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Time-predictable Synchronization Support with a
Shared Scratchpad Memory

Emad Jacob Maroun, Henrik Enggaard Hansen, Andreas Toftegaard Kristensen, Martin Schoeberl*

Department of Applied Mathematics and Computer Science
Technical University of Denmark
Kongens Lyngby, Denmark

Abstract

Multicore processors need to communicate when working on shared tasks. In classical systems, this is performed
via shared objects protected by locks, which are implemented with atomic operations on the main memory. However,
access to shared main memory is already a bottleneck for multicore processors. Furthermore, the access time to a shared
memory is often hard to predict and therefore problematic for real-time systems.

This paper presents a shared on-chip memory that is used for communication and supports atomic operations to
implement locks. Access to the shared memory is arbitrated with time division multiplexing, providing time-predictable
access. The shared memory supports extended time slots so that a processor can execute more than one memory operation
atomically. This allows for the implementation of locking and other synchronization primitives.

We evaluate this shared scratchpad memory with synchronization support on a 9-core version of the T-CREST multicore
platform. Worst-case access latency to the shared scratchpad is 13 clock cycles. Access to the atomic section under full
contention, when every processor core wants access to acquire a lock, is 135 clock cycles.

1. Introduction

Multicore processors are the current standard solution to
increase the performance of applications. Several threads,
executing on several cores in parallel, provide a speedup
compared to a single core processor. However, when an ap-
plication is organized into several parallel running threads,
those threads working towards a common goal need to
communicate. The standard way of multithread communi-
cation is via objects allocated in shared memory with access
protected by locks. To allow the processors to cooperate
on the same application, these systems require the support
of synchronization mechanisms for concurrent access to
shared data or external devices. When such embedded sys-
tems have timing requirements, such as real-time systems,
the access to shared data and the synchronization mecha-
nism must be predictable in order to allow for analyzable
worst-case execution time (WCET).

All synchronization primitives require some hardware
support in order to guarantee atomicity. This is typically
done using hardware supported atomic instructions, which
are supported by the memory controller. In standard
processors, the shared memory is external DRAM memory
and the synchronization support, such as compare and
swap, is implemented on top of this external memory.

This paper presents a shared scratchpad memory (SSPM)
with hardware support for synchronization and interproces-
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sor communication. We avoid costly operations on external
memory by using on-chip memory. The memory access is
arbitrated in a time-division multiplexing (TDM) scheme
where each core receives a one cycle access slot each TDM
round. This enables WCET analysis of memory accesses
and therefore of applications. The SSPM allows the ex-
tension of an access slot for multiple cycles to allow more
than one memory access. This extended access slot enables
atomic operations on the SSPM to provide efficient and
time-predictable synchronization primitives. The proposed
solution is integrated into the hard real-time T-CREST
multicore platform [18]. The implementation is a periph-
eral hardware connected to the processing cores and is
using the OCP bus protocol for the arbitration.

As we aim for a time-predictable system to support real-
time systems, we analyze the WCET of memory accesses
and the usage of the extended slot for synchronization.
On a 9-core version of the T-CREST multicore processor,
the worst-case access latency to the shared scratchpad is
13 clock cycles. Worst-case access latency to the atomic
section under full contention, when every processor core
wants access to acquire a lock, is 135 clock cycles. Fur-
thermore, we present the average-case execution times for
interprocessor communication, using both the SSPM and
the Argo NoC [10] of the T-CREST platform implemented
on the Altera Cyclone EP4CE115 device.

This paper is an extension of [5], where we presented the
first version of the SSPM and provided an initial evaluation
of the SSPM. We extend this work with following additional
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contributions: (1) more in-depth description of the SSPM,
(2) extending the evaluation section with multichannel tests,
(3) a complete integration with the main T-CREST project,
and (4) providing complete instructions how to build the
SSPM and how to reproduce the results.

This paper is organized into six sections: Section 2
presents work related to hardware mechanisms for syn-
chronization support and interprocessor communication.
Section 3 provides background on the T-CREST platform.
Section 4 presents the design and implementation of the
SSPM with synchronization support. Section 5 presents
the results of the implemented solution and evaluates it
against the Argo NoC. Section 6 concludes the paper.

