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Abstract

With the increasing demand of designing a reliable processing devices, the issue

of CMOS ageing is jeopardising the industry of digital devices. Many studies has

been cover this area for modelling the ageing behaviour at the device level or de-

veloping ageing sensors for on-line delay detection at the system level. However,

we are presenting a method to estimate the ageing stresses (e.g. Temperature,

Ageing Stress Activity) rather than the modelling ageing (performance degra-

dation) itself. The purpose for estimating the ageing stress is to optimise the

system utilisation with the minimisation of ageing stress. In multicore proces-

sors, the existence of more than one source of ageing stress is higher than single

core processor but the optimisation space is higher as well along with the tem-

perature and power optimisation. In this paper, we have modelled the ageing

stress from the application level using machine learning techniques to train data

extracted from high level workloads ( e.g. parsec and splash2 benchmarks) on

four cores processor from Xeon. The ageing stress model is able to estimate the

ageing stress with 0.1% error and is able to proactively reduce the ageing stress

by 50%.

Keywords: Bias Temperature Instability (BTI); Ageing Stress; Multi-core

Processor; Proactive Solution; Neural Network.
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1. Introduction

To achieve high performance and energy efficiency, multi-core architectures

are used widely in modern computer systems. When multi-core architectures

are powered by batteries, reducing the power consumption is crucial, since an

energy-efficient design means slower depletion of batteries and results in lower5

chip temperatures that in turn improve performance and reliability.

With the increasing susceptibility of logic cells, memory and interconnections

to time dependent degradations, especially at smaller technologies, an adaptive

proactive reliability management approach is needed. Multi core processor sys-

tems, like other digital devices, are affected by ageing, more specifically by BTI,10

as the system performance degrades over time due to the change in the physical

characteristics of the operational transistors. Ageing models are either hard to

simulate for the whole system, or the model’s inputs are hard to predict during

the design stage of the digital system. Ageing model at the device level which

models the time-dependant variations it generally based on signal probability at15

the device-level. These signal probabilities totally vary with respect to system

level stress (activity). So, estimating this stress is not the same as modelling the

ageing itself. Therefore, an adaptive proactive solution is vital to minimise the

factors that could worsen the ageing effects, which is more useful than simply

predicting the lifetime of the chip.20

In this paper, we will focus on two factors that lead to BTI stress: idleness

and temperature. As BTI is partially recoverable [1], the target is to increase the

period of recovery instead of keeping the state of the system unchanged (i.e.,

idle or statically negative/positive biased). If we do not consider the spatial

and temporal effect of temperature, the high temperature does not occur in the25

idle state. In single core processors, it is rare to have both idleness and high

temperature occur at the same time. However, in multi-core processors, ageing

is accelerated with increased temperature, especially during the idle state. This

could happen in the case of increased temperature from a previous non idle
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state, or when temperature is transferred from adjacent locations as shown in30

Figure 1. We will focus on the spatial effect of temperature and its effect on

BTI-induced degradation in multi-core systems.
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Figure 1: The effect of temperature on an idle core: Increasing temperature of one core due

to spatial and temporal effect makes idle core more vulnerable to ageing effect.

The main objective of this paper is design a model to predict the ageing

stress on the multi-core processor systems and use this model to mitigate the

high-level stress by regulating the core frequencies based on proactive ageing35

stress prediction.

The outline of the paper is as fellow: power model, thermal model and

ageing stress of the multi-core system are introduced in sections 2,3, and 4,

subsequently. The proposed technique is presented in section 5. In section 6, the

experimental and simulation results is described. In section 7, the discussion is40

covered. Finally, in section 8, the paper conclusion and future work is concluded.

2. Multi-core Power Model

Saving power means reducing the temperature, which in turn reduces the

ageing stress. Modelling power could be used for different reasons including

estimating the system efficiency or to optimise the energy and reliability of45

the system. In general, the source of power consumption is classified either as

dynamic power, which occurs as a result of transistor switching, or static power,

which is dissipated even when the system is idle.
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The first source of total power consumption is from the dynamic power

consumption, which is defined at the transistor level as follows [2]:50

Pdynamic = α · CL · V 2
dd · F, (1)

where α is the switching activity of the transistor, CL is the total load capaci-

tance, Vdd is the supply voltage, and F is the clock frequency.

