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Summary. Biological networks exhibit intriguing topological proper-
ties such as small-worldness. In this paper, we investigate whether the
topology of a metabolic network is related to its robustness. We do so
by perturbing a metabolic system in silico, one reaction at a time and
studying the correlations between growth, as predicted by �ux balance
analysis, and a number of topological metrics, as computed from three
network representations of the metabolic system.
We �nd that a small number of metrics correlate with growth and that
only one of the network representations stands out in terms of corre-
lated metrics. The most correlated metrics point to the importance of
hub nodes in this network: so-called �currency metabolites�. Since they
are responsible for interconnecting distant functional modules in the net-
work, they are important points in the networks for predicting if reaction
removal a�ects growth.
Source code and data are available upon request.
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1 Introduction

In the last decade, advances in high-throughput biological measurement systems
have made it possible to extract large-scale networks from biological systems.
Jeong et al. [7] were among the �rst to study the topologies of metabolic net-
works, networks of interconversions of small compounds. The metabolic net-
works of the 43 organisms that they studied gave evidence of a scale-free struc-
ture. Characteristic properties of these so-called �small-world� networks are their
power-law distributed node degrees and their small average shortest path lengths.

Subsequently, researchers studied the topologies of a number of other types of
biological networks [2, 12, 3]. Much of this work con�rmed the Jeong et al. results:
scale-free behavior was everywhere. Even the internet and some power grids are
thought to display scale-free behavior [1]. These latter networks have expanded
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in a seemingly organic fashion through a process of preferential attachment �
new nodes are more likely to attach to existing high-degree nodes than to low-
degree nodes. This expansion process forms the basis of Barabási and Albert's [1]
random network model. They show that the process leads to the characteristic
power-law node degree distribution and small-world properties.

Although Kim et al. [8] and Lima-Mendez et al. [11] argue that biological
networks do not develop through simple processes of preferential attachment,
the presence of similar topological elements, such as hub nodes, begs the ques-
tion whether these topological properties confer some bene�t or whether certain
topologies are inherently suited for particular functionality. In an e�ort to un-
derstand the relationship between the function of a network and its topological
properties, Milo et al. [13] introduced the concept of motifs. A motif is a small
sub-network (with at most four nodes) whose over-representation may be indica-
tive of its role in maintaining function at a local level. They found that certain
motifs occur more often in biological networks than expected by chance and that
they may correspond to certain desired behavior such as response acceleration,
signal delay and stability. Prill et al. [19] took this idea further and claimed that
certain motifs were inherently more prone to display stable behavior than oth-
ers. By abstracting away from the underlying functionality, they demonstrated
that such relations held to some extent over a variety of biological networks.
However, Ingram et al. [6] considered gene networks and compared the results
of a di�erential equation model of gene expression to speci�c motif counts in the
gene network but found no correlation. Lima-Mendez et al. [11] argue that the
global topological properties cannot explain the function of networks. Accord-
ing to them, the signi�cance of motif frequencies may have been overestimated
(since the frequencies only capture global properties), but they consider a local-
ized approach promising as the key to understanding biological networks lies in
understanding local details.

In our work, we take a global approach and investigate to what extent network
topology can be related to more systems-level network properties shared by the
various network types studied by Barabási et al. An interesting property in this
respect is that of robustness. Stelling et al. [20] and Kitano [10] de�ne robustness
as the ability of a system to maintain its function in the face of perturbations
or uncertainty. Biological systems are known to be robust [9] to many forms
of perturbation while being highly sensitive to other forms, so-called �highly
optimized tolerance� [20]. The question is whether there is something in the
topology of these networks that confers robustness to the overall system.