2. Related Work

The use of hardware for lock-based synchronization mech-
anisms is explored in [23]. The authors present best- and
worst-case results for the synchronization primitives im-
plemented. They implement a global locking scheme to
make access to a shared memory atomic and they also
present support for barrier synchronization. They provide
memory access results using two cores. For single access
performance using their coherence mechanism, it takes 4
cycles best-case and 7 cycles worst-case. For our solution, it
only takes 6 cycles worst-case to gain access to the memory
when it is shared between two cores.

In TA-32, bus locking through the LOCK instruction
guarantees the atomic execution of other instructions, e.g.
compare-and-swap [8]. Bus locking reserves the memory
bus for subsequent instructions allowing for the compare-
and-swap instruction to complete in a globally consistent
manner. With our extended time slot, we support atomicity
for arbitrary memory operations. Therefore, an atomic
compare-and-swap operation can be implemented on top
of the extended time slot.

Many soft-core processors, such as the Xilinx MicroBlaze
and the Patmos processor, do not support atomic instruc-
tions for synchronization. The authors in [24] present
hardware implementations of basic synchronization mech-
anisms to support locking and barriers for the soft-core
Xilinx MicroBlaze processor. For six processors, their pre-
sented approaches take around 43-46 cycles to execute the
lock primitive, while our solution has an average execu-
tion time of 45 using multiple slots and 106 using single
slots, as discussed in Section 5.5. Their solutions require
the use of specific ports on the Xilinx MicroBlaze, while
our shared scratchpad can be used with any unmodified
core to support atomic operations, given that it supports
memory-mapped peripherals.

An unorthodox alternative to support barrier synchro-
nization is presented in [17]. Threads are forced to wait
by invalidating instruction caches lines that contain the
execution point at which the threads should synchronize.
Additional hardware for the memory subsystem is imple-
mented in order to filter requests to these cache lines and
refuse to serve them until a specific condition is met. Our

implementation is likewise exploiting stalling to enforce
synchronous execution, but our local storage doubles as an
atomic data sharing mechanism.

In [9] an implementation of a message passing interface
for the Tile64 processor platform from Tilera is presented.
The data cache is used for loading messages, resulting in
high cache miss costs for large messages. The usage of
the caches also complicates the timing analysis for WCET
analysis. The method presented in this paper avoids this
by using the SSPM for communication.

Regarding message passing in a time-predictable network-
on-chip (NoC), the authors of [22] evaluate the Argo NoC
of the T-CREST platform for message passing and analyze
its WCET, providing the end-to-end latency for core-to-
core messages. Message passing is also used to implement
locking and barriers. As we build the SSPM for the same
platform, we complement that solution. However, a shared
memory solution does not scale as well as a NoC for a
greater number of processors [2, 12]. We confirm this for
some of the benchmarks presented in Section 5.3, so a choice
between the SSPM and NoC solution will be application
specific.

In [15] a distributed shared memory architecture is ex-
plored based on a NoC and a shared portion of the address-
ing space to support synchronization and data exchange
between processors. The authors use a number of bench-
marks which are either computation intensive (FFT and
vector normalization), memory intensive (matrix multipli-
cation) or synchronization intensive (matrix factorization
and sort) and consider the effect of having only a single
shared memory and distributing the shared memory mod-
ules. For synchronization and memory heavy tasks, there
is a reduction in execution time and energy when using
distributed shared memory, while the computation inten-
sive tasks only see a minor improvement. We only consider
the use of a single shared memory, so in terms of energy
and execution time, this design is more appropriate for
computation intensive tasks.

It is argued that multiprocessors should support both
message-passing and shared-memory mechanisms, since
one may be better than the other for certain types of
tasks [11]. Message-passing architectures are found to
be suitable for applications where the data packets are
large, or the transfer latency is insignificant compared to
other computations. Shared-memory architectures prevail
in situations with appropriate use of prefetching. In their
comparison, the performance is equivalent. They present an
architecture supporting both mechanisms for interprocessor
communication.

