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Abstract

Modern embedded and cyber-physical systems require every day more perfor-

mance, power efficiency and flexibility, to execute several profiles and function-

alities targeting the ever growing adaptivity needs and preserving execution

efficiency. Such requirements pushed designers towards the adoption of hetero-

geneous and reconfigurable substrates, which development and management is

not that straightforward. Despite acceleration and flexibility are desirable in

many domains, the barrier of hardware deployment and operation is still there

since specific advanced expertise and skills are needed. Related challenges are

effectively tackled by leveraging on automation strategies that in some cases, as

in the proposed work, exploit model-based approaches.

This paper is focused on the Multi-Dataflow Composer (MDC) tool, that in-

tends to solve issues related to design, optimization and operation of coarse-grain

reconfigurable hardware accelerators and their easy adoption in modern hetero-

geneous substrates. MDC latest features and improvements are introduced in

detail and have been assessed on the so far unexplored robotics application

field. A multi-profile trajectory generator for a robotic arm is implemented over

a Xilinx FPGA board to show in which cases coarse-grain reconfiguration can

be applied and which can be the parameters and trade-offs MDC will allow users

to play with.
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1. Introduction

Embedded system scenario has dramatically evolved in the last decades.

Systems became ultra connected, bringing us to the era of Internet of Things.

Then they started to massively interact with processes, humans and environ-

ment, becoming Cyber-Physical. Technologically speaking, there is not a stan-

dard template architecture for Cyber-Physical Systems (CPS), but designers

are often requested to cope with complex evolving scenarios where multiple and

distinct behavioral modalities have to be guaranteed. This implies that perfor-

mance requirements may not be treated as fixed once and for all, and designers

cannot base system design and deployments on always identical and predicable

behaviors. CPS are required to be flexible to changeable functional (F) and non-

functional (NF) requirements, being able to reconfigure their architecture and

processing set-up according to environmental changes or unpredictable human

requests, which implies the correct dynamic management of varying workloads

and performance objectives.

Heterogeneity and adaptivity became then extremely appealing and desir-

able to address the challenging design and management of CPS. On the one

hand, common single- or multi-core architectures are no longer capable to fulfill

the demand for high efficiency, intended as resource, consumption and time in

general, required by some applications, as the latest video coding standards,

or by some execution contexts, like security or health related image and video

processing. At this purpose, alongside software cores, dedicated logic to process

more efficiently such applications, when required, can be exploited in CPS, re-

sulting thus in heterogeneous platforms. Nevertheless, enhanced capabilities do

not come for free: dedicated hardware design requires specific skills, different

from the common software ones. On the other hand, adaptivity can be granted

by leveraging on reconfiguration. Nevertheless, while in software reconfigura-

tion generally means programmability and it is easily supported, in hardware
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Figure 1: Designing Cyber-Physical Systems: possible solutions to known problems.

this is not the case since execution efficiency and flexibility are colliding require-

ments, which tend to further complicate both design and management of the

heterogeneous substrate. Design and management effort is a well known issue

of complex systems development, and can certainly be considered as the third

major challenge in CPS deployment. Ideally, shortening time to market is a

must to obey in the ICT world and it has historically been solved leveraging on

models, to abstract away unnecessary details during the different design phases,

and on design automation, which is favored by models and by the adoption of

component-oriented design methodologies.

Figure 1 graphically summarizes the described CPS challenges and how they

have been addressed in our studies: high performance by means of hardware

acceleration, adaptivity and flexibility by means of hardware reconfiguration

and, last by not least, time to market and minimization of required designer

effort/skills by means of model-based design and programmability support for

the proposed reconfigurable hardware accelerators. Our investments on defining

3



a broad design environment for hardware accelerators is certainly aligned with

the huge effort that big players on the market, as Xilinx, Intel, and Cadence,

are dedicating in new instruments for hardware acceleration support [1, 2, 3].

On top of that, we have been focusing on reconfigurable hardware architectures

since they have all the potentials to tackle the CPS adaptivity needs.

In general, reconfigurable hardware architectures can be classified in different

ways, one is per granularity. Coarse-grain reconfigurable architectures normally

involve a fixed set of, often programmable, Processing Elements (PE) connected

by means of dedicated routing blocks [4]. These systems maximize resource re-

use among different target applications by multiplexing in time the usage of

PEs to serve different functionalities. Fine-grain reconfigurable platforms are

programmable at the single bit level. Field Programmable Gate Array (FPGA)

platforms belong to this category and they became capable of changing context

while executing, leveraging on Dynamic and Partial Reconfiguration (DPR)

strategies [5, 6]. Despite being appealing with respect to flexibility advantages,

DPR has high costs in terms of 1) energy required to make the context switch,

2) memory usage required to store the configuration bitstreams, and 3) time

to execute the switch. Different studies [7, 8, 9] demonstrated that adopting a

Coarse-Grain Reconfigurable (CGR) approach can suite the scope of providing

flexibility and adaptation to changeable F/NF requirements.

For their high efficiency and lightweight reconfiguration capabilities, CGR

systems are highly suitable bricks for the difficult to be built wall of a CPS, ad-

dressing the need for high performance and flexibility features, where different

behaviors have to be supported. However, the main issue of CGR devices, to-

tally in line with what we have seen for CPS development in general, is the com-

plexity of their design under several aspects: resources mapping, optimization,

hardware design, run-time management. This implies the urgency of developing

automated methodologies for their design and management. The same world

big players offering support for hardware acceleration do not provide straight-

forward support for CGR hardware solutions. In literature, this lack has been

addressed by research works proposing automated and semi-automated strate-

4



gies [10, 11]. In particular, in [12] the Multi-Dataflow Composer (MDC) has

been introduced to provide design automation for CGR accelerators. Acceler-

ators, basically custom IPs for Xilinx environments, are automatically derived

from dataflow models. Limitations in terms of system integration capabilities

were still experienced in [12] and have been overcome by the present work, as

detailed below.

1.1. Contribution of the Work

The contributions of this paper, and more in general what is new in the

MDC tool with respect to [7], are reported hereinafter.

1. The tool and its baseline and advanced features for the first time are

available open source, and are presented all together in a comprehensive

manner.

2. The coprocessor generator, MDC system integration advanced feature,

has been made fully compatible to Xilinx Vivado Design Suite to pro-

vide straightforward system integration, and it has been substantially en-

hanced:

• it is now supporting a largely used host hard-core, the ARM, along

with the previously supported Xilinx proprietary soft-core, the Mi-

croBlaze;

• it is now supporting a largely used system bus, the ARM AMBA

AXI4, drastically increasing the number of compatible potential tar-

get platforms, and letting it possible to provide more efficient co-

processor interfaces by exploiting different available bus protocols

according to the nature of the transmission (control or data);

• it is now possible to adopt a Direct Memory Access (DMA) engine

to relieve the host processor from the burden of taking care about

data transfers;

• it is now providing TCL scripts to have faster and simpler system

integration, delivering real ready-to-use CGR hardware accelerators.
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3. The tool has been assessed on a completely new application scenario,

robotics that is far away from the usual image/video processing scenarios

where MDC proved its capabilities and potentials before.

4. The model-based approach followed within MDC made it suitable for the

integration with other tools, resulting in a more complete and powerful

CPS design and management support.

1.2. Structure of the Work

The rest of the paper is organized as follows.

• Section 2 describes the background of the MDC tool and of its features,

from baseline to advanced ones, providing a brief state of the art for each

of them.

• Section 3 gives an overview of the MDC tool and of its features, with

emphasis on the new functionalities and improvements introduced in this

work.

• Section 4 provides the assessment of the MDC tool, and in particular of

the new functionalities and improvements, within the robotics application

field.

• Section 5 reports an evaluation of MDC tool in terms of usability and

design effort.

• Section 6 shows the enhanced possibilities enabled by the interoperation

of MDC with other existing tools in the context of heterogeneous and

adaptive CPS.

• Section 7 concludes the paper with some final remarks and future direc-

tions.
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Figure 2: Example of a Coarse-Grain Reconfigurable Circuit.

2. Background

Reconfigurable computing refers to a class of digital electronic system archi-

tectures that combine the flexibility typical of software programmed systems to

the high performance of the hardware implementations [4]. Reconfigurable sys-

tems are often called adaptive, meaning that the logic units and interconnects

of the system can be modeled to fit a specific functionality by programming

it at hardware level [13]. However, the more these components are able to fit

the applications requirements, the slower they are with respect to less flexible

component, which can easily turn out to be also smaller in area and less power

consuming [14]. As already said in Section 1, CGR systems provide word-

level reconfigurability and, despite being customizable over a smaller number of

scenarios, they reconfigure faster than fine-grain ones.

In this paper we focus on heterogeneous CGR systems and, more precisely,

on systems able to compute different functionalities, decided at the design time.

All the necessary logic is deployed on the computing substrate at design time,

and common resources are shared, but only one functionality per time can be

enabled. Such kind of accelerators is suitable to be deployed both on FPGAs

and on Application Specific Integrated Circuits (ASICs). Figure 2 illustrates an
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Figure 3: High-level of abstraction for hardware description.

example of a CGR circuit, able to execute two different functionalities. When

the first functionality is enabled, PEs A, B and C are activated through the

proper setting of the multiplexers, placed at the crossroads of the paths, while

the remaining logic is in an idle state. Please note that this does not mean that

it is disabled, but only that it is not involved in the current computation. The

more are the functionalities to be implemented in the CGR circuit, the more is

the design complexity. Indeed, identifying the logic that can be shared among

the functionalities, to minimize both the number of resources and their con-

nections, and properly managing activation paths at run-time are not straight-

forward. Generally speaking, it is possible to model a hardware representation

with a higher-level of abstraction and to transform the model into a circuit by

means of a 1:1 mapping process (see top part of Figure 3). However, this trans-

formation and mapping process, when the number of functionalities increases

and optimizations have to be applied, gets complex and requires automation.

The rest of this section is organized as follows:

• the dataflow Models of Computation (MoCs) are described in Section 2.1
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to understand which kind of inputs MDC users have to master, along with

the features and characteristics that make dataflows appropriate to solve

CGR related design problems;

• the works in literature addressing design issues in reconfigurable and dig-

ital signal processing contexts exploiting dataflow MoCs are discussed in

Section 2.2, in order to position MDC in the plethora of available dataflow-

based state of the art tools for digital design;

• the power issue that CGR systems, and digital circuits in general, have

to face is addressed in Section 2.3. Please note that power/energy is one

of the most important metrics in the design and run-time management

of CPS. Therefore, despite not being among the goals of this paper, for

the sake of completeness, the power related MDC feature and its scientific

roots were worth to be introduced.

2.1. Dataflow-Based Design

Model-based design has been widely studied and applied over the years in

many domains of embedded processing. Dataflow is well-known as a paradigm

for model-based design that is effective for embedded digital signal processing

(DSP) systems [15, 16, 17]. A dataflow can be described as a direct Data-

Flow Graph (DFG) DFG〈V,E〉, where V is the set of vertices of the graph

(the actors) and E is the set of edges representing loss-less, order-preserving

point-to-point connection channels. One of the first formalizations of dataflow

models has been presented by Lee et al. [18] with the Dataflow Process Net-

works (DPNs) illustrated in Figure 4. The actors are abstract representations

of PEs that encapsulate their own internal state and asynchronously concur to

the whole computation. The communication between actors is based on the ex-

change of sequences of atomic data packets called tokens. This communication

is asynchronous, since it is driven by the production and consumption of tokens.

