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Abstract—Nanonetworks is an emerging field of study where
nanomachines communicate to work beyond their individual
limited processing capabilities and perform complicated tasks.
The human body is an example of a very large nanoscale commu-
nication network, where individual constituents communicate by
means of molecular nanonetworks. Amongst the various intra-
body networks, the nervous system forms the largest and the
most complex network. In this paper, we introduce a queueing
theory based delay analysis model for neuro-spike communication
between two neurons. Using standard queueing model blocks such
as servers, queues and fork-join networks, impulse reception and
processing through the nervous system is modeled as arrival and
service processes in queues. Simulations show that the response
time characteristics of the model are comparable to those of the
biological neurons.

Keywords—Nanoscale communication, neuro-spike communi-
cation, intra-body nervous nanonetworks, queueing theory

I. INTRODUCTION

Applications of nanotechnology are being realized from
nano-switches and actuators [1], to intelligent drug delivery
[2], nanoscale sensing [3] and bio-hybrid systems [4]. Al-
though the promise of nanotechnology is huge, the associated
challenges are not small by any means either. Nanomachines
face very small dimensions, scarce processing, limited memory
resources and simple networking capabilities.

The human body is a huge nanoscale communication
network, where individual entities such as organs or cells
communicate by means of nanomachines to make an intelligent
system on a macro scale [5]. Understanding the dynamics
of molecular communication not only helps us advance our
work in development of nanomachines, but also gives a new
perspective to the science of disease and treatment. Many
diseases of the human body can in fact be quantified as various
forms of communication system failures [6].

The nervous system forms one of the most complex com-
munications systems. It is also one of the most studied systems
because of its elegance and importance in the human body.
Nervous diseases such as Alzheimers disease, Schizophrenia
and Parkinsons disease are key challenges for the world in
terms of human disease in the current age.

Although the applications and information in a particular
communication network may differ significantly, the meth-
ods for communication remain similar. Several studies on
molecular communication [5], [6], [7], [8] and [9] target the
nervous nanonetwork to develop communication-theoretical
understanding of the nervous system. These studies result

in the formulation of various models of synaptic channels
under different scenarios. On the other hand, [10], [11] and
[12] introduce models for biological systems based on layered
queueing networks.

The advantage of using queueing analysis for biological
networks lies in the fact that big networks such as central
nervous system and the neural cortex can be viewed on the
whole as a single network, thus making us able to study the
collective behavior of these networks. To date, no work exists
on the modeling of nervous nanonetwork from the queueing
theoretical perspective. The motivation for such a model lies
in a variety of applications from drug delivery to nervous
disorder diagnosis. For example, in case of drug delivery, the
nervous system can be viewed as the wired network of the body
and target-specific drug delivery can be triggered by means
of nerve impulses and neurotransmitters. Parameters such as
the time required for a particular drug delivery and optimal
rates of impulses to produce these scenarios can be viewed as
queueing parameters. Additionally, the diagnostics of nervous
disorders, where reflex latencies help in diagnosis, can benefit
from such a model. Practitioners can move from using basic
reflexes such as patellar reflex to more complex responses to
improve disease diagnostics.

The objective of this paper is to derive a model of nanoscale
neuro-spike communications between one input and one output
neuron by using the fundamentals of queueing theory. We first
develop an understanding of the neuro-spike communication
and identify key blocks of the system. We then model these
blocks using queueing theory implements such as queues and
servers. Finally, we perform an analysis of response time
characteristics of the model.

The remainder of this paper is organized as follows. We
provide a brief overview of neuro-spike communication in Sec-
tion II. Section III presents the impulse transmission through
the axon while Section IV discusses the neurotransmitter
propagation and reception in the synapse. Based on these
analyses, we develop a queueing model of the neuron in
Section V. Results are presented in Section VI and concluding
remarks are provided in Section VII.

II. OVERVIEW OF NEURO-SPIKE
COMMUNICATION

The fundamental task of a neuron is to receive, conduct and
transmit spikes or impulses which are generated in response
to external or internal stimuli. These impulses travel between
various body parts and the central nervous system (CNS).