3. The T-CREST Platform

This section provides an overview of the T-CREST
multicore platform that we used to implement and evalu-
ate our scratchpad memory with synchronization support.
T-CREST is a processor designed especially for hard-real
time systems with the goal of having a low WCET and



to ease its analysis [18]. All components have thus been
designed with a focus on time-predictability and to reduce
the complexity and pessimism of the WCET analysis. The
platform consists of a number of processing nodes and two
networks-on-chip (NoCs): A NoC for message passing be-
tween cores called Argo [10] and a shared memory access
NoC. Both NoCs use TDM for arbitration in the same way
as we use it for the SSPM.

A processing node consists of a RISC processor called
Patmos [20], special cache memories, such as the method
cache, and a local scratchpad memory. The method cache
is an important feature for the support of the atomic in-
structions in the SSPM. It caches full methods. Therefore,
the cache can only miss at a call or return instruction. All
other instructions are guaranteed hits. That feature sup-
ports uninterrupted executed instructions for the atomic
region.

Patmos is supported by a compiler developed with a
focus on WCET [16], based on the LLVM framework [14].
The compiler supports two static WCET analysis tools: the
aiT [6] tool from AbsInt and the open-source tool platin [7].
Both tools allow static computation of WCET bounds and
support the specific architecture of Patmos.

The Argo NoC [10] provides message passing to support
inter-processor communication and offers the possibility to
set up virtual point-to-point channels between processor
cores. Data can be pushed across these circuits using direct
memory access controllers in the source end of the circuit,
transmitting blocks of data from the local SPM into the
SPM of the remote processor.

In order to communicate between two processors, the
Argo NoC uses a static time-division TDM schedule for
routing packets through communication channels in routers
and on the links. The network interface between the NoC
and the processor node integrates the direct memory access
controllers with the TDM scheduling such that no flow
control or buffering is needed.

Different types of data can thus be transferred on the
NoC, e.g. message passing data between cores and syn-
chronization operations. The Argo NoC can thus be used
to support synchronization primitives [22]. Being a dis-
tributed system, the Argo NoC can be used to implement
any distributed locking algorithm directly. Apart from the
NoC, it is possible to implement software-based methods
for synchronization in T-CREST. The data cache can be
invalidated [19] and Lamport’s bakery algorithm [13] can
be used to implement locks. This software implementa-
tion has a very high overhead and is therefore impractical.
Our presented SSPM provides a better and more efficient
implementation for locks.

4. Design and Implementation

The SSPM consists of an on-chip scratchpad memory, an
arbitration circuit in front of this memory, and an interface
for each processor core. Figure 1 sketches this setup. From

Patmos CPU s Patmos CPU

ﬁ OCP Core @ OCP Core

Arbiter and Slot Extension

ji Mem if.

Shared Scratchpad Memory

Figure 1: The SSPM connected via the arbiter to the processor cores.

the perspective of a single processor core the SSPM behaves
as a conventional scratchpad on a peripheral device bus with
standard read and write commands. The only difference is
the timing of those read or write commands.

4.1. Time-predictable Shared On-Chip Memory

The core interfaces connect each core to the arbitration
circuit, keep read and write requests (referred to as com-
mands) in a buffer, and handle the protocol with a core
associated with each cores interface. The arbiter multi-
plexes access to the memory using TDM with time slots,
ensuring both evenly distributed access for all cores and ar-
bitration of concurrent access. Only within its time slot can
a respective core have its read or write commands executed.
TDM based arbitration is the basis for time-predictable
shared memory access [21].

If a core requests access outside of its time slot, the
core interface will stall the core by not issuing a command
response. The bus protocol dictates that a core must not
issue new commands before a response of an outstanding
command has been received. By withholding this response
the SSPM can control the flow of commands from cores.
Whilst cores are stalled, the command is buffered, but any
reads or writes are not executed. When the time slot arrives,
the arbiter allows for the fulfillment of the command by
executing the buffered command and issuing the response,
allowing the core to resume execution. Consequently, the
use of time slots incurs a minimum interval of n — 1 cycles
between subsequent commands from a single core, where n
is the number of cores with access to the SSPM. Time slots
will also ensure that simultaneously issued commands will
execute in a deterministic order, albeit the first to access
is dependent on the currently active time slot.