In this paper, we study the relationship between the growth of a micro-
organism (baker's yeast, Saccharomyces cerevisiae) and the topologies of three
network representations of its metabolic system. Microbial metabolic systems
provide a good test bed, since an often assumed objective � growth � is easily
expressed in terms of �uxes through these systems. Furthermore, good quality
metabolic datasets are readily available and resulting �ux models can be studied
computationally with high e�cacy.
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To study the link between network topology and robustness, we propose
an in silico metabolic system perturbation experiment. We de�ne robustness
as the ability of the yeast cell to maintain growth under reaction removals.
First, we show how its metabolic system can be represented by three di�erent
networks. Then, through a number of trials, reactions are removed from the
metabolic system until growth ceases. This provides a number of snapshots of
partially destructed metabolic systems. For each snapshot, growth and a number
of network-wide topological metrics can be computed. By calculating correlations
between growth and these metrics, we �nd that most of the topological metrics
are not related to function. The strongest correlations point to the importance
of hub nodes (so-called �currency metabolites�).

2 Method

2.1 Computing function

In this work, we de�ne robustness as the maintenance of cell growth under per-
turbations to the organism's metabolic system when reactions are removed from
the metabolic network. A metabolic system with r reactions and m metabolites
is modeled by a set of m di�erential equations:

dXi

dt
= ssynvsyn − sdegvdeg − susevuse + stransvtrans (1)

that specify how the concentration Xi of a metabolite i changes in time. vsyn
is the rate of metabolite synthesis, vdeg is the degradation rate, vuse is the rate
of consumption (by other reactions) and vtrans is the rate of transport across
the cell boundary (into the cell). ssyn, sdeg, suse and strans are stoichiometric

coe�cients1 (reaction rates are measured in µmol gDW−1 h, i.e., micromoles per
gram of dry weight per hour).

We assume that stransvtrans is a constant value bi, allowing (1) to be written
in vector form as dX

dt = S · v + b, with S the m× r stoichiometric matrix, v an
r × 1 vector of reaction rates (�uxes) and b the vector of boundary transport
reaction rates.

Here we show a small example to make the form of S clear (and later to show
how networks are derived from S). Consider the metabolic system:

m1 +m2 Ra←→ m3 +m4

3m3 +m5 Rb−→ m6 + 2m7 (2)

m3 +m4 Rc−→ m7 +m8

The corresponding S matrix is shown in Figure 1a. Since each column is
labeled by a reaction Ri, we refer to the corresponding �ux value in v as vi. At
steady-state dX

dt = 0, rendering the linear system:

1 These are derived from the chemical mass balance coe�cients: e.g. 2H2+O2 → 2H2O
corresponds to the stoichiometric coe�cient vector [−2 −1 2]
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S · v + b = 0. (3)

S =



Ra Rb Rc

m1 −1 0 0
m2 −1 0 0
m3 1 −3 −1
m4 1 0 −1
m5 0 −1 0
m6 0 1 0
m7 0 2 1
m8 0 0 1


(a) The stoichiometric matrix from (4).

S′ =



R+
a R−a Rb Rc

m1 −1 1 0 0
m2 −1 1 0 0
m3 1 −1 −3 −1
m4 1 −1 0 −1
m5 0 0 −1 0
m6 0 0 1 0
m7 0 0 2 1
m8 0 0 0 1


(b) The stoichiometric matrix from (6).

Fig. 1: Stoichiometric matrices of the toy problem in Section 2.1.

Due to the small size of the example, S is overdetermined (i.e., there are fewer
reactions than metabolites). In real biological networks however, stoichiometric
matrices are under-determined. Such systems generally have in�nitely many so-
lutions; but biologists are only interested in biologically signi�cant solutions.
A common (biological) assumption is that microbial cells attempt to maximize
the rate of their biomass production or in other words, growth. Growth can
be expressed as a linear combination cT · v of certain key reaction rates in the
metabolic system. The reaction rates can then be computed by a linear program:

Maximize µ = cT · v (4)

subject to S · v + b = 0

Positive components of v correspond to forward-acting reactions, whilst neg-
ative components correspond to reactions running in reverse. In (4), the compo-
nents of v may assume negative and positive values meaning that any reaction
can, in principle, occur in either direction. Due to thermodynamics, some reac-
tions are very unlikely to occur in reverse (in the example, only reaction Ra is
reversible). These constraints are modeled by restricting rates of non-reversible
reactions to be non-negative. Thus for each non-reversible reaction R, the con-
straint vR ≥ 0 is added, rendering the linear system:

Maximize µ = cT · v (5)

subject to S · v + b = 0

vRi ≥ 0 for each non-reversible reaction Ri

In addition, biological constraints limit the rates of some reactions. These
inequalities are simply added to the list of constraints of the linear program.
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This steady-state framework for computing metabolic �uxes by optimizing some
criterion is known as �ux balance analysis. Orth et al. [17] give a good overview
of �ux balance analysis.