Pre-synaptic Neuron Post-synaptic Neuron

Axon
Soma

Neurotransmitters

Dendrites

Fig. 1. Communication between a presynaptic and a postsynaptic neuron.

A single neuron can be divided into three main parts which
are the dendrites, the soma or cell body and the axon. The
communication between two neurons starts when an impulse
traveling in a presynaptic neuron, also known as the action
potential (AP), reaches the axon terminal. Fig. 1 shows two
neurons in such a scenario. In order for the AP to traverse
from one neuron to the next, it needs to travel across the cell
gap known as the synaptic cleft. Synaptic communication can
be done either electrically or chemically.

In electrical synaptic communication, APs are transferred
directly between two neurons by means of direct physical
connections between them. On the other hand, in chemical
synaptic communication certain chemicals known as neuro-
transmitters are released in the synaptic space to achieve com-
munication. Since, chemical synapses occur more frequently,
we focus our study on these.

For chemical synaptic communication, when the AP
reaches the axonal terminals of the presynaptic neuron, it
causes membranous sacks called vesicles which are filled with
neurotransmitters to move towards the cell membrane. Both
the cell membrane and the vesicle membrane fuse at this
stage enabling the vesicles to release the neurotransmitters
into the synaptic space. The neurotransmitters drift across the
synaptic space and bind to receptors present on the dendrites
and the cell body of the postsynaptic neuron. The receptors
are ligand-gated channels which open upon binding with a
neurotransmitter. This causes positive Calcium ions (Ca2+),
which are higher in concentration outside the cell membrane,
to flow inside the cell body causing a local depolarization of
the cell membrane. Each of these local polarization causing
channels can be thought to create a potential change known
as Excitatory Post Synaptic Potential (EPSP). The overall
depolarization is a sum of all the EPSP and is proportional
to the size of the stimulus or the respective amount of
neurotransmitters released.

This local depolarization is not powerful enough to traverse
through the entire cell and in fact would need to be amplified
along its way. Once it reaches the Axon Hillock and the depo-
larization is above a certain threshold (membrane threshold of
usually around −50mV from a base value of −70mV )[13],
voltage gated channels Sodium ion (Na+) and Potassium ion
(K+) channels are opened. This forms a positive feedback
opening neighboring voltage gated channels further along the
axonal body to open and causes further depolarization. The
Na+ channels become inactive after a while and that is the
point when the depolarization peaks at around 70mV . The
K+ channels then normalize the cell polarization afterwards.
The AP travels through the axonal body until it reaches the
axonal terminal again causing the same operations as explained

ESPS Generation
Spike Generation

and Axonal
Propagation

DiffusionVesicle Release
Presynaptic

Neuron
Axon

Synapse

Postsynaptic Neuron

Further
Propagation

Fig. 2. Functional block diagram of neuro-spike communication.

above.
A functional block diagram of neural communication is

shown in Fig. 2. We see that the AP in a presynaptic neuron
causes vesicle release in the synapse causing the diffusion
of the neurotransmitter, EPSP generation at the postsynaptic
neuron and spike propagation through the axon. All these
processes can be loosely grouped under two types of trans-
missions namely, the axonal transmission and the synaptic
transmission. Since our model is from a queueing perspective,
we will be looking at these processes in terms of the service
times required by these processes as well as the distributions
of arrivals in these transmission networks.

III. AXONAL TRANSMISSION
In this section, we develop an understanding of axonal

communication and identify the arrival and processing of APs
through the axon. This analysis helps identify the queueing
model for an axon. To simplify additional analysis, we will
further identify dendritic transmission and somatic summation
of the EPSP signals in this section as well.

Axons act as the transmission lines of the nervous system
with diameters on the order of a few micrometers and are either
unmyelinated or myelinated. Myelinated axons are covered by
a sheath of a fatty dielectric substance called myelin. Since the
axons carry electrical signals, insulation due to myelination
creates a positive effect on the conduction enabling a rapid
and better electrical propagation. Once the impulses reach the
end of the axon, they terminate in the axonal terminal causing
neurotransmitter release from vesicles. Although, the process
is very complex, a few studies have identified the real-time
latency of this release operation [13].