Once triggered for processing (fired), actors execute a sequence of steps called

actions that can result in: (1) the consumption of one or more input tokens;
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Figure 4: Dataflow Process Network design example.

(2) the production of one or more output tokens; (3) the change of the actor

internal state.

This model is suitable to manage the concurrency due to parallelism that

one application may intrinsically have. Indeed, thanks to the token mediated

communication policy, race conditions among actors are avoided. Furthermore,

dataflows are highly modular specifications naturally amenable to block dia-

grams; therefore, perfectly fitting to signal processing applications. Actors can

be implemented by any host language able to specify the actions firing rules.

This includes the possibility to specify them also as Intellectual Properties (IPs)

coded in Hardware Description Language (HDL), low-level software actors writ-

ten in C and high-level software actors written in Java. Modularity strongly

favors the code reuse, speeding-up the time to market needed for updating sub-

parts of already existing applications or for modeling new functionalities from

scratch. All these distinctive features make dataflows very suitable for program-

ming highly parallel, also heterogeneous systems, like multi-processor systems

on chip or CGR arrays.
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2.2. DSP-oriented Dataflow-based Tools

Due to their distinctive features, dataflow models are adopted in a wide va-

riety of tools for both software and hardware design. In [19], methodologies

for modeling, implementing and optimizing pipelined hardware component net-

works from a high-level dataflow graph description have been developed. They

offer the possibility of optimizing the design in terms of throughput or resource

consumption. Stefanov et al. [20] present a system design flow, centered around

the exploitation of the Kahn Process Network model, in which an application

written in a subset of MATLAB is mapped onto a target platform composed of

a Central Processing Unit (CPU) and an FPGA in a systematic and automated

way. To realize the flow, they developed and used the COMPAAN and LAURA

tools, to go from an application specification in MATLAB to an implementation

of the application running on the target platform. PREESM is an open-source

Eclipse-based tool that provides dataflow-based methods to efficiently run ap-

plications on a multicore DSP system [21]. PREESM provides the designer

with information on algorithm parallelism and latency estimates, as well as on

system memory requirements. It automatically maps and schedules the applica-

tion, specified as Parameterized and Interfaced Synchronous Dataflow (PiSDF)

MoC [22], over the available PEs, and provides a code generation feature to

transform the dataflow representation into a compilable code.

A substantial work on dataflow-based tools regards the MPEG Reconfig-

urable Video Coding (MPEG-RVC), an initiative to enhance video codecs in-

teroperability through the adoption of dataflow models and of language similar

to C for describing actors, the Caltrop Actor Language (CAL). Most of the tools

around MPEG-RVC leverage on the Open RVC-CAL Compiler (ORCC) [23],

a compilation infrastructure in charge of generating descriptions in several lan-

guages (software, hardware or mixed for co-design [24]) starting from CAL ac-

tors and XML Dataflow Format (XDF) networks. At the moment ORCC is

provided as an Eclipse plug-in written in Java and relies on an Intermediate

Representation (IR) of the DPNs that is still specified in Java. The IR can be

exploited to feed several other tools such as Turnus [25], which offers simulation,

11



profiling and design space exploration capabilities, and Xronos [26], in charge

of providing C code ready to be used in HLS for Xilinx FPGAs. The ORCC

compilation infrastructure, as well as the MPEG-RVC framework itself, is con-

tinuously evolving in order to support new and more advanced features and to

produce more and more dynamic systems.

The CAPH language and related framework represent another recent effort

to generate HDL from a dataflow language [27, 28]. More precisely CAPH

is a toolchain built around a domain-specific language for the specification of

stream-processing applications based on a dynamic dataflow MoC. This latter

is specified through a functional language named Functional Graph Notation

(FGN) [29], allowing a complete description of a dataflow network by means of

purely functional expressions, and resulting in improved abstraction capabilities,

easier wiring description and more efficient errors check.

The Lightweight dataflow (LWDF) is a programming methodology that al-

lows designers to systematically integrate and experiment with dataflow mod-

eling approaches in the context of existing design processes [30]. LWDF is

“lightweight” in the sense that the programming model is designed to be min-

imally intrusive on existing design methodologies and processes. It delivers a

compact set of Application Program Interfaces (APIs) that can be used to in-

corporate advanced dataflow techniques and requires minimal dependence on

specialized tools or libraries.

In none of the literature works dataflows have been used to address CGR

systems development, optimization and management. The only works on this

topic are related to the MDC tool itself that is the object of the proposed work.

2.3. The Power Issue

As said at the beginning of this section, CGR systems execute different

functionalities, multiplexing resources in time. The logic that is not involved in

the currently running computation is in an idle state and, necessarily, uselessly

consuming power. In digital systems, power consumption can be divided onto

two main contributions: static and dynamic (see Equation 1). The former is
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always present when the circuit is powered on, since it is due to leakage currents

(Plkg). The latter is dissipated only when logic transitions occur, so that it is

related to the switching activity during the system execution.

Ptot = Pstatic + Pdynamic (1)

Several techniques (clock gating, multi-frequency, operand isolation, multi-

threshold, multi-supply libraries, power gating, etc.) can be applied to reduce

power consumption and, in some cases, they are automatically implemented by

commercial synthesis/place-and-route tools.

Clock gating is a really popular technique that consists on shutting off the

clock of the unused synchronous logic, reducing the dynamic power consumption

due to the clock tree and to sequential logic up to the 40% [31]. Clock gating has

been deeply employed for more than 20 years [32, 33]. Commercial synthesizer

such as Cadence RTL Compiler (or the more recent Genus) [34, 35], or Synopsys

Design Compiler [36] are able of automatically gating groups of flip-flops when

enabled by the same control signal. At the state of the art, some works focused

instead on the application of clock gating at a higher-level, targeting FPGAs

[37, 38]. In particular Bezati et al. [38] presented an extension of a dataflow-

based High-Level Synthesis (HLS) tool, Xronos, to selectively switch off clock

signal for parts of the circuit that are idle due to stalls in the pipeline.

More complex power saving strategies such as, voltage/frequency scaling [39,

40] and power shut-off schemes [41, 42] can be extremely beneficial. Nowadays,

some of the electronic design automation companies offer support for auto-

matically integrating low power techniques, such as clock gating, dynamic volt-

age/frequency scaling or power gating, but this is mainly a specification support

and most of the job is still manually done by designers who have to define the

power format file [43, 44]. This process can be error prone and time consuming,

and also not easily applicable to automatically generated CGR systems, as the

ones considered in this paper.

Recently some works focused on the application of power saving method-
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ologies, automatically generating a power format file. In [45] authors present a

SCPower extension that allows to inject power specification into synthesizable

hardware designs in SystemC language, providing the automatic generation of

the Unified Power Format (UPF) file, compatible with the Synopsys environ-

ment. However, this work focuses more on enabling power-aware verification of

SystemC designs. Qamar et al. [46] present a methodology that considers the

application of clock and power gating techniques to the register transfer level

(RTL) systems generated automatically by HLS, using SystemC code. At high-

level of abstraction, they specify the power intent, to generate the Common

Power Format (CPF) file, compatible with Cadence tools, to implement the

power gating. However, this work still requires hand-work. Indeed, it mainly

moves the definition of the power intent from RTL level to higher-level, specify-

ing it through the insertion of pragma into the SystemC code. Furthermore, the

logic to be switched off through power saving techniques is not automatically

identified. To automate power-management specification, Macko [47] proposed

another method, which requires as input a system functional model in Sys-

temC and electronic system level simulation results. The output is an enriched

system model, which includes the power-management specification using Sys-

temC/PMS. However, this method is limited to SystemC high-level description,

and is not applicable to CGR systems.

3. The Multi-Dataflow Composer Tool

This section describes the Multi-Dataflow Composer 1 that, as already said,

is an open-source automated tool for the generation and management of Coarse-

Grain Reconfigurable (CGR) multi-functional architectures. MDC is meant to

address the difficulty of mapping a set of different applications onto a CGR

architecture [48, 49], combining together a set of input dataflow specifications

describing the desired system behaviors. MDC is capable of identifying the ac-

1Available on GitHub: https://github.com/mdc-suite/mdc
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tors that can be shared among the input dataflow specifications and applies a

datapath-merging problem-solving algorithm to generate a CGR hardware sub-

strate [10]. The baseline MDC approach is target and technology independent,

indeed the CGR circuits it generates can be implemented on FPGA or ASIC,

with any tool for digital design. However, some of MDC features are target or

technology dependent. Figure 5 illustrates the four main MDC components:

Power Manager 

Baseline MDC Core 

Structural Profiler 

C
o

P
ro

ce
ss

o
r 

G
en

er
a

to
r 

 

Figure 5: Multi-Dataflow Composer tool components

• Baseline MDC Core - (Section 3.1): performing dataflow-to-hardware

composition, by means of datapath merging techniques [50]. The base-

line MDC core generates a CGR datapath that can be implemented on

both FPGA or ASIC.

• Structural Profiler - (Section 3.2): performing the design space explo-

ration of the implementable multi-functional systems, which can be de-

rived from the input dataflow specifications set, to determine the optimal

CGR substrate according to the given input constraints [10]. This feature

is available for ASIC implementations only at the moment.

• Dynamic Power Manager - (Section 3.3): performing, at the dataflow

level, the logic partitioning of the substrate to implement at the hardware
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level a clock gating or power gating strategy, and system modelling [10].

The MDC power saving can be applied to both FPGA or ASIC, when

the clock gating is chosen, while it can be applied only to ASIC when the

power gating is involved.

• Coprocessor Generator - (Section 3.4): performing the complete dataflow-

to-hardware customization of a Xilinx compliant multi-functional acceler-

ator that can be either loosely coupled or tightly coupled to the main

processor, according to the processing needs. Drivers and scripts for fast

system integration are also automatically derived. This feature will be

deeply discussed in the related section being one of the main contribu-

tions of this work extending what was presented in [12].

3.1. Baseline MDC Core

The core functionality of MDC tool is in charge of mapping a set of dataflow

specifications onto a CGR substrate, automating the mapping process while

minimizing hardware resources. This issue is known in literature as the datapath

merging problem [50]. MDC solves it by exploiting two different iterative merg-

ing algorithms: (1) a heuristic algorithm [10], or (2) Moreano’s algorithm [51].

The tool is designed to be connected to higher-level utilities by means of

an adequate front-end, in charge of parsing the high-level descriptions of the

datapaths to be combined. In this way, relying on the chosen front-end, MDC is

able to process any type of DFG. MDC has been coupled with different dataflow-

based tools, such as ORCC [23], CAPH [27] and Synflow [52]. In this manuscript,

the coupling between ORCC and MDC, and the DPNs, expressed as XDF files,

are used to illustrate MDC features.