Testing robustness We test robustness by iteratively removing reactions and
recalculating (5) until growth µ drops below a certain low threshold value (1×
10−9 µmol gDW−1 h). This produces a sequence T = {s1, s1, s2, . . . , sn} which is
referred to as the trial T . A step is a reaction label index: step si corresponds to
the removal of reaction Rsi . The steps in a trial are associated with a sequence
of linear programs P0, P1, P2, . . . , Pn, where P0 is the unmodi�ed linear program
(from which no reaction has been removed) and Pi is the linear program resulting
from the removal of the reactions Rs1 , Rs2 , . . . , Rsi . Removal of a reaction is
modeled by removing its corresponding column from S.

Reactions are removed uniformly (at random) when constructing a trial.
Since most reactions are mediated by enzymes, removal of a reaction roughly
corresponds to a gene knockout. Some reactions are not mediated by enzymes
and occur due to chemical processes such as di�usion. Knocking out a gene will
not bring these reactions to a halt and we therefore never remove such reactions.

2.2 Topology

To be able to calculate topological properties of the metabolic system, the sto-
ichiometric matrix S should be represented as a network. However, S cannot
be directly represented as a network since a reaction may interact with more
than two metabolites and a metabolite may interact with more than two reac-
tions. A natural representation of such a system is a hypernetwork in which a
link may connect more than two nodes. The stoichiometric matrix represents a
hypernetwork where the columns are links and the rows are nodes. The links are
directed: negative values in a column represent source nodes and positive values
represent target nodes. Let u be a node, and let L be a set of links that have
u as their source nodes, then the target nodes of L are the out-neighbors of u.
The in-neighbors are de�ned analogously, with u as the target node.

Note that the stoichiometric matrix derived from the linear programming
formulation does not capture the reversibility of reactions (such as Ra in the
example) because a reaction Ri is considered to act in reverse when its rate vi
in the linear program solution is negative. We therefore reformulate the linear
program such that v ≥ 0 (i.e., all �uxes are positive). A reversible reaction Ri
is converted to a pair of reactions R+

i and R−i ; then if ci is the column vector in
S corresponding to Ri, ci is replaced by two column vectors c+i and c−i (corre-
sponding to R+

i and R−i respectively) such that c+i = ci (the forward reaction)
and c−i = −ci (the reverse reaction). Converting S leads to the stoichiometric
matrix S′ in Figure 1b. The hypernetwork is shown in Figure 2a.

The linear program (5) is modi�ed with the new stoichiometric matrix S′

and non-negative �ux constraints, giving:
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(a) The hypernetwork H speci�ed by S′. (b) GB : the bipartite representation of H.

(c) GM : the one-mode reduction of the
metabolites in GB .

(d) GR: the one-mode reduction of the re-
actions in GB .

Fig. 2: The hypernetwork and networks derivable from S′ in (6).

Maximize µ = cT · v (6)

subject to S′ · v + b = 0

v ≥ 0

Network theory provides many tools for studying the topological properties
of normal networks, whilst there are very few metrics that can be computed on
hypernetworks. Thus we considered three possible network representations of the
hypernetworks speci�ed by the stoichiometric matrix S′. First, a hypernetwork
H(M′,R′) can be modeled as a bipartite network GB(M∪R,L). The nodes in
M represent the metabolitesM′ in H, whilst the nodes in R represent reaction
links R′ in H. Conversion of the hypernetwork H in Figure 2a produces the
biparitite network GB in Figure 2b. We refer to this network as the metabolite-

reaction network2 as it contains both metabolite nodes M and reaction nodes
R.