4.2. Atomicity Through Bus Locking

Support for atomic operations, such as acquiring a lock,
is implemented by granting exclusive access to the SSPM
to a single core for multiple clock cycles. This allows for
the fulfillment of multiple reads and writes on the SSPM
without interference from other cores, thus implementing
the global behavior of atomic operations.
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Figure 2: An example showing the arbiter behavior when multiple
cores request an action simultaneously. When cores are waiting, they
go idle until their time slot arrives.

A core can request such an extended time slot from the
SSPM by issuing a read request from a special address.
When the core’s time slot arrives, the arbiter grants an
extended time slot to allow for fulfilling multiple commands
consecutively. Those multiple commands, which are ex-
ecuted atomic, are used to implement a synchronization
primitive, e.g., a lock.

Figure 2 shows an example of cores competing for access
to the SSPM. Core 1 and core 3 request extended time
slots (sync) and core 2 has an outstanding read command.
The current time slot (“Current core”) is for core 1 and
the extended time slot is granted in the following cycle. In
the meantime, core 2 and core 3 are stalled and go idle.
When the extended time slot has passed, the arbiter grants
access to core 2, followed by core 3’s extended time slot.

The SSPM includes a buffer to meet timing requirements
and commands are thus always delayed by one cycle. It
is possible to implement a lock in 3 instructions, hence a
minimum of 6 cycles is needed in the extended time slots
to guarantee atomicity for such a locking mechanism.

The extended time slots will influence the worst-case and
average-case performance of loads and stores in the SSPM.
In a situation where no cores are using extended time slots,
the observed latency is only influenced by the alignment
with regular time slots.

In a worst-case scenario, every core requests an extended
time slot. In this case, the worst-case delay for a command,
be it read, write or request of an extended time slot is
(n — 1)cets. M is the number of cores and ces is the number
of cycles an extended time slot uses.

4.3. Single Extended Time Slot

In the above implementation (the multi slot implementa-
tion), the potentially large delays from extended time slots
could unnecessarily impede performance. It is assumed
that programs requesting extended time slots can tolerate
longer delays, whereas the delays for conventional reads
and writes should be shorter. These two assumptions allow
for an alternate design of the arbiter.

When read or write commands are handled, the SSPM
behaves as the previous case with the multi slot arbiter: a
single time slot per core, taken in sequence and with no
priority. For the single slot arbiter, the only difference is

that if one core requests an extended time slot and has it
granted, then another core cannot be granted an extended
time slot before a whole TDM “round” has passed. By a
“round” it is meant that every core must get a chance to
fulfill a normal read and write to the SSPM before a new
extended time slot is granted. Therefore, the delay by the
extended time slot of normal read and write commands is
reduced.

A flag is used for tracking if an extended time slot has
been granted in the last round and which core it was
assigned to. As long as this flag is set, no core can be
granted an extended time slot. This flag is reset when the
respective core is granted a conventional time slot. This
ensures that one core can not immediately be granted an
extended time slot again, but instead the following core
is the next candidate for receiving it. Note that the slot
is still dynamically present and takes its place from the
conventional time slot of the respective core.

By limiting the arbiter to grant one extended time slot
per round, a worst-case delay between commands becomes:
n — 2 4 Cets, Where n is the number of cores. The two
subtracted cycles account for the core with an extended
time slot and the core making the read or write command.
For requesting an extended time slot the worst-case delay
becomes: n X (n + Cets). The breakdown is: n X cqts for the
delay from extended time slots and n? for the delay from
only having one extended time slot per round.

4.4. Hardware Implementation

We use the T-CREST multicore processor for our im-
plementation. The Patmos processor is written in the
hardware construction language Chisel [1]. Therefore, we
implemented the SSPM in Chisel as well.

The SSPM consists of a memory component, the ar-
bitration, and slot extension component, and interface
components to the processor cores. Each component also
contains test-benches for individual component tests.