The second source is the static power consumption, which is defined at the

transistor level as follows [2]:

Pstatic = Vdd · Istatic = Vdd · (Isub + Igate)), (2)

where Istatic is the current that leaks through the transistors during the idle55

state. The static current is negligible for technology sizes above 100 nanometres

[3]; however, with the increasing market demands for higher chip densities, the

static power consumption is now becoming significant. The main components

of the static current are subthreshold drain current, which is the current that

leaks between the source and drain of the transistor when the transistor is in60

the subthreshold or off region, and gate-oxide current, which is the current that

leaks between the gate and oxide insulation [3]. With high-κ technology, gate

capacitance is increased, which makes gate-oxide leakage current negligible [4].

However, for multi-core systems, the power cannot be simulated using the

simplified models presented in (1) and (2) [2]. Instead, and with the help of65

performance counters, the instruction per cycle (IPC) per cores could represent

the activity rate or the utilisation of the core that defined as the number of

instructions executed and committed per clock cycle. Therefore, similar to [5]

and [3], we test two models using non-linear and linear relationships between the

core switching activity and its IPC for modelling dynamic power in multi-core70

systems and compare the results. The dynamic power can be estimated using

a given IPC (which implicitly captures the switching activity and idleness) and

clock frequency. To accurately compute the total power, we need to consider

the static power as well, which can be computed for a given temperature, supply

voltage and threshold voltage.75
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Power data could be collected from physical or simulated processor to extract

the dataset for modelling the power using either non-linear regression (e.g.,

Neural Network) or linear regression machine learning methods depending on

the output data is linear or non-linear dependent with the input data. The

dataset that contains the input and the target power for the model is defined80

as follows:

Data : {Xn, Yn}Nn=1, (3)

where Xn is the input data that includes: frequency (f), supply voltage (Vdd)

and the IPC for each core, c. The input data can be represented mathematically

as follows:

Xn : {f, Vdd, IPCc}. (4)

Yn is the output data that represents the target power for each core, and is85

defined as follows:

Yn : {P cn} (5)

3. Multi-core Thermal Model

The thermal model extracted for our multi-core system is based on compact

thermal modelling presented in [6, 7]. This method for modelling the temper-

ature attempts to reduce the complexity of the lower level of abstraction and90

achieve a high level of accuracy. For temperature modelling of multi-core sys-

tems, we have used the same technique used in [8] and [7] by dividing the chip

into cubic temperature cells of silicon and copper layers. Thus, given the floor-

plan of the multi-core system, the thermal model of the cores and core units

could be represented by one or more thermal silicon cells. The thermal model95

has been extracted based on cell conductances and capacitances as calculated

in [6], and the cell geometries (height, width and thickness) for the silicon and

copper layers, which are extracted from the chip layout. From the equivalent

RC model, the temperature can be modelled from the power consumption and
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the layout of the chip using the following equation:100

Ti[k + 1] = Ti[k] +
∑
∀jεAdji

αi, j(Tj [k]− Ti[k]) + βiPi[k], (6)

where Ti[k] and Pi[k] are the temperature and power consumption of the cell, i,

at time step k respectively. αi and βi are constants that represent the thermal

characteristics of the chip which could be extracted as in [6]. Adji is the adja-

cency matrix of the cell i that represents the spatial thermal transfer between

the cell i and its adjacent cells.105

4. Multi-core Ageing Stress

In dynamic power management, the different states of the processor are

utilised to optimise the power consumption by putting an idle core or processor

into a low power state. We showed in our work [9] that the BTI stress is

worsened when the processor is in an idle state (i.e., static BTI to have one110

node at the gate level statically stressed with NBTI and another with PBTI).

The processor is described as idle when it is powered on but has not been

utilised by any useful program. During the idle state, most operating systems

run a no-operation instruction in a loop and assign the lowest priority to this

task. Therefore, when the processor is “idle”, it means that the processor is115

not actually switched off, power-gated or off-lined. The implication is that the

core could be under stress from an ageing perspective. A simple solution like

aggressive off-lining could increase the power consumption [10]. The processor

could be forced into an idle state by using the clock gating technique for dynamic

power reduction in which the clock is disabled for the flip-flops and registers120

when a high-level signal is enabled. In the literature [11, 12], the idle state has

been shown to have a negative impact on the leakage current and power, while

it is not considered as a factor that may jeopardise the reliability of the system.

The key issue in multi-core systems is that one core could be under static BTI

stress (idle) and simultaneously having high temperature generated by adjacent125

cores. For example, we have simulated the case of idle core as an zero input
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power to the thermal model as shown in Figure 2, core 2 has no workload (i.e.,

it is idle) while its adjacent cores are running and processing workloads. As a

result, the average temperature of the idle core is affected by the fluctuation of

the temperatures of its adjacent cores.130

Figure 2: Simulated temperature with the effect of idleness of the cores. Core2 is in an idle

state but its corresponding temperature is effected by its adjacent cores.