Figure 6 shows an overview of the coupled ORCC-MDC design flow. Start-

ing from the DPN models of the functionalities to be implemented, three major

steps are required to generate the HDL specification of a multi-functional recon-

figurable datapath: 1) input DPNs parsing; 2) multi-dataflow generation; and

3) generation of the HDL description of the CGR hardware architecture.
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Figure 6: Multi-Dataflow Composer tool: an overview.

ORCC parses the input DPNs, along with their actors, and translates each

of them into a DFG Java Intermediate Representation (IR). During the parsing,

ORCC explodes non-atomic actors (composed of a sub-network of actors), flat-

tening the input DPNs. As depicted in Figure 6, ORCC provide several IRs, one

for each input DPN. Then the MDC front-end leverages on the IR translations to

assemble a single multi-functional dataflow network (Multi-flow IR in Figure 6).

During this phase, MDC front-end keeps trace of the system programmability

through the Configuration Table (C TAB in Figure 6). Reconfiguration is im-

plemented by multiplexing resources in time. Ad-hoc low overhead switching

modules (Switching Boxes - SBoxes) are placed at the crossroads between the

different paths of data and driven by dedicated Look-Up Tables (LUTs), whose

content is defined according to the Configuration Table. Once the input DPNs

have been merged, the MDC back-end creates the hardware description (CGR

HDL in Figure 6), mapping each actor onto a different PE. Even though MDC is

coupled with ORCC, the generated CGR hardware is not restricted to the RVC-

CAL communication protocol. Indeed, MDC takes as input an XML file that

describes communication protocol between PEs (protocol in Figure 6). Thus,
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MDC is actually able of considering a dataflow network as generic graph, where

communication among PEs can be managed with or without First-In First-Out

(FIFO) connections, and where the PEs can even be purely combinatorial. The

HDL description of the PEs are passed as input to MDC, together with any

other necessary module (e.g. FIFOs, fanouts, memories, etc.) within the HDL

components library (see Figure 6) that can be manually written or automatically

created by HLS tools. In the tool flow shown in Figure 6, the HDL component

library is created by an ORCC backend. Please note that the figure reports on

the original MDC baseline core composition. Currently the ORCC backend for

HDL code generation has been dismissed. The HDL components library, when

automatically generated, is normally created in our designs either with CAPH

or Vivado HLS.

In the current HDL implementation, SBoxes are combinatorial multiplexers;

therefore, no dedicated FIFO buffers are inserted with the SBox units. Nev-

ertheless, the FIFOs of the upstream/downstream actors have to be managed.

Sbox 1×2 units, inserted to split a path of data, require one FIFO for each out-

going connection. In the case of Sbox 2× 1 units, inserted to access a common

shared actor, the FIFO buffers are placed before the SBox along the incoming

connections. Since the SBoxes are fully combinatorial and the FIFO buffers al-

ways belong to the other actors, the well known dataflow problem of the FIFO

buffers optimal sizing does not affect the MDC merging process. Input DPNs

have only to be properly sized before the MDC execution.

3.1.1. Step-by-Step Example

In order to clarify the baseline MDC core functionality Figure 7 illustrates,

through a step-by-step example, the iterative datapath merging process of the

heuristic algorithm, that derives the reconfigurable multi-functional architec-

ture. It considers an example with three different DPN specifications (α, β

and γ), and the generated output is the HDL description of the CGR archi-

tecture. At first ORCC parses the input DPNs, flattens the hierarchical actors

and builds the corresponding IRs. In particular β is already flattened, being
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Figure 7: Baseline MDC Core: a step-by-step example.

composed of atomic actors only, while the actor H of α and the actor J of γ en-

close a sub-network each, and are flattened before proceeding with the merging

process.

After parsing the input DPNs, MDC starts the iterative merging process.

MDC front-end analyses the IRs in pairs to determine which actors can be

shared between the two considered networks. Identical actors are shared in the

output IR by introducing dedicated switching elements, used to fork (Sbox 1×2)

or re-join (Sbox 2 × 1) the path of data. It is important to notice that for N

input IRs, N-1 iterations are required to complete the merging process and, in
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the worst case scenario, the process can end up with N-1 cascaded SBoxes to

access a PE shared by all the N input DPNs. In the considered case with only

three input networks, two iterations are required. In the first run, the merging

algorithm identifies actors A and C as identical among α and γ, so it inserts two

SBoxes. Then, in the second run, the algorithms identifies actor C as identical

among the previous generated multi-flow IR and β; thus, only another SBox

is inserted. During each iteration MDC assigns an identification value to each

network and, for each of them, keeps trace of the right selector values to be

assigned to each SBox, updating the C TAB.

At last the MDC back-end generates the CGR HDL, mapping the different

actors of the multi-flow IR over the PEs provided within the HDL components

library. The control signals of the physical SBoxes are generated by the LUT

module, whose content depends on the final C TAB produced by the MDC

front-end, that guarantees the computing correctness of each input functionality.

3.2. Structural Profiler

In the adopted iterative merging algorithm MDC processes two networks at

a time. Since SBoxes are combinatorial elements, a long chain of SBoxes could

imply a change into the critical path, that may negatively affect the operat-

ing frequency. Furthermore, an excessive number of switching elements may

overcome the benefits of sharing an actor, causing both area and static power

increment. Therefore, in some cases it would be more efficient to merge only

a subset of the input DPNs. For these reasons, it is fundamental to determine

the (sub-)optimal design specification(s) that have to be merged into the CGR

architectures.

The MDC Structural Profiler analyzes all the possible merging configura-

tions, returning the best ones in terms of area, power consumption and opera-

tive frequency [10]. For each of the different possible DPN merging sequences,

the MDC tool extracts the multi-dataflow DFG as described in Section 3. Then,

for each possible merging configuration, the MDC Structural Profiler computes

an implementation cost, based on a back-annotation of the HDL components li-
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brary coming from area and power consumption estimations of each input DFG.

Therefore, given as M the size of the V set of vertices of the graph (the actors),

area and power consumption are determined as:

Area(DFG) =

M∑
i=1

ai (2)

Power(DFG) =

M∑
i=1

pi (3)

where ai and pi are respectively the estimated area and power of the i− th ver-

tex (actor). Operating frequency is instead estimated as follows. The Structural

Profiler ∀ni ∈ InN (being InN the set of input DPNs) retrieves the correspond-

ing back-annotated Critical Path (CP, that is the maximum combinatorial delay,

responsible of the maximum achievable operating frequency of the circuit), CPi,

and defines CPstatic = max(CPi) as the CP of the non reconfigurable system

configuration (with all the given DPNs in parallel). Then it identifies the longest

cascade of SBoxes (seqSB) within the considered multi-dataflow DFG, that is a

combinatorial path since SBoxes are purely combinatorial. Given the number of

SBoxes (NS) that compose the cascade seqSB, and given the number of bits of

SBoxes data (b), the CP is given by the empirical Equation 4, where coefficients

f(b) and g(b) are technology dependent.

CP seqSB = f(b) ∗ ln(NS) + g(b) (4)

The CP of the multi-dataflow DFG, responsible of its maximum achievable

frequency (Freq(DFG)), is then calculated as the maximum value between the

original CP (CPstatic) and the CP due to the merging process (CP seqSB).

According to the obtained Area(DFG), Power(DFG) and Freq(DFG), the

different possible merging configurations are ranked and optimal solutions, un-

der the different considered metrics, are identified. As already mentioned be-

fore, the structural profiler feature is currently available only when ASIC target

technology is considered. For a deeper description of MDC Structural Profiler,

together with a step-by-step example, please refer to Palumbo et al. [10].
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3.3. Dynamic Power Manager

In a CGR system all of the logic necessary to compute the different func-

tionalities is instantiated in the substrate and the configurations are enabled by

multiplexing resources in time. When a specific functionality is executed, the

rest of the design, that is not involved in the computation, is in an idle state. As

seen in Section 2.3, several techniques can be applied to reduce power consump-

tion and, in some cases, they are automatically implemented by commercial

synthesis/place-and-route tools. However, most of the available strategies still

require designers to identify the logic to be switched-off and, in some cases, also

to specify the power intent files (either UPF or CPF).

Given the fact that unused resources, in an MDC compliant CGR architec-

ture, can be determined at design-time for any given configuration, it is possible

to divide all the resources into sets of disjointed Logic Regions (LRs), composed

of resources that are always active/inactive together, and reduce their power

consumption by applying power saving techniques.

MDC exploits the intrinsic modularity of the dataflow models to automati-

cally identify the minimum set of LRs by applying an identification algorithm

that acts at the specification level (See Algorithm 1 in Palumbo et al. [10]). The

given dataflows are analyzed to identify and group together the actors active/in-

active at the same time within homogeneous logic sets. On the MDC Graphical

User Interface (GUI) users can choose to enable or not a power-saving strategy.

3.3.1. Clock Gating

MDC exploits the identified LRs to implement the clock gating technique

that reduces the dynamic power: when a LR is not working, its clock can be

turned off to limit the switching activity of the design and, in turn, its power

dissipation [10]. MDC is able to automatically implement clock gating for either

ASIC or FPGA targets. When ASIC target is selected, MDC provides AND

gate cells that are applied directly on the clock to disable it. Otherwise, if

FPGA is selected, MDC instantiates, for each LR to be gated, a BUFG cell. In

the second case, MDC guarantees compatibility with Xilinx design environment
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and boards only. Targeting FPGAs, the number of BUFG cells available on

the board is limited. If the number of identified LRs exceeds the amount of

available BUFG cells, MDC adopts an algorithm (see Algorithm 2 in [10]) to

reduce the number of gateable LRs.

3.3.2. Power gating

The clock gating acts on the dynamic power. However, as transistors get

smaller, it is no longer possible to neglect the contribution of the static power.

One of the most popular techniques to reduce the consumption of static power

is the power gating. The main idea behind it is the same as the one of clock

gating: when a portion of the design is not involved in the computation, it

can be switched-off, by means of a sleep transistor. As the clock gating, the

power gating can be applied to the LRs identified by MDC, as demonstrated

in [53]. However, clock gating can be handled almost easily during the design

and implementation process; while power gating is a more invasive technique,

since it requires the insertion of several extra logic to handle the inter-block

communication and the powering down/up transitions.

Firstly, it is required the insertion of the sleep transistors (or power switches)

between the gated region (or power domain) and the main power supply to selec-

tively switch on/off the power supply of the region. However, this is not enough

to handle the correct power-down/up sequence, which includes also the isolation

of signals from the shut-down domain. The power domains to be powered-down

have to be isolated before power is switched off, and have to remain isolated

until the power is again totally on. The isolation logic is typically used between

the powered-down region and the powered-on ones, to avoid the transmission

of spurious signals in input to powered-on cells. In certain cases, the state of

registers needs to be maintained to guarantee the proper operation of the sys-

tem, when the regions are powered-on. For this purpose, state retention logic

has to be adopted. Retention cells typically have a low power consumption

shadow register, connected to the main power supply, where the state of the

main register is saved when the corresponding region is powered-down.
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All this additional logic can be manually inserted by the designers in the RTL

architecture or through a power format file. Manual definition is highly error

prone: it requires modelling the impact of power during simulation and pro-

viding multiple definitions for synthesis, placement, verification and equivalence

checking [54]. A power format file allows designers to specify the power intent

early in the design and without any direct modification of the RTL code. The

two most commonly used low power flows are the UPF [43] and the CPF [44].