For the integration into the T-CREST multicore, we had
to extend the multicore generation scripts. In the near
future, this step will not be needed, as we plan to provide
a multicore top-level in Chisel.

4.5. Lock Implementation

The length of the extended time slot can be configured
and we can perform arbitrary operations within this ex-
tended time slot, which are atomic in relation to the SSPM.
For example, we can support compare-and-set for single
words or multiword compare-and-set. As an example we
show a simple test-and-set based locking mechanism using
3 instructions:

load r0®, &sync_request_address
load r1, &lock
store &lock, 1

The extended time slot is requested with the first load
from the request address. When the extended time slot



Table 1: Resource consumption of a 9-core version of T-CREST with
the SSPM.

Entity LUTs Registers RAM bits
Patmos cores 90243 43877 1344192
Argo NoC 15077 8342 99072
Main memory arbiter 1828 765 0
Main memory controller 451 331 0
SSPM: multi slot arbiter 615 462 -
SSPM: single slot arbiter 635 467 -

arrives, the second load and the following store can be
served uninterrupted. When the load of &lock returned
a 1 (locked), then the sequence of instructions changed
nothing, and the processor did not acquire the lock. When
the load of &lock returned a 0, the lock was free and the
setting to 1 acquires the lock.

The access to the extended time slot is only served at
the beginning of an extended slot. Therefore, the processor
shall not stall for any reason or be interrupted between
the request of the extended time slot and the execution of
the atomic operations. If interrupts are used, they need to
be turned off before this atomic section. One issue could
be a cache miss between the request instruction and the
use instructions. However, with Patmos and the method
cache, the cache misses happen only at function call or
return. All other instruction fetches are guaranteed hits.
For a processor with a normal instruction cache, a solution
against the cache miss is to align the request and atomic
instructions within a cache line.

5. Evaluation and Results

This section presents the evaluation of the SSPM within
the T-CREST multicore processor. We use Altera Quar-
tus (v16.1), targeting the Altera Cyclone FPGA (model
EP4CE115) and set Quartus’ optimization mode to “Per-
formance (Aggressive)”. The clock frequency was set to
80 MHz, as this is the default setting for the Patmos core in
this FPGA. We implemented a 9-core design by adding the
SSPM to the default implementation of T-CREST with the
Argo NoC. The Argo NoC is configured with the default
all-to-all schedule and message length of one header word
and two data words. It has to be noted that the Argo NoC
can also be configured with application specific schedules
and different message length per channel.

We tested two variations of the SSPM: (1) using the
single slot and (2) the multi slot version. The evaluations
against the Argo NoC were performed using the single slot
implementation since none of the tests for comparison use
extended time slots, which is the only difference between
the two implementations.

5.1. Resource Consumption

Table 1 presents the resource consumption of the Patmos
cores, the Argo NoC, the main memory arbiter, the main

Table 2: Worst case latency (WCL) for access to the SSPM in clock
cycles (r/w) for a 32-bit word. ETS shows the delay from requesting
an extended time slot until it is provided.

Single slot Multi slot

Cores WCL (r/w) WCL (ETS) | WCL (r/w/ETS)
2 6 16 6

4 8 40 18

9 13 135 48

16 20 352 90

32 36 1216 186
64 68 4480 378

memory controller, and our SSPM in lookup tables (LUTs),
registers, and RAM bits. We do not show the size of the
scratchpad memory itself, as it is configurable. Relative
to the Patmos processors and the Argo NoC the hardware
consumption of the SSPM is low. Even compared to the
memory arbiter and controller for main memory, our solu-
tion is also relatively cheap. The two arbitration schemes
have similar resource consumption; the single slot imple-
mentation is expected to have a slightly larger utilization
due to the flag checks.

5.2. Worst-Case Latency

Table 2 shows the worst-case latencies of read or write
(r/w) operations for 32-bit words and the extended time
slot (ETS) allocation for the single slot and the multi
slot version of the SSPM. The single slot version gives
the lowest worst-case latency for reads and writes. It is
basically the length of the TDM round plus some extra
cycles for pipelining. The multi slot version increases the
worst-case memory access time, but provides a shorter
latency when requesting an extended time slot for atomic
operations. As the single slot version only allows a single
slot extension per TDM round, the worst case of granting
an extended slot is to wait n TDM rounds for an n core
system. For example, for a multicore system with 32 cores
more than a thousand cycles could potentially be spent on
waiting for an extended time slot.