The ageing stress from the BTI perspective at the system level is affected by

electrical stress (static stress with idle state) and thermal stress (temperature)

as shown in Figure 3. Thus, the overall stress is represented as an average stress

between the idleness (e.g., implicitly in the input power) and the temperature

at the system level to model the margins of stress and named as “normalised135

data”1.

1e.g., when “normalised data” equals ‘1’, it means that the stress is maximum, which

occurs when the temperature is at the highest level and the core is in the idle period. When

“normalised data” equals to ‘0’, it means that the stress is minimum, which occurs when the
temperature is at the minimum level while the core is not in the idle state. The stress has
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Figure 3: System-level simulated BTI stress from core temperatures and activities. The input

power represent the activity and idleness of the cores; BTI stress represents the average effect

from the electrical stress (idleness) and the thermal stress (core temperature).

5. Proposed Technique

The aim of this section is to reduce the ageing stress not the ageing-induced

degradation. The ageing stress model is used to adjust the workload in order

to lower the ageing stress.140

A proactive approach is proposed to reduce the temperature and idleness in

a multi-core system. The technique consists of two phases as shown in Figure

5. The temperature of the stressed core is reduced by dynamically adjust the

frequency of the adjacent cores and the idleness is reduced by replacing idle

process with an activity of low power consumption.145

The first phase is done offline to model BTI-induced stress at the system

been normalised to be between ‘1’ and ‘0’.
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Data: Idlenessi;Poweri NormalisedTempi; Freqi ;NumCores,

Ageingth

Result: Min(Ageing Stressi);

i = NumCores; while i 6= zero do

Ageing Stressi =S 0.5*(abs(Idlenessi − 1) + (NormalisedTempi));

if Ageing Stressi > Ageingth then

Scale the frequency down for this core (i)

Stressed core = Poweri;

end

if Idlenessi = True then
Run the idle core with the minimum power consumption

end

i = i− 1;

end

Algorithm 1: Procedure to adjust the core stress by scaling the frequency

for hot cores and assign low-power activity for idle core.

level of the multi-core system. The model does not predict the delay or the

overall performance degradation of the core; instead, it predicts the input stress

that could put the core under the BTI ageing effect. As mentioned earlier in

Section 1, ageing stress at the system level is affected by two factors: idleness150

and temperature. Thus, the model should predict these two factors for each core

based on the input workload. The proposed ageing stress model needs a profile

of inputs of workload sets and outputs of temperature and idleness period in

order for each core to be learned. This profile can be collected by running a

range of programs from standard benchmarks on a physical or simulated multi-155

core system. After collecting the profile data, a neural network could be used to

model the stress because its ability to model the non-linear behaviour of data.

The second phase of the proposed technique is done on-line by adaptively

responding to the ageing stress and feeding the estimated stress to the frequency

regulator proposed in [13, 14, 15, 16] that in turn dynamically adjusts the fre-160

quency of the adjacent cores so as to lower the temperature of the core under

9



0 5 10 15 20 25 30 35 40

Time [s]

0

20

40

P
ow

er
 W

at
t Input Power

core1
core2
core3
core4

0 5 10 15 25 30 35 40
300

350

K
el

vi
n 

de
gr

ee

Output Temperature

core1
core2
core3
core4

0 5 10 15 20 25 30 35 40

Time [s]

0

0.5

1

N
or

m
al

is
ed

 D
at

a

20

Time [s] 
BTI stress

core1
core2
core3
core4

Figure 4: Migrating activities from core 2 to core 3.

stress.

6. Experimental Setups and Simulation Results

To model the power consumption, the input and output data has been col-

lected from simulated 4 cores processor using simulation tool (Sniper Simulator165

[17] and McPAT [18] that allows us to define the configurations as presented in

Table 1 having a standard floorplan as shown in Figure 6. These open source

tools installed and run on linux Ubuntu 14.04 to simulate The IPC and the

power per core. We considered to model the nominal, minimum and maxi-

mum corners for the Xeon x5550 Gainestown x86 microprocessor. Examples of170

the IPC and power consumption for the cores of the Xeon multi-core processor

running Black-Scholes benchmark are shown in Figs. 7 and 8 respectively.
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Table 1: Xeon processor settings