In MDC, the CPF is adopted. To apply the power gating, firstly the MDC

Logic Regions Identification algorithm (see Algorithm 1 in [10]) has been mod-

ified to include also the switching modules (SBoxes) of the CGR system that,

being combinatorial, were not included in the regions to be clocked-off (see Algo-

rithm 3 in [10]). At the end of the process, each LR is mapped into a different

power domain. This implies creating, for each LR, a power domain into the

CPF file, defining for each switchable domain also the shut-off condition. In-

stances belonging to each domain are related to the actors that belong to the

corresponding LR. Then, to give the information about the power specification

to the synthesizer, MDC has been extended to automatically generate also the

CPF file. For a deeper explanation of the automatic application of power gating

in MDC, and for step-by-step examples, please refer to Palumbo et al. [10].

3.3.3. Hybrid Clock/Power Gating

The power gating is a technique that can be extremely beneficial in saving

both static and dynamic power. However, as described above, it is a quite in-

vasive technique that requires several additional logic, and blindly shutting-off

the idle logic is not always the best strategy. In some cases the power consump-

tion due to the power saving logic might exceed the amount of power saved

by switching-off the idle logic, i.e. in small idle regions. In other cases, power

gating could turn out to be less effective than clock gating, i.e. in those regions

where sequential logic is predominant. For these reasons, it could be useful

to determine, at an early design stage, which regions may benefit from power

saving application and, also, to correctly identify in advance which techniques

24



should be used in each of them individually.

To overcome the limits of a blindly applied unique power management strat-

egy, in MDC it has been adopted a power estimation flow capable of charac-

terizing, at a high-level of abstraction, the LRs identified by the MDC power

extension, and to estimate power and clock gating overhead before any physical

implementation. The estimation is based on two sets of models that determine

the static and dynamic consumption of each LR when clock gating or power gat-

ing are applied. The proposed models are derived after a single logic synthesis

of the baseline CGR system generated by MDC, carried out with commercial

synthesis tools from the analysis of the power reports obtained after netlist

simulation [55, 56].

3.4. Coprocessor Generator

MDC tool was already able of automatically composing, synthesizing and

deploying runtime reconfigurable coprocessors. In its first version, generated

coprocessors were compliant with Xilinx ISE Design Suite [12]. In this paper

it is presented the new MDC Coprocessor Generator flow compliant with the

Xilinx Vivado design suite. A detailed discussion of the main differences and

improvements introduced in this work with respect to the previous version of the

coprocessor generator is provided in Section 3.4.4. Figure 8 illustrates the new

MDC Coprocessor Generator flow. MDC generates the multi-dataflow (Multi-

flow IR) merging the input dataflow specifications as described in Section 3

(1). Then, starting from the generated multi-dataflow network, MDC composes

the corresponding CGR core (2). In parallel, it generates also the files and

the necessary logic to embed the computing core into a configurable Template

Interface Layer (TIL) (3). Finally, to easily deploy and use the coprocessor,

MDC provides the Xilinx Vivado scripts to automatically pack the logic into a

processor-coprocessor architecture and the software drivers to ease its use (4).

Several options are available to the user in order to maximize efficiency of

the obtained result. In particular, it is possible to choose:

• the kind of host processor;
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• the processor-coprocessor coupling;

• the adoption of DMA engines.

Each of these aspects impacts on different steps of the coprocessor generation

flow: the TIL generation is affected only by the coupling, while processor, cou-

pling and DMA preferences directly impact on drivers and scripts generation.

In the following we are going to describe more in detail such steps and their

dependency on the user choices.

3.4.1. Template Interface Layer

Generally speaking, coprocessing units can have different degrees of cou-

pling with the host processor. A loosely coupled coprocessor is far from the

processor, it is typically accessible through the system bus and it is affected by

medium/high communication latency for both control and data transfers. A

tightly coupled coprocessor is close to the processor and it often shares with

the processor high-level memories. A loosely coupled coprocessor can be eas-

ily adopted in different contexts, since it is connected to a generic system bus.

On the contrary, it is hard to extend the adoption of a tightly coupled copro-
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cessor to different systems, since it has dedicated links and memory accesses.

MDC supports two different levels of coupling that exploit the AMBA AXI4

communication protocol [57]. Users can choose between:

• memory-mapped TIL (mm-TIL): a memory-mapped loosely coupled co-

processor;

• stream-based TIL (s-TIL): a stream-based tightly coupled coprocessor.

Figure 9 shows the architecture of the mm-TIL whose main blocks are: the

configuration registers bank, a local memory and a front-end or a back-end for

each I/O port. The local memory contains all the data to be processed by the

coprocessor and the computed results. It has to be fully written by the proces-

sor before the coprocessor execution phase and it has to be fully read once the

coprocessor has completed the task. A dedicated address range of the processor

is reserved to the local memory. The memory banks are written through the

AXI4-full (AXI ipif in Figure 9), generally used for high performance memory-

mapped requirements. The configuration registers bank is the entity in charge

of storing the configuration of the coprocessor. The configuration includes the

ID of the kernel (corresponding to the input dataflow) to be executed and the

data number for each I/O port. The data number is the amount of data to be

read/written from/to the local memory. The configuration registers are written

through the AXI4-Lite (AXI lite in Figure 9) interface that is generally used

for simple, low-throughput memory-mapped communication. The front-end is

responsible for the data transfer from the local memory to the reconfigurable

computing core, while the back-end transfers the processed data from the re-

configurable computing core to the local memory.

Figure 10 depicts the s-TIL architecture that leverages on the AXI4-Stream

communication protocol, generally used for high speed streaming data trans-

fers. The configuration registers bank, as in the mm-TIL, saves the coprocessor

configuration. In the s-TIL the front-end and back-end are not present since the

AXI4-Stream interfaces are directly connected to the reconfigurable computing
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core I/O ports. However, in order to properly derive the AXI4-Stream last

signal, it is necessary to insert a counter for each output port.

3.4.2. Driver Specification

At an higher-level of abstraction, the software drivers offer an interface that

masks the system configuration complexity, providing a C function for each

configuration of the CGR coprocessor. Taking care of the processor-coprocessor

communication, such step of the coprocessor generation is affected by the user

choices in terms of processor, coupling and DMA. In particular, the coupling

and DMA change the way data is transferred from/to the processor to/from the

coprocessor. The processor choice also influences such transfers, since the two

admitted possibilities are strongly different:
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1. MicroBlaze is a soft-core instantiated in the programmable logic that offers

strong customization (it can support direct stream communication) at the

price of performance (it is slower, and it has smaller memories with fast

access);

2. ARM is a hard-core present only in some target devices (Zynq-7 family),

capable of delivering strong performance (it is faster, and it has big mem-

ories with quick access), but limited customization (it does not support

direct stream communication).

Listing 1 in Appendix A shows the prototype of the driver top functions

for both memory-mapped and stream-based coprocessors, and for one possible

configuration of the CGR substrate. The driver top functions have two ar-

guments per reconfigurable computing core I/O port, data <port name> and

size <port name>, that are respectively data pointer to load (or store) data to

(or from) an input (or output) port, and the number of data related to that port.

In the considered example there are three ports: in size, in pel and out pel.

It is clear as the interfaces for the two cases, memory-mapped and stream, are

identical. This allows software designer with little knowledge of hardware design

to easily use the generated processor-coprocessor systems, without considering

the underlying processor-coprocessor coupling. Then the body of the function

manages communication between the host processor and the coprocessor (see

Listing 2 in Appendix A). For each I/O port of the reconfigurable computing

core, a configuration word is written into the proper configuration register in

order to make the coprocessor aware of the amount of data expected for such

port (*(config + 1) = size <port name>). Please note that in stream-based

coprocessor this is not necessary for input ports. Then, the indicated amount of

data (size <port name>) for each input port involved in the current computa-

tion is sent to the corresponding local memory or to the input FIFO according to

the chosen coupling, memory-mapped or stream-based (see lines under //send

data port in size comment) and to the fact that DMA engines have to be

adopted or not. At last, the processor can read back the results into the pro-
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cessor from the output ports (see lines under //receive data port out pel

comment). In the case of memory-mapped coupling, the processor needs to

monitor through polling a configuration register where a done flag is stored at

the end of the computation. In the case of stream coupling a done flag is not

necessary, since the processor only needs to evaluate the state of the output

FIFOs.

3.4.3. Coprocessor Deployment

In order to integrate and deploy the peripheral as a standard Xilinx IP,

MDC provides an automatic script for Xilinx Vivado design suite (see Listing 3

in Appendix A). The inputs for the script are the HDL description of the gen-

erated TIL, including TIL submodules (config registers, local memories, front

end, . . . ) and the CGR core modules (add files $hdl files path), any re-

quired HDL library (set property library caph) and the generated drivers

(ipx::add file group -type software driver). The output is the resulting

Xilinx ready-to-use IP comprehensive of software drivers. This means that, once

added to the IP catalog of a certain project, it could be added and manipulated

by all the Vivado common features adopted to develop heterogeneous systems,

such as block design and Software Development Kit export.

MDC also provides another script to instantiate the generated IP into an

integrated processor-coprocessor system, within the Vivado environment (see

Listing 4 in Appendix A). According to the user choice, the host processor

can be a hard-core (ARM processor) or a soft-core (Microblaze); in the con-

sidered example an ARM processor is instantiated (create bd cell -type ip

-vlnv ... processing system7 0). The communication between processor

and coprocessor can be managed either with or without DMA modules. In gen-

eral, the kind and number of DMA modules adopted in the specific integrated

system depend on the processor and on the coupling between processor and

coprocessor. In the considered example, for a memory-mapped communication

between an ARM core and the coprocessor through DMA, the AXI Central

DMA (AXI CDMA) module is instantiated (create bd cell -type ip -vlnv
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... axi cdma 0).

The user choices strongly influence all the integrated system scripts and the

resulting system:

• The kind of processor indeed is playing a role on the logic necessary to

manage stream communication since, in the ARM case, it is not sup-

ported directly and requires additional modules to allow memory-mapped

to stream conversion (AXI-Stream FIFOs or AXI AXI DMA modules).

Besides that, processors impact on the system performance, more pre-

cisely in terms of software execution speed and memory availability.

• The DMA usage allows more efficient data transfers, while introducing

an overhead in terms of resources. Its adoption should then be limited

to those cases where lots of data have to be transferred from/to the host

processor to/from the coprocessor.

• The level of coupling between processor and coprocessor plays a role in

the resource versus performance trade-off, as explained more in detail in

Section 3.4.1. This has also effects on the glue logic necessary to let the

two interlocutors talk together, that is bus systems (AXI Interconnect),

FIFOs and DMAs, when used.