Although standard network theory techniques can be applied to GB , its bi-
partite nature makes some metrics di�cult or impossible to compute. For ex-
ample, the clustering coe�cient for any node in a bipartite network is 0. For
this reason, we also considered one-mode reductions of GB . An M-node (R-
node) one-mode reduction G′(N ,L′) of GB(M∪R,L) is a network that con-
tains only nodes from the set M (the set R) such that for each directed link
l = (n1, n2) ∈ L′ there is a node n3 ∈ R (n3 ∈ M) such that (n1, n3) ∈ L and
(n3, n2) ∈ L (note that there may be many nodes n3 that satisfy this condi-
tion). We call the M-node one-mode reduction simply the metabolite network

GM (shown in Figure 2c) and likewise the R-node one-mode reduction simply
the reaction network GR (illustrated in Figure 2d).

2 This representation is exactly the Petri-net representation [14, 4] of the metabolic
system.
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Note that it is possible to represent the link weights of the hypernetwork H
in its bipartite representation GB : such a mapping can be seen in Figure 2b.
However, there is no obvious way to map these weights to GM or GR. For
this paper, we opted to consider only unweighted networks. Furthermore, note
that when a reaction is removed from the metabolic system, the corresponding
networks GB , GM and GR may become disconnected. For a given network, all
metrics are applied to the largest component whilst the small components are
ignored.

Topological metrics For every step of each trial, a number of topological
metrics were computed for each of the three network representations (where
possible). The computed metrics comprise:

Newman's assortativity coe�cient [15]: how likely is it for nodes with similar
degrees to be connected to each other. Calculated for the out-degrees, in-
degrees and undirected degrees of nodes.

Transitivity: the number of triangles in the network divided by the maximum
possible number of triangles in the network. This is computed on undirected
versions of the networks.

Reciprocity: the ratio of reciprocal pairs to all possible reciprocal pairs. A pair
of nodes n1 and n2 is reciprocal if there are bi-directed links (n1, n2) and
(n2, n1).

Eigenvector & betweenness centrality [16]: these metrics measure the importance
of a node in a network; they are applied to undirected versions of the net-
works.

Maximum eigenvalue of the adjacency matrix : this metric is associated with the
e�ciency of dynamic processes (such as virus spreading) on networks and is
computed on undirected versions of the networks.

Average in- and out-degrees of incoming and outgoing neighbors

Clustering coe�cient: for a node n, the number of links spanning n's neigh-
bors divided by the maximum possible number of links that can span n's
neighbors.

Dice coe�cient: if the neighbors of two nodes are the sets X and Y , the Dice
coe�cient of the nodes is 2|X ∩Y |/(|X|+ |Y |), i.e., a measure of how similar
their neighbor sets are. Since this coe�cient is de�ned for pairs of nodes,
a vector of coe�cients is associated with each node. We compute the Dice
coe�cient for all outgoing neighbors, incoming neighbors and also the com-
bination of the incoming and outgoing neighbors.

Reciprocal hopcount: the hopcount between a pair of nodes is equal to the num-
ber of links on a shortest path between them. For each node there is a vector
of hop counts to all other nodes � this was reduced to a single value by com-
puting the mean of the vector. Because the networks are directed, there are
nodes which are unreachable from other nodes and are thus at an in�nite
distance. We dealt with the problem by using the reciprocal hop count val-
ues, thereby converting in�nite distances to zero distances in the reciprocal
version.
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Since GB = GB(M∪R,L) contains two types of nodes, the metrics are applied
separately to its reaction nodes R and metabolite nodes M, giving two sets of
results.

The metrics divide into two groups: metrics that associate a value with a
network and metrics that associate a value with each node of a network. In
order to compare the latter group to growth values (obtained from solving the
linear program), node values (for a given metric) have to be reduced to a single
value that can be associated with the network. A straightforward way to reduce
node values to a single value for the network is to compute their minimum, mean
or maximum values (thereby yielding three metrics). This is the approach that
we took. Some metrics associate vectors of values with each node. For example,
the hopcount associates with a node a list of hopcount values. In this case, we
employ the above approach of computing minima, means and maxima to reduce
complex node values to simple node values. Once that is done, the node values
can be reduced to network values.