Parameters Settings

Frequency 2.66, 3.06, 1.7 GHz

Vdd 1.2, 0.85, 1.5 V

Technology node 45nm

Area 42.5mm x 45mm

Number of cores 4
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Figure 6: Floorplan of the Xeon multi-core processor.
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Figure 7: IPC traces extracted from running Black-Scholes benchmark on simulated Xeon

multi-core processor.
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Figure 8: Power traces extracted from running Black-Scholes benchmark on simulated Xeon

multi-core processor. Core0 is in an idle state while other cores are executing processes.
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Two techniques are employed to model the power consumption. Firstly, we

use a non-linear modelling method based on a neural network that are able to

use priori information hidden in data. The process of extracting these hidden175

information is called “learning” [19]. Feed-forward neural network is used be-

cause relationship between the input and output data is forwarded from the

input to the output data (no loop needed as a feedback from the output data).

In our case, data extracted from executing parsec and splash2 benchmarks on

a Xeon 4-core processor into the training phase of the machine learning. Using180

a neural network consisting of 20 hidden layers2 and four output layers (one for

each core) estimates the power with least mean squared error (MSE3) of 4.67%

(see Figure 9).

Secondly, we model the power using linear regression to obtain the weights

and bias of the model as follows:185

Pdyn = V 2
dd · f · (ω · IPC + b) , (7)

where ω and b are the model parameters that represent the weight vector and

bias of the linear regression parameters to be determined. The least mean

squared validation error is 1.76% which is better than that found using feed-

forward neural network. To measure the uncertainty of the estimation (i.e., the

standard deviation or how a new unseen data fed into the network affects the190

estimation performance), we use a cross-validation method, which divides the

training data intoN folds and trains the system usingN−1 folds. The remaining

one fold is used for testing, and is unseen during training. For example, if we

have data set of 8000 samples and N is 8, we will have eight folds each of 1000

samples. A cross-validation method allows us to traverse the whole data for195

2Neural Network (NN) hidden layers try to convert the non-linear relationship into linear

relationship to the next layer; NN size defines the performance of the modelling but increasing

the size into a limit which will see a slight performance improvement; in our case, any network

size greater than 20 produced the same result as 20 network size.
3MSE is defined as the average of squared differences between the target (desired) vector

and the estimated output vector from the model.
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training and testing while validating data that was not fed during training phase

[20]. Figure 10 shows the mean squared error with eight different validation folds

to have only one validation fold has mean squared error greater than the one

obtain using neural network.
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Figure 9: Prediction error using feed-forward neural network training; X axis (Epochs) repre-

sents the number of times that all training set are used once to generate new weights for the

neural network layers.

Using MATLAB to simulate the multi-core thermal model. Figure 11 shows200

the change of the simulated temperature with the change in the power of the

corresponding core and its adjacent cores. The input power could be regu-

lated dynamically by adjusting the frequency of the core from a higher-level of

abstraction (e.g., the operating system) by scaling the frequency of the cores.

However, this lowers the temperature of the core but incurs a timing overhead.205

To model the ageing stress as a first phase of the proposed technique, the

power and idleness are collected using the above techniques

Figure 12 shows the calculated temperature and ageing stress for parsec
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Figure 10: Prediction error and uncertainty using linear regression and cross validation. Pre-

diction errors is changing with changing the validation data (uncertainty).

and splash2 benchmarks. This ageing stress indicator has been trained using

a feedforward neural network that have ability to produce accurate output on210

data outside its seen training set [19]. The Figure shown in 13 with a network

size of 10 (i.e., in our case, increasing the network size would not improve

the estimation performance), obtained from feeding the temperature and the

power consumption per core as training set into the machine learning, which

implicitly provide estimates for the workload and idleness. Therefore, the ageing215

stress models the temperature and combines it with the idleness to generate the

normalised ageing stress per core. The estimated ageing stress was found with

mean square error of less than 0.185× 10−3 for the test dataset (see Figure 14).

Every training round (epoch), the data is divided into three equally data sets

(training, validating, testing data sets). Data is selected randomly from the data220

given to be used as a training set during the training phase to find the weights
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Figure 11: Simulated temperatures from the input power of the multi-core system.

(w) and the bias (b) for the hidden and output layers. The validation set is

used to select the training parameters and test set that are used to measure

the performance characteristics of the neural network and needs to be unseen

during the training phase. Regression (R) has been obtained for each of the225

datasets for the estimated output to the target as shown in Figure 15.