According to the described degrees of freedom, the integrated processor-coprocessor

system can involve several other Xilinx IPs. Table 1 summarizes the kind and

number of additional Xilinx IPs required for each possible scenario. Please note

that the number of such additional IPs is sometimes depending on the num-

ber of I/O ports of the reconfigurable computing core (e.g. the FIFOs for the

stream-based coupling possibilities). Thus, the amount of resources can easily

grow if the dataflow models of the applications to be accelerated have lots of

I/O. In general, the choice in terms of processor, coupling and DMA is depend-

ing on performance and resource requirements, but also on the starting dataflow

models, as we are going to demonstrate in Section 4.
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Table 1: Additional Xilinx IPs, besides the processor and the coprocessor, required for each

possible scenario of the MDC coprocessor generator.

processor coupling DMA additional Xilinx IPs

MicroBlaze mm no AXI4 Interconnect

MicroBlaze mm yes
AXI4 Interconnect

AXI DMA

MicroBlaze stream no
AXI4 Interconnect

AXI4-Stream Data FIFO (1 per I/O port)

MicroBlaze stream yes

AXI4 Interconnect

AXI4-Stream Data FIFO (1 per I/O port)

AXI CDMA (1 per I/O port)

ARM mm no AXI4 Interconnect

ARM mm yes
AXI4 Interconnect

AXI DMA

ARM stream no
AXI4 Interconnect

AXI-Stream FIFO (1 per couple of I/O ports)

ARM stream yes

AXI4 Interconnect

AXI4-Stream Data FIFO (1 per I/O port)

AXI CDMA (1 per couple of I/O ports)
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3.4.4. Main Improvements with Respect to [12]

MDC Coprocessor Generator was firstly introduced in [12]. Substantial im-

provements have been introduced in the current work, resulting from an almost

complete re-engineering of such advanced feature of MDC. The improvements

involve several aspects of the Coprocessor Generator, from technical to compat-

ibility ones. Here, a detailed list of them is provided:

1. the targeted Xilinx design environment has been updated from ISE to

Vivado, leading to big advantages in terms of system integration, being

Vivado the standard de facto for users adopting devices of this vendor;

2. the supported host cores are now two: the Xilinx MicroBlaze soft-core,

already supported in [12], and the ARM hard-core, one of the leading

embedded core architectures worldwide;

3. the supported system buses have changed from Xilinx proprietary Pro-

cessor Local Bus (PLB), for memory-mapped coupling, and Fast Symplex

Link (FSL), for stream coupling, to ARM AMBA AXI4 system bus. These

latter are adopted in target devices of different vendors and providing

several protocols. MDC coprocessors currently supports small register-

oriented memory-mapped transfers (AXI4-Lite), big memory-mapped trans-

fers (AXI4-Full), and stream transfers (AXI4-Stream);

4. the accelerator interfaces have been made more resource efficient since

now configuration and parameters are sent through a reduced memory-

mapped interface (AXI4-Lite) instead of adopting a standard data transfer

(memory-mapped or stream) interface, as occurred in [12];

5. the reconfigurable computing core can now adopt a generic hardware com-

munication protocol (see Section 6.1), specified through a dedicated input

file, and the glue logic to communicate with the system bus (a finite state

machine in the memory-mapped case, simple logic gates in the stream one)

is shaped accordingly (previously, only the RVC-CAL hardware commu-

nication protocol was supported);

6. the adoption of DMA engines has now been integrated in the automated
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flow. In the previous version, it was possible to integrate the generated

coprocessors in systems with DMAs, but designers were requested to man-

ually make the system integration and to provide driver modification to

configure DMAs;

7. the system integration has been now automated through two TCL scripts,

one for packing the coprocessor as a standard Xilinx Vivado IP and the

other for building the processor-coprocessor system, which are directly

processable by the targeted Xilinx Vivado Environment (scripts for system

integration automation were not provided at all in [12], resulting in an

additional effort required to the user especially when coprocessors had

lots of bus interfaces);

8. fostering interoperability among MDC and other complementary tools (see

Section 6 for more details), the MDC system deployment capabilities have

been extended to:

• differentiate inputs of the reconfigurable computing core between

standard dataflow inputs, linked with massive data transfer interfaces

(AXI-Full or AXI-Stream), and dynamic parameters, linked with the

lightweight AXI-Lite interface to serve as knobs for the SPIDER run-

time management (see Section 6.2);

• instantiate Performance Monitoring Counters (PMCs) to keep trace

of interesting events during execution, as well as generating an XML

file with the PMCs info to be passed as input to PAPIFY, a tool

taking care about PMC triggering and data gathering at run-time

leveraging on a standard generic HW/SW interface (see Section 6.3);

• generate a CGR substrate, compliant with ARTICo3 acceleration

slots, thus delivering a multigrain reconfigurable platform by combin-

ing the delivered CGR with the DPR provided by the same ARTICo3

(see Section 6.4).

Please note that most of these improvements, such as compatibility/interoper-

ability ones (1, 2, 3, 5, 8) are not measurable, but they favour the adoption of the
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tool by a wider public or for more complex and complete purposes. Other im-

provements (6, 7, 8), dealing with flow automation, are difficult to be measured

as well, being strongly user-dependent. If the second term of comparison is an

expert hardware designer or a software developer, the evaluated metric would

be completely different. Nevertheless, the benefits of automation are generally

irrefutable. Technical improvements (4, 8) could be measurable, but some re-

sults may be trivial. Adopting AXI-Full or AXI-Stream interfaces, which are

conceived for data intensive transfers, for performing few single data transfers

is by definition worse than opting for minimal AXI-Lite ones. Please note that,

this last improvement on interfaces is overcoming a known issue already pointed

out in [12].

4. Assessment

This section provides an assessment of the latest features introduced in the

MDC tool considering a robotic test case, belonging to a completely new appli-

cation scenario for MDC. To assess such features, the customization possibilities

for CGR accelerators will be shown and analyzed under several aspects.

4.1. Reference Application and Designs Under Tests

In this paper, to demonstrate the usage and potentials of the MDC tool,

the Damped Least Square (DLS) algorithm [58, 59] is adopted. The DLS solves

Inverse Kinematics (IK) problems and, in the present case, is used to imple-

ment the controller of a robotic arm implemented over an FPGA device. Given

the assumption that any robotic manipulator is composed of different parts,

namely: (i) the base, (ii) the rigid links, (iii) the joints (each of them connect-

ing two adjacent links), and (iv) the end effector, to control its movement, it

is possible to compute the joint angles that will bring the end-effector in the

desired position.

The dataflow specification of the DLS we are using as a starting point for our

assessment is depicted in Figure 11. DLS is an iterative algorithm that splits a
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J_Matrix J2_Matrix Min J2Cof_
Matrix Theta

Init FK FiringDLS DataSenderDLS

Figure 11: Hierarchical PiSDF description of the DLS in PREESM. Grey and orange boxes

correspond to the actors and routing blocks (broadcasts) respectively, while the blue pentagon

represents the PiSDF parameter (named iterations).

given trajectory in different sub-sections, each one calculated separately and in

a sequential way. The number of iterations, that is the number of sub-sections

of the trajectory, is chosen according to the tolerance, defined as the error of

the obtained end-effector position with respect to the desired one, and to the

trajectory length. This parameter determines how many times the DLS block in

Figure 11 is executed. In particular, all the tasks belonging to the DLS algorithm

are performed iterations times. Among them, the blocks J Matrix, J2 Matrix,

Min, JCof Matrix enable to obtain a matrix derived from the Jacobian matrix

J, as explained in [58], which is needed to compute the joint space vector in

the last task Theta. The other blocks enable handling input and output data.

Init provides the starting angles of the joints, the desired final point and the λ-

factor, which is used in literature to manage singularities in the workspace. FK

evaluates the end-effector position by using the Forward Kinematics. FiringDLS

handles DLS executions management. DataSender transmits all the computed

angles to the robotic arm. A more detailed description of the DLS algorithm

implementation and its blocks goes beyond the scope of this paper and can be

found in a previous work by Fanni et al. [60].

Starting from the original MATLAB description of the DLS algorithm, we

modelled the above presented PiSDF description in PREESM. Since the Actors

of the PiSDF graph are written in C language, their hardware counterparts
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(described as HDL codes) have been obtained by synthesizing them through

Vivado HLS. From this dataflow we derived two different configurations of the

application, as defined hereafter:

• TOP BL is the baseline (BL) version of the DLS algorithm, implemented

with the following set of actors: J Matrix, J2 Matrix, Min, J2Cof Matrix

and Theta;

• TOP HP is the high performance (HP) version of the DLS algorithm,

implemented with the following set of actors: J Matrix HP, J2 Matrix HP,

Min, J2Cof Matrix and Theta.

A reconfigurable datapath (Reconf ) has been automatically generated by

applying the MDC baseline merging flow to TOP BL and TOP HP. In par-

allel, standalone implementations of the TOP BL (Stand BL) and TOP HP

(Stand HP) configurations have been developed to provide a term of compari-

son for the reconfigurable datapath.

4.2. Datapath Level Results

In this section results related to the above presented datapaths are shown.

Table 2 reports on resource occupancy at actors level and at system level. Ac-

tors level results come from Vivado HLS reports; while, system level ones from

Vivado synthesis reports. Data have been retrieved with an operating frequency

of 100 MHz and targeting a Zynq-7000 device (XC7Z020CLG484). At system

level, Stand BL, Stand HP and Reconf dataflow implementations are compared.

Reconf is capable of executing both profiles of the DLS algorithm, multiplex-

ing actors in time according to the current requirements. As detailed below,

the price to pay for being able to implement several profiles, surfing among

execution trade-offs on a CGR substrate, is certainly a higher resource usage.