In our experiments, many reactions always have zero reaction rates (as pre-
dicted by the �ux balance linear program). These reactions contribute links and
nodes to the network representations whilst their removal does not in�uence
growth. We excluded these reactions when constructing GB = GB(M∪R,L) by
letting R be the set of all reactions that have non-zero reaction rates in at least
one step of one trial andM the metabolites that interact with the reactions in
R.

2.3 Relating growth and topology

Fig. 3: An example of binning for two steps of two trials.

For each trial (i.e., sequence of reaction removals) we compute a sequence of
growth values (computed from the linear program discussed in Section 2.1) and
three sequences of networks, one for each representation. For each network, a set
of topological metrics is calculated. This allows us to relate growth to topology.

An obvious �rst choice for calculating the relationship is, for each individual
trial, to compute correlation coe�cients between the growth sequence and each
of the sequences of topological metrics. However, apparent correlations found
by this method may simply be side-e�ects of the network size decreasing as we
remove reactions. We reduce the impact of this incidental correlation by binning
the steps from all of the trials: trial-step pairs whose corresponding networks have
similar numbers of nodes and links are placed into the same bin. This process is
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illustrated in Figure 3: here one sees network sequences from two trials placed
into bins (the bin width here is 1 for both nodes and links). In our experiments,
we used a bin width of 2 nodes × 4 links � i.e., in a bin, node counts can di�er
by 1 and link counts by 3.

Bin number 1 2 3 4 5

# links 2685-2688 2689-2692 2693-2696 2697-2700 2701-2704

Pearson correlation ρi 0.342 0.286 0.322 0.236 0.172

# items in bin ni 889 935 907 959 936

Table 1: A few bins showing correlations between growth and an unspeci�ed
network metric.

Since a bin contains numerous steps, it is possible to correlate growth with
any of the topological metrics. We used the Pearson correlation coe�cient to
compute, for a given topological metric, a correlation value for every bin. An
example of bin correlations is shown in Table 1 (here binning is only performed
using link counts, with a bin width of 4 links). The per-bin results for each
metric were then averaged, weighted by the number ni of items in each bin:

ρ̄ =
∑

i niρi∑
i ni

= 0.27 in our example. For each topological metric, this yields one

value ρ̄ indicating the strength of its correlation with growth.

2.4 Experimental setup

We used the genome-scale metabolic data set which is available from the UCSD
Systems Biology Research Group website [18]. The website provides a minimal
aerobic growth environment which was used for our experiments. In this exper-
iment,

� the rate of the ATP maintenance reaction (ATPM) is limited to 1
µmol gDW−1 h whilst the acetyl-CoA hydrolase (ACOAH) and the glutamate
synthase for NADH (GLUSx) reactions are disabled;

� the reaction rates of reactions that transport O2, NH4, SO4, Pi, H2O, K, Na
and CO2 are unconstrained.

3 Results and discussion

We performed one thousand in silico reaction removal trials, calculating growth
and all topological metrics (on GB , GM and GR) for each step of every trial. Tak-
ing care to reduce the e�ect of a decrease in the number of links during network
destruction (through binning), we then calculated the correlations ρ̄ between
growth and each of these metrics. We then �ltered our results by considering
only those metrics for which ρ̄ ≥ 0.25 (this threshold was chosen to be small,
but the choice is somewhat arbitrary). The thresholded ρ̄ correlations for GB ,
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Fig. 4: ρ̄ measures between growth and topological metrics for GB , GM and
GR. The post�xes "/min", "/mean" and "/max" indicate how node values were
reduced to single values as discussed in Section 2.2. The mean dice similarity
is computed by taking the mean of a vector (of dice similarity values) that is
associated with a node (as discussed in Section 2.2).

GM and GR are shown in Figure 4 (recall that there are two sets of results for
GB = GB(M∪R,L): one for the metabolite nodesM and one for the reaction
nodes R). First we discuss these results from a purely topological perspective
and then we interpret the biological aspects.