Comparing against the Argo NoC, a nine core NoC
was evaluated in [22] with a worst-case latency of 211
clock cycles for a blocking transfer of two 32-bit words
between two cores. With the SSPM and the multi-slot
arbiter such an access needs 2 x 48 clock cycles for the
write operation and another 2 x 48 clock cycles for a read
operation, summing up to 192 clock cycles. With the single-
slot arbiter, the same write and read operation can execute
in 52 clock cycles.

The presented worst-case latencies are statically analyzed
numbers. Therefore, we can use these latencies in static
worst-case execution time analysis of tasks.

Comparing these results with the conclusion from [11]
reveals that the SSPM is positioned as a trade-off between
shared-memory and message passing. Transfer latency is
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Figure 3: Interprocessor communication measurements for the Argo NoC and the SSPM.

smaller than for message-passing, but there is no need for
prefetching. However, the access latency to the SSPM

grows linearly with the number of cores in the system. IL.e.

the more cores there are in the system, the longer each
core could potentially wait before getting its turn in the
schedule. This is in contrast to a message-passing NoC,
where the number of links increases with the number of
cores and therefore also the total bandwidth of the system

increases. This is supported by [3] for the general case.

That means that the NoC communication is better scalable
than a shared on-chip memory. Therefore, we envision to
use the SSPM in a clustered organization where just a few
cores share a SSPM and these clusters are connected to
each other with a NoC. A reasonable cluster size might
be in the range of 8 to 16 cores. The Kalray multicore
processor [4] uses clusters of 16 cores that share one on-chip
memory. The clusters are connected via a NoC.

5.83. Communication Performance

We measure access time and roundtrip times of messages.
As reading and writing times are equal, we present writing
times only. We define the roundtrip time as the time
between sending the message and receiving the acknowledge
from the receiver. We vary as parameter the message size.

Figure 3a shows the access times of writes to the SSPM
and the NoC local scratchpad memory and roundtrip time.
The figure shows the time in cycles per word. We measure
with increasing burst sizes executed in a tight loop. There-
fore, it is expected that larger burst sizes perform better
as overheads are amortized.

The write time to the SSPM is relatively constant at
around 10 clock cycles, independent of the burst size. This
is consistent with the TDM based memory arbitration for 9
cores. However, we can observe that the looping overhead
is completely hidden by the waiting time for the TDM slot.

The write timing into the NoC scratchpad is shorter than
the write timing into the SSPM. This is expected, as the
NoC scratchpad is a local memory with one clock cycle
access time. However, we observe an interesting pattern:
From 2 up to 16 words the access time per word decreases,
as expected. It decreases down to 1.3 clock cycles for the
16 word burst. For burst sizes of 32 and more words, the
access time increases to a value of around 6 clock cycles
per word. The result can be explained by loop unrolling
performed by the compiler for shorter loops. For larger
burst sizes the loop overhead dominates the write times.

Figure 3a also shows the time of a roundtrip using the
Argo NoC and the SSPM. The figure shows the advantage of
a shared memory structure compared to a message passing
NoC. The Argo NoC has a high fixed roundtrip overhead,
which is amortized with longer messages. Argo’s fixed
overhead for setting up a message to be passed over the
channel is in the range of 200 clock cycles. Therefore,
with two word bursts, the average per word cost is around
106 cycles, falling to 62 cycles with four word bursts. In
contrast, the SSPM’s overhead is a fixed 34 cycles when
no cores are using extended time slots, regardless of the
burst size. We expect that the setup code for the Argo
NoC messages can be optimized if shorter roundtrip times
are needed.