As shown in the Table 2, the two execution profiles BL and HP differ only

for J Matrix and J2 Matrix actors: in the BL profile they are present in a

baseline version, while in the HP one they have been replaced with their high

performance version capable of accelerating computation, but employing more
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Table 2: Resource occupancy of the generated reconfigurable datapath and of the involved

actors.

actor/network LUT FF DSP BRAM
profile

BL HP

J Matrix 7051 3852 18 15 x

J Matrix HP 23707 12627 88 17 x

J2 Matrix 1697 986 5 0 x

J2 Matrix HP 2621 1600 11 0 x

Min 1108 579 5 0 x x

J2Cof Matrix 2662 1628 8 2 x x

Theta 2041 1263 5 0 x x

Stand BL 8242 7164 41 8 x

Stand HP 17515 17176 138 7 x

Stand BL + Stand HP 25757 24340 179 15 x x

Reconf 22283 21057 161 14 x x

resources on the FPGA. Please note that J Matrix and J Matrix HP corre-

spond to the most computationally intensive actors and are responsible for the

main resource demand in both cases. Standalone implementations of the two

execution profiles (Stand BL and Stand HP rows) give also an idea of their dif-

ferences in terms of complexity. Of course, being able to execute both profiles,

Reconf is requiring more resources than the isolated, mono-profile, Stand BL

and Stand HP. Considering an additional solution where the two standalone

profiles are put in parallel (Stand BL + Stand HP row) to have a system with

the same execution capabilities of Reconf, resource usage is higher, motivating

than the needs of applying CGR. It is also possible to notice that the stan-

dalone and Reconf systems have an overall resource demand, in terms of LUTs

and Flip-Flops (FF), that is lower than the sum of their actors, since FPGA

slices that are partially occupied by different actors are merged together in the

overall systems to maximize efficiency.
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Table 3 depicts the achieved latency versus power trade-offs on the Reconf

system. Data have been retrieved with Vivado running post-synthesis simula-

tions at 100 MHz. To obtain better power estimations, switching activity gath-

ered during the same post-synthesis simulations has been considered. The table

shows how the baseline BL profile is slower, being able to complete one iteration

of the DLS algorithm in more than 63 us, but consumes a small amount of power,

that is around 0.25 W. The high performance HP profile is nearly twice faster,

concluding the computation of one DLS iteration in about 33 us, while requires

a higher amount of power, 0.27 W. Thus, a trade-off between execution latency

and consumed power is present in the reconfigurable datapath developed with

MDC. Table 3 highlights also the difference between reconfigurable and stan-

dalone systems. In terms of execution latency, being implemented with the same

actors, Reconf in BL profile requires the same time as Stand BL to compute

the considered trajectories. The same occurs for HP profile. Differently from

latency, power consumption varies going from standalone to reconfigurable. In

fact, standalone executions of the two profiles consume less than their execution

on the reconfigurable system, due to the fact that in standalone systems only

the required resources are present. In reconfigurable system, during the execu-

tion of one of the two supported profiles, resources involved only in the other

profile waste power. This contribution could be reduced by exploiting the MDC

Dynamic Power Manager during the Reconf system generation, as explained

in Section 3.3. In this case we intentionally did not use such MDC feature to

highlight the difference. Please also note that, even if MDC Dynamic Power

Manager has not been used, the Reconf system executing BL profile consumes

less than Stand HP system, strengthening the motivation towards the usage of

such a reconfigurable solution.

4.3. Coprocessor/Accelerator Level Results

In this section, the DLS has been used to derive an accelerator for Xilinx

design environments. In particular, according to the possibilities provided by

MDC, four different designs have been derived and assessed:
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Table 3: Trade-off between latency and power for the generated reconfigurable datapath run-

ning with the two execution profiles and for the two standalone designs (tested trajectories 1,

2, 3 and 4 require respectively 250, 200, 100 and 200 iterations). Please note that reconfig-

urable and standalone results in terms of latency are equal for both the considered BL and

HP profiles.

Latency [ms]

task
Reconf/ Stand

BL HP

1 iteration 0.0633 0.0334

trajectory 1 15.83 8.34

trajectory 2 12.67 6.67

trajectory 3 6.33 3.34

trajectory 4 12.67 6.67

Power [mW]

kind

Reconf Stand

profile

BL HP HP BL

total 246 268 171 251

static 122 122 121 122

dynamic 124 146 50 129

clocks 79 79 33 66

signals 12 21 6 21

logic 10 18 4 17

DSP 23 27 6 25

• MM : memory-mapped accelerator with direct management of data trans-

fer by the host processor;

• MM DMA: memory-mapped accelerator with data transfer managed by a

dedicated DMA;

• STREAM : stream accelerator with direct management of data transfer

by the host processor;

• STREAM DMA: stream accelerator with data transfer managed by a ded-

icated DMA.

Each of the considered accelerators can be configured to execute the DLS

algorithm with BL or HP profile. Resource occupancy results come from Vi-

vado implementation report of the whole integrated system (involving acceler-

ator, interconnection system and host processor) targeting a Zynq-7000 device
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(XC7Z020CLG484). Timing results are collected through runs on board of the

integrated systems, with the usage of internal host processor timers in order to

measure the lasting of the different execution parts.

Table 4 depicts the resource occupancy of the considered designs, with a

detail of the main modules involved in such integrated systems. It is possible to

appreciate how the DMA constitutes a quite lightweight additional module for

the MM system (MM versus MM DMA rows), but it is more resource hungry in

the STREAM case (STREAM versus STREAM DMA rows). This is because,

with STREAM communication, one different DMA is required for each couple of

I/O ports. Moreover, from Table 4, it is clear that the STREAM communication

is moving resources from the accelerator to the FIFOs and, if enabled, to the

DMAs necessary to manage communication between the same accelerator and

the host processor. This increase in resource occupancy is justified by an increase

in terms of performance, as we are going to show in the following.

Table 5 depicts the execution times of the designs under test, with a detail

on the isolated contributions coming from different parts of the accelerators

drivers. Such measures have been performed with the accelerators running at

their maximum achievable frequency, that is 113.64 MHz, in order to give a fair

comparison with a full software execution on the ARM host core, that is instead

running at 666.67 MHz. It is possible to see how, as expected, different execution

profiles have similar configuration, loading and storing times, while differ for the

processing contribution, where the HP profile is overperforming the BL one.

Going from one design to another, the configuration and processing time of the

two execution profiles are approximately the same, while the other contributions,

loading and storing times, differ. In the MM cases, these data transfer times are

growing when DMA is adopted within the system. Such behavior is not present

in the STREAM case since memory-mapped to stream conversion is performed

even if the DMA is not used, resulting in similar, and rather higher, data transfer

times. If MicroBlaze host processor had been chosen, we would have had for

the STREAM case the same behavior of the MM one. Obviously, the MM

DMA slowdown is not an expected behavior, since the role of DMA is precisely
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Table 4: Resource occupancy of the different integrated systems involving the reconfigurable

hardware accelerators generated by MDC. Accelerators have been implemented with an op-

erating frequency of 100 MHz.

design module
resource

LUT FF BRAM DSP

MM
accelerator 21214 20646 20 161

total 22203 21868 20 161

MM DMA

accelerator 21183 20652 20 161

DMA 783 991 0 0

total 23951 24233 20 161

STREAM

accelerator 20837 20404 14 161

FIFOs 2128 2372 6 0

total 25792 26570 20 161

STREAM DMA

accelerator 20833 20404 14 161

FIFOs 372 708 9 0

DMAs 3586 33202 29 161

total 31798 33202 29 161
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Table 5: Execution times (tot is total, cfg is configuration, load is input load, proc is process-

ing and store is output store), in terms of the ARM host core clock cycles, of the different

integrated systems involving the reconfigurable hardware accelerators generated by MDC un-

der different execution profiles, and of the ARM host core without acceleration. Accelerators

are driven with their maximum operating frequency, that is 113.64 MHz.

design profile
time [cck]

tot cfg load proc store

MM
BL 40527 948 1352 37388 832

HP 23062 946 1360 19865 844

MM DMA
BL 43309 974 3454 37416 1544

HP 25773 928 3488 19833 1544

STREAM
BL 41918 452 3638 39708 1560

HP 24482 394 3638 22137 1556

STREAM DMA
BL 40606 400 3402 38696 1122

HP 21185 404 3410 23136 1116

ARM N/A 41204 - - 41204 -

to speed up data transfers and relieve the host processor from the burden of

managing them. However, for this specific DLS use case and according to how

it has been modeled in dataflow, due to the limited amount of data, 6 data per

I/O port at maximum, the DMA management overhead is bigger than the time

saved during the data transfer. In summary, for the considered use case, the best

choice is opting for MM solution without DMA. In order to better understand

this point and its relationships with the amount of transmitted data, Table 6

shows loading times of the considered MM accelerators for growing amounts of

data to be transferred, from 16 to 256. Here, it is possible to see the benefits of

DMA adoption: DMA is capable of saving from 29% to more than 86% of the

data transfer time.

From Table 5 it is also possible to compare MM and STREAM designs in

terms of performance. In particular, the tightly coupled systems (STREAM
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ones) are better than MM ones either when DMA is adopted, while without

DMA such difference is not appreciable. Thanks to the different communica-

tion protocol directly connected with the reconfigurable computing core, it is

possible to overlap loading/storing data and processing in the STREAM case.

While data is being sent to one input port of the reconfigurable computing core,

the previously sent data is already under processing; and while data is being

processed, data that have been already processed is under sending from one

output port of the reconfigurable computing core. The advantage provided by

the STREAM designs is however only barely visible and only in the DMA case,

again depending on the characteristics of the accelerated application. In fact, in

front of a very small amount of I/O data, there is a huge amount of processing,

as can be seen by comparing load or store columns with proc ones in Table 5.

Thus, the overlapping between data transfer and processing, that is directly

proportional to the advantages of the STREAM designs, is small.

Lastly, Table 5 is also giving an idea of the acceleration capabilities of the de-

veloped systems, if the ARM row is considered. ARM row reports on the clock

cycles needed by the ARM host processor to run the DLS application. Here, the

source code is the same adopted for the actors synthesis through Vivado HLS.

Of course, being the execution profiles the result of the same Vivado HLS opti-

mizations, in the ARM full software execution there are not different execution

profiles. In terms of speed-up, the BL profile over the different accelerators uses

more or less the same amount of cycles than the ARM meaning that no speed-

up is achieved. The reason to adopt them would be just to relieve the ARM

core from the burden of executing the trajectory computation, letting it free of

performing other tasks. However, when the HP profile is enabled, accelerators

deliver a speed-up that is close to 2x. Please consider that, for the purposes

of this work, a limited effort has been put in optimizing the acceleration itself,

since demonstrating MDC acceleration capabilities is not among the contribu-

tions of the paper. Better exploiting the capabilities of Vivado HLS (e.g. by

adopting more pragmas or by deriving more high performance actors), working

on the model (e.g. by parallelizing the critical actors), and taking advantage
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Table 6: Detail of the input load times of the different integrated systems involving the

reconfigurable hardware accelerators generated by MDC for different data amount.

design data amount time [cck] % vs no DMA

MM

16 1880 -

32 3612 -

64 7132 -

128 14170 -

256 28254 -

MM DMA

16 1344 -28.51

32 1492 -58.69

64 1760 -75.32

128 2468 -82.58

256 3854 -86.36

of the other features of MDC tool (e.g. the dynamic power manager), the user

could achieve even better results and wider trade-offs under all the considered

metrics.

5. Usage of MDC Tool

It is worth to make some considerations also on the usage of MDC in terms

of design time and effort. It has been already discussed that the design of MDC

compliant CGR systems is not straightforward, it is time consuming and er-

ror prone. MDC compliant system composition is application specific and the

interconnection infrastructure is irregular, since MDC does not leverage onto

an homogeneous CGR array. The designer should analyze the input networks,

identify the common resources in the different dataflow specifications, and com-

bine them, keeping trace of the actors that belong to different functionalities to

program the multiplexers properly. MDC speeds-up and simplifies the design of

the CGR datapath, by automatically mapping different input specifications in
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one single reconfigurable substrate, addressing all the above mentioned steps.

Nevertheless, the usage of that substrate requires additional steps. In fact, users

should be capable to pack it in a coprocessor with its own APIs, as we have

seen to access it as a computational resource. Also this system integration step

is time consuming and error prone. Therefore, having a tool capable of go-

ing from the generated CGR datapath to the integrated processor-coprocessor

system, with user friendly drivers to be inserted in the host code, is certainly

beneficial for any potential MDC user.