3.1 Topology is weakly correlated with function

It is interesting that most metrics do not correlate well with growth: only a
few ρ̄ values are above the 0.25 threshold. An obvious �rst explanation for this
lack of correlation is that it is possible to remove a reaction without a�ecting
growth (since the reaction may be part of a bypass that is not used when the
cell is functioning normally). However, at a deeper level, the low correlations
may be explained by the indirect relationship between the �ux balance analysis
framework (which measures function) and the network (on which topological
metrics are measured). In �ux balance analysis, growth is the objective func-
tion of a linear program in terms of metabolic �uxes, whilst the topologies of
the metabolic networks are only functions of the stoichiometric matrix. While
the objective function may be changed (perhaps to study a scenario other than
growth maximization) the topology remains unchanged. Thus, correlations be-
tween the objective function and topological metrics depend to some extent on
the objective function.
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3.2 The metabolite-reaction network GB is the best representation

Metabolite-reaction network GB As mentioned in Section 2.1, there are more
reactions than metabolites in metabolic systems. A reaction ties together a small
number of metabolites, while there are metabolites that are involved in many
reactions. In other words, metabolites tie the network together at a high level
and are responsible for the global connectivity of GB .

The ρ̄ correlations for GB are shown in the �rst two bar charts of Figure 4.
The results for the metabolite nodes fall into two groups: those caused by hub
metabolite nodes (light gray bars) and those caused by �loner� metabolite nodes
(dark gray bars), so-called because they are consumed and/or produced by a
single reaction (and therefore they have out- and/or in-degrees of one).

For both the metabolite nodes and the reaction nodes, hub nodes provide
shortcuts through which shortest paths are routed. Removal of a reaction node
that interacts with a hub node may therefore remove a shortcut through which
some shortest paths are routed. Thus the mean reciprocal hopcount is decreased
(and the mean hopcount is increased). This explains the hopcount correlations
for the metabolite and reaction bar charts of GB .

The in- and out-degree correlations of the metabolites are the result of �loner�
metabolites. Removal of a reaction that is the only in- or out-neighbor of a
metabolite reduces the minimum in- or out-degree in the network from one to
zero. More than half of the metabolites in GB are �loner� metabolites, so that
many reaction removals cause such decreases. The out- or in-coreness of a node
is decreased when its in- or out-degree is decreased, which explains the coreness
correlations.

The degree and coreness correlations do not appear for the reaction nodes,
because a reaction removal cannot change the in- or out-degrees of any other
reactions (since those reactions are only connected to metabolite nodes).

Metabolite network GM The third bar chart in Figure 4 shows the results for
GM . The hub nodes in GM have high out-degrees and are out-neighbors of many
nodes. Therefore, they are implicated in the average out-degree correlation of
out-neighbors. Many reaction removals decrease out-degrees of hub nodes in GM
or remove incoming links to them. In the former case, the average out-degrees
of out-neighbors of all nodes that have such a hub nodes as out-neighbors, are
decreased. In the latter case, a node loses a hub node as an out-neighbor, which
lowers the average of the out-degrees of its out-neighbors.

Reaction network GR The out- and in-degrees of GR are negatively correlated
with growth. This is due to a skewed degree distribution: only 104 out of 764
nodes in GR have in- and out-degrees above the mean in- and out-degrees of
GR, while 393 nodes have in- and out-degrees below the means. Removal of a
random node is therefore likely to increase the mean in- and/or out-degree of
GR. The negatively correlated mean dice coe�cient is a result of the negative
correlations of the in- and out-degrees: the average dice coe�cient of a node is
increased if it loses a neighbor with which it shares fewer neighbors than it does,
on average, with its other neighbors.



12 Winterbach, Wang, Reinders, Van Mieghem, de Ridder

GR is much denser than GB and GM because the high degrees of metabolites
in GB cause many reactions in its projection GR to be connected. As a result,
much of the connectivity information is lost. This e�ect is not as pronounced in
GM , since the relatively low degrees of the reaction nodes in GB do not add as
many links to metabolites in the metabolite projection GM .