Figure 3b shows the measurements of a complete end-
to-end example: A core in a computing pipeline works on
some data and moves it to the next core in the pipeline.
We model in our synthetic benchmark the cost of the core
communication, which consists of a local data move, the
data transfer (or notification in the SSPM case) to the
receiver core, local data movement in the receiving core,
and acknowledgment to the sender. The data movement is
between a local working scratchpad and either the SSPM
or the Argo NoC scratchpad. We ignore what work a core
would do to the data since we are only interested in the cost
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Figure 4: Interprocessor communication measurements with multiple channels per core.

of communication. In our test, the cores do no work. The
figure shows the cost per word for the Argo NoC versus our
SSPM. We can see that both solutions scale with larger
burst sizes up to a limit where pure communication cost
per word dominates the measurement. With the SSPM
we reach the limit at around 20 clock cycles, which results

from the cost of one write and one read access to the SSPM.

The Argo approach a limit of 32 clock cycles per word for
the default all-to-all schedule and a single header word
overhead per 2 words of data. The results show that the
SSPM is slightly more efficient at message passing than
the Argo NoC when only one channel of communication is
active for each core.

However, the SSPM hardware implementation does not
scale as well as the Argo NoC. With an increase in core
count the SSPM will struggle to meet timing constraints in
the synthesis. However, the results show that it can afford

to have a few more pipeline stages and still be faster than
the Argo NoC.

5.4. Multiple Channels

The SSPM needs to share its bandwidth between all
active channels, regardless of their number and layout.

On the other hand, the Argo NoC supports a fixed
bandwidth between all core pairs. Therefore, when commu-
nication channels are from one to many cores or many to
one core, the NoC has the same bandwidth per channel as
it has in a one to one situation, making the total bandwidth
higher. The local scratchpad is not a limiting factor in
these cases, as its access time is too low to affect the NoC’s
bandwidth.

Figure 4a and Figure 4b show the same end-to-end exam-
ple as before, but with multiple channels. The results are
clock cycle per word. Figure 4a shows one core is sending
to two receiving cores. We see that for both, our solution
and when using the NoC, the amortized cost per word is

lower than the single channel shown in Figure 3b. The
SSPM is still faster than the NoC for all burst sizes and
reaches double the bandwidth as in the single channel case.
In Figure 4b, however, we see the cost per word when a
core is sending to four receiving cores simultaneously. For
burst sizes of 8 or higher, the NoC becomes as fast as the
SSPM or up to 40% faster when the burst size is 16 words.
The same holds when simultaneously sending to more than
four cores.

It is worth noting that the SSPM’s bandwidth is com-
pletely utilized in these benchmarks, being a maximum of
one word per 10 clock cycles per core. Figure 5a shows the
cost of sending a word in 64 and 256 word bursts when
sending to between one and eight cores. For the SSPM,
sending to just one core requires about 20 cycles; 10 for the
sender to write, and 10 for the receiver to read. Sending to
two cores drops the cost to half. After the sender spends
10 cycles sending to the first receiver, the first receiver will
read the message while the sender is sending to the second
receiver. Therefore, when the sender starts over, the first
receiver would have already acknowledged the previous
message. Sending to more than two cores does not increase
efficiency, as the sending core cannot write to the SSPM
faster than one word per 10 cycles. This is an inherent limit
to the bandwidth of one-to-many communication using the
SSPM.

This is not the case for the Argo NoC; the bottleneck
when sending to multiple cores is the sending core itself. If
the NoC was the bottleneck, we would expect the cost per
word to halve when sending to two cores compared to one,
be reduced by a third when sending to three compared to
two, fall by a quarter between three and four, etc. However,
Figure 5a shows that between one and two cores the cost
is reduced by 50%. Likewise, between two and three it is
reduced by 33%. Sending to any more cores simultaneously
does almost not change the cost per word. The potential
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Figure 5: Parallel channels.
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Figure 6: Results with synchronization traffic for the SSPM.

bandwidth of the Argo NoC is therefore not completely
utilized, as the sending core’s copy-loop limits that perfor-
mance. This could either be caused by the core itself being
too slow, or by the bandwidth between the core and its
local NoC scratchpad. Increasing the performance of the
true culprit is the only way to unlock more of the NoC'’s
bandwidth.