The effort of designing the dataflow specifications is application specific and

designer specific. This is true for any kind of coding, including imperative one,

since according to the designer skills and to the complexity of the application

the required time could vary a lot, resulting in a hardly quantifiable metric. The

usage of dataflow MoCs forces designers to think in a modular way favoring code

re-use, which has a positive impact on time to deployment, and not preventing

the adoption of the more common imperative code to describe the functionality

embedded by each actor. In fact, actors can be specified with simple C code,

leveraging on standard HLS engines, such as Vivado HLS, for their translation

onto HDL, while designers have only to take care about dataflow network spec-

ification, as additional tasks. As described in Section 2.2, many dataflow-based

tools are available, from optimization and mapping (e.g. PREESM [61]) to HLS

ones (e.g. CAPH [27]). Their combined usage represents for sure a benefit to

solve many different design issues.

Going back to MDC, it is certainly true that users need to specify the appli-

cations through abstract high-level input dataflow representations. Neverthe-

less, having accomplished that, the toolchain takes care of the complete process,

generating all the necessary files to implement a processor-coprocessor system.

In particular, the time necessary for all the MDC steps including parsing in-

put dataflow specifications, merging them, and generating the output files is

in the order of seconds. While the system deployment, which involves open-

ing Vivado and running the TCL files generated by MDC, requires about one
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minute.2 Considering the remaining implementation steps, everything is more

or less automated and designers can leverage on commercial tools, but the re-

quested design time is again application and target dependent. Indeed the time

necessary to synthesize and implement the design, and generate the bitstream,

depends on the size of the target device and on the size of the application to be

mapped over it.

6. MDC in a Bigger Picture

Designing CPS requires acting at different levels of the system, that can

be identified as: 1) Application level, 2) Run-time Management level, and 3)

Architectural level. MDC spans across all of those levels, offering the pos-

sibility of designing the application to be accelerated as dataflow specification

(application level), generating automatically the corresponding multi-functional

accelerator (Architectural level) and providing the necessary drivers and APIs

to manage the accelerator (Run-time Management level). Currently, MDC is

an open-source tool available on GitHub.3.

Many other tools for the design of CPS systems, and their sub-parts, there

exist. They work at the same or at different level of the proposed design flow

and, some of them, are compliant and complementary to MDC functionalities.

Along the years, a huge effort has been put in integrating MDC with some of

these tools to extend MDC applicability and features. The following sections

briefly describe how MDC is currently interfaced with other tools.

6.1. Exploiting High-Level Synthesis

MDC requires the HDL hardware descriptions of the dataflow actors. De-

riving it directly from the dataflow models by means of HLS engines could be

convenient. In literature, HLS is a hot topic and several HLS engines have been

2Timing has been estimated on a laptop with an Intel(R) Core(TM) i7-4500U CPU @

1.80GHz, with 8 GB RAM, running Ubuntu 16.04.
3https://github.com/mdc-suite/mdc
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proposed either from academy (e.g. Xronos [62], CAPH [27], Bambu [63]) and

industry (e.g. Vivado HLS [64], Intel FPGA SDK for OpenCL [65], Cadence

Stratus [66]). In the past, MDC was interfaced with the Xronos HLS engine,

being based on the same dataflow MoC. In spite of benefits in terms of design

time, Xronos adoption lead to a strong limitation: the target platforms were

fixed the ones of one vendor: Xilinx FPGAs. In the CPS context, in which a

support for a wide range of systems is required, this limitation led to the MDC

hardware communication protocol generalization and to the CAPH-MDC inte-

gration. Generally speaking, there is no perfect HLS engine. The efficiency of

the obtained systems is linked to the context of application, and highly depends

on the target device/technology, as well as on the initial specification format

[67]. A novel choice in this sense is CAPH, an open source target independent

HLS engine supporting dataflow models as specification formats, similar to the

MDC ones. CAPH generates generic RTL descriptions for any kind of FPGA

or even for ASIC flows. Thus, MDC has been integrated with CAPH to provide

a generic fully automated CGR flow [68]. This goal required two main actions:

• a CAPH-to-XDF parser has been defined to implement model-to-model

transformations from CAPH dataflows to MDC compliant dataflows [69].

• a generalization of the supported actor-to-actor communication protocol,

originally fixed and compliant with MPEG-RVC actors only, to support

in hardware any user-defined actor-to-actor communication handshake.

Please note that the second bullet allows MDC to be combined with potentially

any HLS tool, also with imperative (non dataflow oriented) HLS engines, such

as Vivado HLS, Intel FPGA SDK for OpenCL or Cadence Stratus.

6.2. High-Level Profiling and Run-time Management

In order to exploit the hardware acceleration provided by MDC in a higher

software-level application, a design flow that combines PREESM, SPIDER and

MDC has been derived. PREESM is a tool capable of scheduling and mapping
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dataflow applications onto multi- and many-core architectures [61]. While SPI-

DER is the run-time simplified version of PREESM, providing software schedul-

ing and memory management during execution [70]. The motivation at the base

of the tool combination was the possibility of offering software reconfigurability

management of PREESM and SPIDER with hardware reconfigurability man-

agement of MDC, basing on their complementary characteristics.

At design time, the proposed integration implies the creation of the appli-

cation graph, conform to a dataflow MoC, and a software task in which the

processing is delegated to the accelerator by using the driver functions available

after the MDC coprocessor generation. This task corresponds to the high-level

dataflow actor that has to be accelerated on hardware. In the run-time context,

SPIDER is capable of configuring the CGR accelerators generated by MDC

to compute their different functionalities, which can be selected dynamically

through dynamic parameters. Depending on the adaptation strategy, SPIDER

schedules and maps, at run-time, the whole high-level application graph com-

posed of software tasks, including those that manage the communication with

the accelerator, and sends these latter to the slave processors, as described in

[71].

6.3. Enabling feedback for self-adaptation: HW/SW Monitoring

When the CPS is requested to be not just adaptive, but self-adaptive, it

is crucial to enable a feedback to communicate the system status to a run-

time manager. To enable such a feedback on the system status, a monitoring

infrastructure able to read both the monitors normally available on standard

CPUs and custom monitors that may be inserted on the hardware accelerator

is necessary. For this reason MDC has been integrated with Papify, to provide

a toolchain able to offer the support in the process of designing, implementing

and managing monitored CGR substrates [72].

Placed between Run-time Management and Architectural levels, Papify tool
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generalizes PAPI4 for embedded heterogeneous architectures [74], offering an

interface to access the performance monitoring information of the different PEs

existing in the target platform. The system generation capabilities of MDC have

been extended to offer the possibility of including accelerator level monitors,

which are PAPI-compliant and can be accessed through Papify. When users

enable the system generation, they only need to ticks the monitor related boxes

in MDC GUI to also enable the automatic instrumentation of the design.

The users need to specify the applications as dataflow specifications, as for

the common MDC features, then the complete process from dataflow to the

processor-coprocessor system is automatically carried out by the tool. The APIs

generated by MDC mask the complexity of the processor-coprocessor commu-

nication, and the support for heterogeneous architectures provided by Papify

masks the access to the monitors.

6.4. New Level of flexibility: the multigrain reconfiguration

Reconfigurable hardware architectures present high performance and flexi-

bility, being an appealing solution to provide run-time adaptivity support nec-

essary for CPS. MDC offers the CGR approach for delivering such architectures.

Another approach, highly adopted at this purpose, is the DPR one. CGR has

lower overhead than DPR but it is in general less flexible. The combination

of these two hardware reconfiguration approaches brings together the best of

both, offering the possibility of achieving different trade-offs between perfor-

mance, flexibility and energy consumption.

Placed between Run-time Management and Architectural levels, the ARTICo3

framework provides adaptive and scalable hardware acceleration by exploiting

a DPR-based multi-accelerator scheme, leveraging on reconfigurable slots [75].

Furthermore, it provides a Run-time Library to manage the application execu-

tion and computation offloading to the hardware accelerators, i.e. to the slots.

The system generation capabilities of MDC have been extended with the

4PAPI provides a unified method to access the PMCs available on the CPUs [73].
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addition of a new backend, that generates CGR substrates compliant with

ARTICo3 slots. The integrated MDC-ARTICo3 toolchain offers a new level

of flexibility, combining together CGR and DPR. The toolchain maps differ-

ent input specifications in one CGR datapath compliant with the DPR-based

ARTICo3 slots, speeding-up the design of multi-grain systems. Users only need

to define the applications behavior through abstract high-level input dataflow

specifications. The management of the generated multi-grain system is on the

Run-time Library of the ARTICo3 architecture that is naturally capable of man-

aging hardware accelerators also when these latter are CGR substrates [76].

7. Conclusions

The Multi-Dataflow Composer tool has been successfully designed and as-

sessed in the context of signal processing systems. In particular it demonstrated,

along the years, to be applicable to the video coding field [77], and more in gen-

eral, to the needs for flexibility of cyber-physical systems [8]. Thanks to its usage

in different projects5,6 [78, 79] MDC has been extended with new supports and

functionalities to make hardware accelerators and heterogeneous systems more

easy to be developed and used by software programmers, by increasing the level

of abstraction and avoiding them to face the daunting tasks of handling low

level details of datapath generation, system customization and optimization.

At the moment, a particular effort is put in improving and optimizing sys-

tem generation, by making it faster leveraging on mathematical programming

and algebraic optimization strategies, and on relieving the users also from an

additional burden, which is system partitioning. In this latter case, we are

studying ways to model this kind of architectures in order to allow not only

for dataflow-based hardware/software partitioning, but also advanced dynamic

re-mapping and reconfiguration. In terms of engineering effort, the Coprocessor

Generator, currently supporting Xilinx FPGA environments only, in future will

5https://www.cerbero-h2020.eu/
6http://fitoptivis.utu.fi/

51



be extended to target Intel FPGA ones, as well as generic ASIC platforms. Last,

but not least, MDC has been in the last years on its way to open-source, and

different technology transfer activities7 helped in improving its usability and in

defining a concrete path to the market.

Appendix A. Listings

Listing 1: Coprocessor drivers interface.

// ///////////////////////////////

//Memory−Mapped I n t e r f a c e Driver

i n t mm acce l e ra to r robe r t s (

// port o u t p e l

i n t s i z e o u t p e l , i n t ∗ data out pe l ,

// port i n p e l

i n t s i z e i n p e l , i n t ∗ d a t a i n p e l ,

// port i n s i z e

i n t s i z e i n s i z e , i n t ∗ d a t a i n s i z e

)

. . .

// ///////////////////////////////

// Stream−Based I n t e r f a c e Driver

i n t s a c c e l e r a t o r r o b e r t s (

// port o u t p e l

i n t s i z e o u t p e l , i n t ∗ data out pe l ,

// port i n p e l

i n t s i z e i n p e l , i n t ∗ d a t a i n p e l ,

// port i n s i z e

i n t s i z e i n s i z e , i n t ∗ d a t a i n s i z e

)

. . .

Listing 2: Coprocessor drivers body.

// ///////////////////////////

7As the technology transfer activities carried out within the Sardinian Regional project

PROSSIMO: www.cluster-prossimo.it
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// Memory−Mapped Body Driver

. . .

// c o n f i g u r e I /O

∗( c o n f i g + 1) = s i z e i n s i z e ;

. . .