The stress model is generated to estimate the ageing stress proactively, and

a frequency regulator is used as the second phase of the proposed technique to

adjust the core frequencies for a predefined ageing-stress threshold. In our case,

the ageing stress threshold is defined to be 80% (compromising value with the230

time overhead). In this case, The time overhead is 11.12%, which prevents the

ageing stress from going over 80% of its maximum value (see Figure 16 (b)).

Further optimisation has been done by replacing any idle period of the cores

with an activity running at the minimum frequency to reduce the ageing stress

by more than 50% and having no timing overhead (see Figure 16 (c)).235
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Figure 13: Feed-forward neural network; The input of the neural network is the idleness and

the temperature for each core (4 cores × 2 = 8 Inputs) and the output is ageing stress per

cores (4 Outputs); The hidden layers are responsible to transfer the relationship into linear

by multiplication input vector with weights (w) and adding with scaler value (b), finally, pass

the results into activation function (e.g, sigmoid) to limit the output between 0 and 1; Output

layers are responsible to limit the number of outputs to the required output data (regression).
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Figure 14: Ageing model performance. Every epoch (new training data used), the training

update the weights (w) and (b) of the neural network to fit the generated outputs with the

target outputs. Best performance is found when the mean squared errors on the validation

data is stop decreasing.
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Figure 15: Neural network regression of the estimated data to the target data for the training,

validation and testing data sets. (y axes) estimated outputs (Y); (x axes) target outputs (T).
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7. Discussion

Current processors are designed to have temperature sensors. These tem-

perature sensors could be used to collect more accurate data and collect the

the temperature profile instead of using temperature simulators. However, the

main purpose of this work is to react to the stress proactively. Obtaining the240

current temperature using temperature sensors could be useful but the solution

would be reactive and after the core or the processor must have been put under

stress. Thus, it makes sense to predict the temperature using a model rather

than obtain it from the readings of temperature sensors.

It should be mentioned that estimating the ageing stress does not necessarily245

have to be done using a feed-forward neural network, but it is also possible to use

other techniques. For example, the radial basis approximation [21, 22] has been

used as an alternative technique to the feed-forward neural network. The advan-

tage of using radial basis approximation is that the learning parameters (e.g.,

network size) do not need to be defined, but it is not the best choice in terms250

of the approximation accuracy. In Figure 17, which the target performance

was defined based on the best performance obtained from the feed-forward neu-

ral network from the unseen data. However and during the training phase, it

never reached for this target and the best performance is 0.25 × 10−3. Thus,

feed-forward neural network has outperformed the radial basis approximation255

to model ageing stress data. However, we are not trying to prove that the feed-

forward neural network is the best method to model ageing stress data but only

to prove that it is possible be trained with small estimation errors.

This paper has proposed an ageing-aware mitigation technique at the system

level for multi-core processors. The technique consists of a learning neural260

network to estimate the high-level ageing stress and then to use this network

to adjust the frequencies and workloads among the cores of the processor in

a proactive way. The results of the proposed technique show that the ageing

stress could be controlled by a limit (e.g., 80% on the whole system with 11.12%

time overhead). This time overhead could be utilised to replace any idle process265
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Figure 17: The performance of Radial Basis Approximation. The goal is defined from the

best performance obtained from the feed-forward neural network.

with another activity to reduce the ageing stress to the half.

8. Conclusion and Future Work

This paper has proposed an ageing-aware mitigation technique at the system

level for multi-core processors. The technique consists of a learning neural

network to estimate the high-level ageing stress and then to use this network270

to adjust the frequencies and workloads among the cores of the processor in

a proactive way. The results of the proposed technique show that the ageing

stress could be controlled by a limit (e.g., 80% on the whole system with 11.12%

time overhead). This time overhead could be utilised to replace any idle process

with another activity to reduce the ageing stress to the half.275

For multi-core processors, the available optimisation techniques to find the

optimal place-and-route that minimise area, power and temperature could be
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extended to include time-dependant degradations, as well as idleness and tem-

perature. For example, units having long idle periods, and which are timing

critical, can be separated from the highly-active units, in order to avoid idle280

units from being subjected to high temperatures. The main problem is that the

data about the core or units inside the cores and their idle periods can be only

be available after fabrication and operation and the aim is to find the optimal

floorplan. Otherwise, complex simulated system is required to have these data

and re-optimise until optimal solution is found. If no such complex simulator is285

available, specific units that inherently consider both active and hot (e.g., the

flip-flops) or idle and critical (e.g., divider) units could be considered during the

optimisation process.
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