As the last bandwidth experiment, we explore true par-
allel independent channels. Figure 5b shows the result of
the same end-to-end example with between one and four
cores and sending to between one and four receivers. This
is different from the previous figures in that each sender is
only sending to one receiver. The figure shows that SSPM
is more efficient than the NoC like we saw with only one
channel. This is because the TDMA schedule effectively
has those four parallel channels since each core can read or
write once in a round.

It has to be noted that with a relative low core count
a simple bus (or on-chip multiplexed arbitration) is more
efficient than a NoC. With a higher numbers of cores we
assume that a NoC solution provides better scalability. We
plan as future work to port the T-CREST platform to a
high-end FPGA platform where we can experiment with
up to 64 cores.

5.5. Synchronization Support

In this subsection, we explore the difference between the
two version of synchronization support with an extended
access slot for atomic memory operations. Figure 6 shows
the effects of extended time slot traffic on the performance
in each of the SSPM implementations. The values are the
averages of 1000 measurements.

Figure 6a shows the average execution time of a write to
the SSPM while other cores are executing extended time



slot requests. We see that for the single slot implementation,
the number of cores performing extended time slot traffic
only has a slight influence on the write time. For more
requests to the extended time slot, the TDM round is just
slightly lengthened. Therefore, the influence of normal
memory operations is minimal and bounded. For the multi
slot access, the arbitration round is considerably increased
and we observe a linear increase of the access time.

Figure 6b shows the average execution time of an atomic
locking sequence, which uses extended time slots. We see
that for both implementations the time to acquire a lock,
which is assumed to be free, increases linearly with traffic,
though the single slot implementation’s execution time
increases much faster than the multi slot’s.

We see from these results that the choice of implementa-
tion should be on the basis of expected use case. The multi
slot SSPM is superior in scenarios where many atomic op-
erations are needed, while the single slot implementation
should be used for scenarios where atomic operations are
much rarer than normal memory operations.

From these results, we can also envision another design
alternative: splitting the SSPM into two memories: one for
normal data and one just for synchronization support. The
latter one can then be used in multi slot mode for locks
to protect data allocated in the normal shared scratchpad
memory.

5.6. Reproducing the Results

As we are working in the context of an open-source
project, it is relatively easy to provide a description of
how to reproduce the presented results. We think that
this possibility to (relatively) easy reproduce our presented
results gives our contribution a stronger creditability.

The T-CREST project is open-source and the README!
of the Patmos repository provides a brief introduction how
to setup an Ubuntu installation for T-CREST and how to
build T-CREST from the source. More detailed installation
instructions are available in the Patmos handbook [19].

The T-CREST setup supports as a default target the
DE2-115 FPGA board,? which we used for the implemen-
tation and evaluation. Although, the SSPM is independent
of the FPGA type.

The implementation of the SSPM is available in the mas-
ter branch of the T-CREST repositories. The hardware
itself is in the Patmos repository. For the setup of the multi-
core platform Aegean has been changed accordingly. The
SSPM is included in the default build for the multicore. For
the evaluation we used the 9-core setup of T-CREST. The
implementation of the SSPM itself is open source and in-
cludes a description on how to build the concrete multicore
with the SSPM and how to run the benchmarks. Those in-
structions how to build and evaluate the SSPM can be found
in the README at: https://github.com/t-crest/
patmos/blob/master/c/apps/sspm/README.md.

1https ://github.com/t-crest/patmos
2 Available from: http://de2-115.terasic.com/

6. Conclusion

In this paper, we presented a solution for time-predictable
communication between processor cores on a multicore
processor. A shared scratchpad memory with synchro-
nization support provides support for the data exchange
via the memory and protection of that shared data with
the synchronization support. The synchronization support
is implemented by bus locking using extended time slots
of the time-division multiplexed arbiter. This extended
time slot allows for implementing atomic operations on a
processing core without further modification needed. Us-
ing time-division multiplexing for the access to the shared
scratchpad memory provides a time-predictable communi-
cation solution for hard real-time systems. The worst-case
execution time for operations in the extended time slot
can be bounded and therefore supports time-predictable
locking.
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