// send data port i n s i z e

∗ ( ( v o l a t i l e i n t ∗) XPAR AXI CDMA 0 BASEADDR + (0 x04>>2)) = 0x00000002 ; // v e r i f y i d l e

∗ ( ( v o l a t i l e i n t ∗) XPAR AXI CDMA 0 BASEADDR + (0 x18>>2)) = ( i n t ) d a t a i n s i z e ; // s r c

∗ ( ( v o l a t i l e i n t ∗) XPAR AXI CDMA 0 BASEADDR + (0 x20>>2)) =

XPAR MM ACCELERATOR 0 MEM BASEADDR + MM ACCELERATOR MEM 1 OFFSET; // dst

∗ ( ( v o l a t i l e i n t ∗) XPAR AXI CDMA 0 BASEADDR + (0 x28>>2)) = s i z e i n s i z e ∗4 ; // s i z e [B]

whi l e ( ( ∗ ( ( v o l a t i l e i n t ∗) XPAR AXI CDMA 0 BASEADDR + (0 x04>>2)) & 0x2 ) != 0x2 ) ;

. . .

// r e c e i v e data port o u t p e l

∗ ( ( v o l a t i l e i n t ∗) XPAR AXI CDMA 0 BASEADDR + (0 x04>>2)) = 0x00000002 ; // v e r i f y i d l e

∗ ( ( v o l a t i l e i n t ∗) XPAR AXI CDMA 0 BASEADDR + (0 x18>>2)) =

XPAR MM ACCELERATOR 0 MEM BASEADDR + MM ACCELERATOR MEM 3 OFFSET; // s r c

∗ ( ( v o l a t i l e i n t ∗) XPAR AXI CDMA 0 BASEADDR + (0 x20>>2)) = ( i n t ) d a t a o u t p e l ; // dst

∗ ( ( v o l a t i l e i n t ∗) XPAR AXI CDMA 0 BASEADDR + (0 x28>>2)) = s i z e o u t p e l ∗4 ; // s i z e [B]

whi l e ( ( ∗ ( ( v o l a t i l e i n t ∗) XPAR AXI CDMA 0 BASEADDR + (0 x04>>2)) & 0x2 ) != 0x2 ) ;

. . .

// //////////////////////////

// Stream−Based Body Driver

. . .

// c o n f i g u r e I /O

∗ ( ( i n t ∗) (XPAR S ACCELERATOR 0 CFG BASEADDR + 1∗4)) = s i z e o u t p e l ;

// s t a r t execut ion

∗( c o n f i g ) = 0x2000001 ;

// send data port i n s i z e

∗ ( ( v o l a t i l e i n t ∗) XPAR AXI DMA 0 BASEADDR + (0 x00>>2)) = 0x00000001 ; // s t a r t

∗ ( ( v o l a t i l e i n t ∗) XPAR AXI DMA 0 BASEADDR + (0 x04>>2)) = 0x00000000 ; // r e s e t i d l e

∗ ( ( v o l a t i l e i n t ∗) XPAR AXI DMA 0 BASEADDR + (0 x18>>2)) = ( i n t ) d a t a i n s i z e ; // s r c

∗ ( ( v o l a t i l e i n t ∗) XPAR AXI DMA 0 BASEADDR + (0 x28>>2)) = s i z e i n s i z e ∗4 ; // s i z e [B]

whi l e ( ( ( ∗ ( ( v o l a t i l e i n t ∗) XPAR AXI DMA 0 BASEADDR + (0 x04>>2))) & 0x2 ) != 0x2 ) ;
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. . .

// r e c e i v e data port o u t p e l

∗ ( ( v o l a t i l e i n t ∗) XPAR AXI DMA 0 BASEADDR + (0 x30>>2)) = 0x00000001 ; // s t a r t

∗ ( ( v o l a t i l e i n t ∗) XPAR AXI DMA 0 BASEADDR + (0 x34>>2)) = 0x00000000 ; // r e s e t i d l e

∗ ( ( v o l a t i l e i n t ∗) XPAR AXI DMA 0 BASEADDR + (0 x48>>2)) = ( i n t ) d a t a o u t p e l ; // dst

∗ ( ( v o l a t i l e i n t ∗) XPAR AXI DMA 0 BASEADDR + (0 x58>>2)) = s i z e o u t p e l ∗4 ; // s i z e [B]

whi l e ( ( ( ∗ ( ( v o l a t i l e i n t ∗) XPAR AXI DMA 0 BASEADDR + (0 x34>>2))) & 0x2 ) != 0x2 ) ;

. . .

Listing 3: IP Generation Script.

###########################

# IP S e t t i n g s

###########################

. . .

# FPGA dev i ce

s e t partname ” xc7z020clg400−1 ”

s e t boardpart ” d i g i l e n t i n c . c o m : a r t y− z 7−2 0 : p a r t 0 : 1 . 0 ”

# Design name

s e t ip name ” mm accelerator ”

s e t des ign $ ip name

###########################

# Create IP

###########################

c r e a t e p r o j e c t − force $des ign $ i p d i r −part $partname

s e t p r o p e r t y board part $boardpart [ c u r r e n t p r o j e c t ]

s e t p r o p e r t y ta rg e t l anguage Ver i l og [ c u r r e n t p r o j e c t ]

a d d f i l e s $ h d l f i l e s p a t h

i m p o r t f i l e s − force

s e t f i l e s [ g lob − t a i l s −directory $ i p d i r / . . . / l i b /caph/ ∗ ]

f o r each f $ f i l e s {

s e t name $ f

s e t p r o p e r t y l i b r a r y caph [ g e t f i l e s $ i p d i r / . . . / l i b /caph/ $ f ]
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}

s e t p r o p e r t y top $ ip name [ c u r r e n t f i l e s e t ]

i p x : : p a c k a g e p r o j e c t − root d i r $ i p d i r −vendor u s e r . o r g \

− l ib rary user −taxonomy AXI Per ipheral

i p x : : a d d a d d r e s s b l o c k s 0 0 a x i r e g \

[ ipx: :get memory maps s 0 0 a x i −o f ob j e c t s [ i p x : : c u r r e n t c o r e ] ]

i p x : : a d d a d d r e s s b l o c k s01 axi mem\

[ ipx: :get memory maps s 0 1 a x i −o f ob j e c t s [ i p x : : c u r r e n t c o r e ] ]

. . .

f i l e copy − force $ i p r oo t / d r i v e r s $ i p d i r

s e t d r i v e r s d i r d r i v e r s

i p x : : a d d f i l e g r o u p −type s o f t w a r e d r i v e r {} [ i p x : : c u r r e n t c o r e ]

. . .

s e t p r o p e r t y c o r e r e v i s i o n 3 [ i p x : : c u r r e n t c o r e ]

i p x : : c r e a t e x g u i f i l e s [ i p x : : c u r r e n t c o r e ]

ipx : :update checksums [ i p x : : c u r r e n t c o r e ]

i p x : : s a v e c o r e [ i p x : : c u r r e n t c o r e ]

s e t p r o p e r t y i p r e p o p a t h s $ i p d i r [ c u r r e n t p r o j e c t ]

u p d a t e i p c a t a l o g

c l o s e p r o j e c t

Listing 4: Top Design Generation Script

###########################

# S e t t i n g s

###########################

. . .

# FPGA dev i ce

s e t partname ” xc7z020clg400−1 ”

s e t boardpart ” d i g i l e n t i n c . c o m : a r t y− z 7−2 0 : p a r t 0 : 1 . 0 ”

# Design name

s e t des ign system

s e t bd des ign ” de s i gn 1 ”
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###########################

# Create Pro j e c t

###########################

c r e a t e p r o j e c t − force $des ign $p r o j d i r −part $partname

s e t p r o p e r t y board part $boardpart [ c u r r e n t p r o j e c t ]

s e t p r o p e r t y ta rg e t l anguage Ver i l og [ c u r r e n t p r o j e c t ]

s e t p r o p e r t y i p r e p o p a t h s $ i p d i r [ c u r r e n t p r o j e c t ]

u p d a t e i p c a t a l o g −rebui ld −scan changes

###########################

#c r e a t e block des ign

c r e a t e b d d e s i g n $bd des ign

# Zynq PS

c r e a t e b d c e l l −type ip \

−vlnv x i l i n x . c o m : i p : p r o c e s s i n g s y s t e m 7 : 5 . 5 p roc e s s i ng sy s t em7 0

. . .

# a c c e l e r a t o r IP

c r e a t e b d c e l l −type ip −vlnv u s e r . o r g : u s e r : $ i p n a m e : $ i p v e r s i o n $ ip name\ 0

apply bd automation −rule x i l i n x . c o m : b d r u l e : a x i 4 \

−conf ig { . . . } [ g e t b d i n t f p i n s $ ip name\ 0 / s 0 0 a x i ]

# CDMA

c r e a t e b d c e l l −type ip −vlnv x i l i n x . c o m : i p : a x i c d m a : 4 . 1 axi cdma 0

s e t p r o p e r t y −dict [ l i s t CONFIG.C INCLUDE SG {0} ] [ g e t b d c e l l s axi cdma 0 ]

apply bd automation −rule x i l i n x . c o m : b d r u l e : a x i 4 \

−conf ig { . . . } [ g e t b d i n t f p i n s axi cdma 0 /S AXI LITE ]

. . .

make wrapper − f i l e s [ g e t f i l e s $p r o j d i r / . . . / de s i gn 1 .bd ] −top

a d d f i l e s −norecurse $p r o j d i r / . . . / hdl / de s i gn 1 wrapper .v

. . .
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List of Acronyms

• ASIC: Application Specific Integrated Circuit

• API: Application Program Interfaces

• BL: Baseline

• CAL: Caltrop Actor Language

• CGR: Coarse-Grain Reconfigurable

• CP: Critical Path

• CPF: Common Power Format

• CPS: Cyber-Physical Systems

• CPU: Central Processing Unit

• DFG: Data-Flow Graph

• DLS: Damped Least Square

• DMA: Direct Memory Access

• DPN: Dataflow Processing Network

• DPR: Dynamic and Partial Reconfiguration

• DSP: Digital Signal Processing

• F: functional

• FF: Flip-Flop

• FIFO: First-In First-Out

• FPGA: Field Programmable Gate Array

• GUI: Graphical User Interface

• HDL: Hardware Description Language
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• HLS: High Level Synthesis

• HP: High Performance

• IK: Inverse Kinematics

• I/O Input/Output

• IP: Intellectual Property

• IR: Intermediate Representation

• LR: Logic Region

• LUT: Look-Up Table

• LWDF: Lightweight dataflow

• MDC: Multi-Dataflow Copmposer

• mm/MM: memory mapped

• MoC: Model of Computation

• MPEG-RVC: MPEG Reconfigurable Video Coding

• NF: Non-Functional

• ORCC: Open RVC-CAL Compiler

• PD: Power Domain

• PE: Processing Element

• PiSDF: Parameterized and Interfaced Synchronous Dataflow

• RTL: Register Transfer Level

• SBox: Switching Box

• s: stream

• TIL: Template Interface Layer
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• UPF: Unified Power Format

• XDF: XML Dataflow Format
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