, February 27 - March 2,
2012. Proceedings [23], pp. 231-244.

G. Agosta, A. Barenghi, M. Maggi, G. Pelosi, Compiler-based side chan-
nel vulnerability analysis and optimized countermeasures application, in:
The 50th Annual Design Automation Conference 2013, DAC’13, Austin,
TX, USA, May 29 - June 07, 2013, ACM, 2013, pp. 81:1-81:6.

O. Reparaz, B. Bilgin, S. Nikova, B. Gierlichs, I. Verbauwhede, Consol-
idating Masking Schemes, in: Advances in Cryptology - CRYPTO 2015
- 35th Annual Cryptology Conference, CA, USA, August 16-20, 2015,
Proceedings, Part I, Vol. 9215 of LNCS, Springer, 2015, pp. 764-783.

G. Agosta, A. Barenghi, G. Pelosi, A code morphing methodology to
automate power analysis countermeasures, in: The 49th Annual Design
Automation Conference 2012, DAC 12, San Francisco, CA, USA, June
3-7,2012, ACM, 2012, pp. 77-82.

G. Agosta, A. Barenghi, G. Pelosi, M. Scandale, A multiple equivalent
execution trace approach to secure cryptographic embedded software, in:
The 51st Annual Design Automation Conference 2014, DAC’14, San
Francisco, CA, USA, June 1-5, 2014, ACM, 2014, pp. 210:1-210:6.

G. Agosta, A. Barenghi, G. Pelosi, M. Scandale, The MEET approach:
Securing cryptographic embedded software against side channel attacks,
IEEE Trans. on CAD of Integrated Circuits and Systems 34 (8) (2015)
1320-1333.

C. Stoll, Stalking the Wily Hacker, Comm. ACM 31 (5) (1988) 484-497.
B. M. Bowen, S. Hershkop, A. D. Keromytis, S. J. Stolfo, Baiting Inside
Attackers Using Decoy Documents, in: Security and Privacy in Com-
munication Networks - 5th Int.l ICST Conference, SecureComm 2009,
Athens, Greece, September 14-18, 2009, Revised Selected Papers, Vol. 19
of Lecture Notes of the Institute for Computer Sciences, Social Informat-
ics and Telecommunications Engineering, Springer, 2009, pp. 51-70.

A. Juels, T. Ristenpart, Honey Encryption: Encryption beyond the Brute-
Force Barrier, IEEE Security & Privacy 12 (4) (2014) 59-62.

A. Juels, T. Ristenpart, Honey Encryption: Security Beyond the Brute-
Force Bound, in: Advances in Cryptology - EUROCRYPT 2014, Copen-
hagen, Denmark, May 11-15, 2014. Proceedings, Vol. 8441 of LNCS,
Springer, 2014, pp. 293-310.

NXP Semiconductors, NXP Keyless Entry/Go solutions, http://www.
nxp.com/documents/leaflet/75017275.pdf (2015).

Atmel, Embedded AVR Microcontroller Including RF Transmitter and
Immobilizer LF Functionality for Remote Keyless Entry,
http://wuw.atmel.com/Images/Atmel-9182-Car-Access—
ATA5795C_Datasheet.pdf (2014).

D. Moon, K. Hwang, W. Lee, S. Lee, J. Lim, Impossible Differential
Cryptanalysis of Reduced Round XTEA and TEA, in: Fast Software
Encryption, 9th Int.1 Workshop, FSE 2002, Leuven, Belgium, February
4-6, 2002, Vol. 2365 of LNCS, Springer, 2002, pp. 49-60.

R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks,

L. Wingers, The SIMON and SPECK lightweight block ciphers, in:
Proceedings of the 52nd Annual Design Automation Conference, San
Francisco, CA, USA, June 7-11, 2015, ACM, 2015, pp. 175:1-175:6.
ISO/IEC Joint Technical Committee 1/SC 27., ISO/IEC 29192-2:2012:
Lightweight cryptography—Part 2: Block ciphers (2012).

A. Moradi, M. Kasper, C. Paar, Black-Box Side-Channel Attacks
Highlight the Importance of Countermeasures - An Analysis of the
Xilinx Virtex-4 and Virtex-5 Bitstream Encryption Mechanism, in: Proc.
of CT-RSA 2012 [23], pp. 1-18.

STMicroelectronics, STM32L0 Series - Ultra Low Power uCs,
www.st.com/web/en/catalog/mmc/FM141/SC1169/5S51817 (2015).
Silicon Labs, EFM32 - Energy Friendly xCs Line,
https://wuw.silabs.com/SiteDocs/selector-
guide/mcu/efm32-selector-guide.pdf (2015).

Microchip, PIC32MX Microcontroller Family,
https://www.microchip.com (2015).

Topics in Cryptology - CT-RSA 2012, San Francisco, CA, USA, 2012.
Proceedings, Vol. 7178 of LNCS, Springer, 2012.