GB is the preferred network and metabolite nodes are the preferred nodes GB is
the preferred representation of the metabolic system, since it retains most of the
original information and has the highest correlations with growth. Henceforth
we focus only on GB . Some applications, such as clustering, would have to be
applied to a one-mode network. For these cases, the results suggest that the
metabolite network is to be preferred.

3.3 Correlations point to currency metabolites

Fig. 5: ρ̄ measures between growth and topological metrics for GB with currency
metabolites removed.

Many hub metabolite nodes in GB correspond to so-called currency metabo-

lites. We know from biology that currency metabolites play a crucial role in
metabolism: they are energy carriers or cofactors that are used by many reac-
tions. Holme et al. [5] found the currency metabolites of S. cerevisiae to be Hy-
drogen, Water, ATP, ADP, AMP, NAD, NADH, NADP, NADPH, Coenzyme A,
CO2, Oxygen, Phosphate, Diphosphate and Ammonium (for this set they used
the undirected version of GM with information taken from the BiGG database).

To validate the role of these metabolites, we repeated our experiments for GB
with currency metabolites removed (the metabolites were not removed from the
�ux balance linear program, as this would lead to incorrect chemical equations
and it would change the computed growth). Again, we only considered metrics
for which ρ̄ ≥ 0.25. The results are shown in Figure 5.
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As expected, currency metabolite removal causes the correlations due to hub
nodes (involving the mean reciprocal hopcount values) to vanish, leaving the
correlations caused by �loner� metabolites (the degree and coreness correlations).
The betweenness correlation is new and merits an explanation. The absence of
hub nodes (currency metabolites) forces shortest paths to be spread out through
more of the network. A reaction removal is therefore more likely to �break� a
shortest path and to reduce the betweenness of metabolite node on that path
(since fewer shortest paths are then routed through the node).

4 Conclusions

The goal of this study was to determine whether topology and robustness of
biological systems are related. Starting with robustness de�ned as the ability of
a system to maintain its function under perturbations, we focused on metabolic
systems and de�ned (a) function as the growth achievable by the metabolic
system and (b) perturbations as reaction removals from the system.

We showed that a metabolic system is representable as a hypernetwork but
not directly as a normal network. In order to make use of the tools available
from network theory, we considered three network representations of a hyper-
network: the metabolite-reaction network GB , the metabolite network GM and
the reaction network GR.

Then we generated a number of reaction removal sequences or trials, each
of which resulted in the cessation of growth of our metabolic system. Each step
in a trial provided a snapshot of the metabolic system from which growth and
topological metrics of GB , GM and GR could be computed. This allowed us to
calculate a measure of correlation between growth and each of the metrics.

Our results showed that most topological metrics do not correlate with
growth. We classi�ed the correlated metrics into two groups: those caused by
hub metabolite nodes and those caused by �loner� metabolite nodes. This points
to the importance of (a) global connectivity (by hub nodes that tie the net-
work together by connecting to many reactions) and (b) local connectivity (by
metabolites that are produced and/or consumed by few reactions). By iden-
tifying a group of hub metabolites as currency metabolites, we proceeded to
show that the removal of these nodes indeed knocks out the correlations that we
associated with hub nodes, verifying their topological role and their biological
importance. We found that the correlations were the strongest in the metabolite-
reaction network and in particular with the metabolite nodes of this network.
We also found correlations related to global connectivity in the metabolite net-
work. This suggests that metabolites are important for studying the structure
of a metabolic system and that the bipartite metabolite-reaction representation
is to be preferred over the one-mode reduced metabolite representation.

In this work, we have studied the relation between topology and growth. Us-
ing our framework, one can investigate whether other functions of the metabolic
network are related to topology or whether topology has a larger in�uence in
other biological networks (e.g., gene regulation or protein interaction networks).
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Another future research direction would be to consider how the topologies of
subnetworks of interest (such as, for example, the subnetwork containing the
citric acid cycle) change in relation to changes in growth.
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