A. Arrival of Impulses
Axonal transmission starts with the arrival of impulses in

the axon. Although the impulse sources for CNS are very
diverse, most of these can be modeled as Poisson processes.
In fact, several impulse sources for human nervous system
are already known to be Poisson processes. These include the
arrival rate of photons in human eyes, as well as sensations
through the olfaction or gustation [7] and [14]. Therefore, the
arrival of impulses in an axon can be modeled as a Poisson
process.
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Fig. 3. Cable Theory Model of Axon.

B. Axon as a Cable
The best way to analyze the operation of an axon is to

consider the operation as that of a transmission cable. Cable
theory [15] provides us with such an axon model. Assuming
that passive conduction occurs as the impulse is conducted
through an axon, axons are modeled as cylinders composed
of infinitesimal segments as shown in Fig. 3. Here cm is
the capacitance due to electrostatic forces across the axon
membrane, rm shows the membrane resistance per unit length,
ri is the axoplasmic resistance per unit length within the axon,
ro is the resistance per unit length outside the membrane and
a is the radius of the axon.

The cable equation for the above model by [15] is

λ2
∂2V (x, t)

∂x2
= V (x, t) + τ

∂V (x, t)

∂t
(1)

where V (x, t) is the function for potential difference with
respect to distance and time, λ is the length constant defined
as λ =

√
rm/ri, and time constant τ is given as, τ = rmcm.

The length constant indicates how far a charge can flow
along the cable. Since λ is proportional to the square root
of membrane resistance per unit length, rm, the greater the
values of rm, the farther a charge can travel inside an axon. In
myelinated axons membrane resistance is much higher so their
length constants are higher as well. That is the reason why APs
can travel more reliably for longer distance in much thinner
myelinated neurons in comparison with unmyelinated neurons.
[16] and [17] show that as the frequency of the input signal
to a neuron increases, APs attenuate much faster because the
length constant decrease that is occurring is proportional to
increase in the internal resistance ri. This shows that axonal
transmission has a frequency dependence as well.

The time constant τ determines how fast the membrane
potential responds to a current in the axoplasm. Thus, the larger
the membrane capacitance, cm, the longer it takes for a section
of the membrane to get charged or discharged.

Suppose Vx is the voltage at a given distance x from one
end of an axon, it is given as a solution for (1) by [15] as

Vx = V0e
−x/λ (2)

where V0 is the potential at the point of impulse initiation.
Based on (2), we analyze and compute the time a signal takes
to travel through an axon and the level of signal attenuation
at a certain distance.

C. Conduction Speed of an Axon
One of the parameters most commonly found by exper-

imental studies for various axons is the conduction speed
through an axon. Lengths of various neurons are fairly easy to
find experimentally. Thus, the time required for a transmission
through that axon can be calculated based on the conduction
speed through an axon.

Let us consider an AP traveling along an axon such that
there it faces no attenuation. The conduction speed, s, is given
as the derivative to distance traveled with respect to time.

s =
dx

dt
(3)

If a voltage V (x, t) of the AP is also moving in x direction,
[18] shows that

d2V (x, t)

dt2
=
s2

d
4 · ρ · Im (4)

where d is the diameter of the elements from Fig. 3, ρ =
ri ·pi·a2 is the resistivity of the axoplasm and Im is membrane
current density given by Im = im/π · d. (4) can also be re-
written as

s =

√
d2V (x, t)

dt2
d

4 · ρ · Im
(5)

Thus, the conduction speed of an axon is directly propor-
tional to the square-root of its diameter. This characteristic of
the axonal communication is observed in most experiments
based on axonal communication [13], [17].

In [19], the authors perform this analysis further and
identify the conduction speed of unmyelinated axons as

snm =

√
d

8 · ρ · c2 · r∗
(6)

where c is the membrane capacitance per unit area and r∗ is
the resistance per unit area.

D. Na+ Channel Inactivation
Before an AP is transferred, the axonal membrane is at

rest and Na+ channels are in a deactivated state. In response
to an AP, these channels open, allowing the ions to flow into
the axon and cause the action potential to grow. At the peak
of an AP, when sufficient Na+ ions enter the membrane, the
Na+ channels inactivate themselves. This stops further rise
of an AP and slowly the membrane potential decreases back
to its resting potential. When the membrane potential is low
enough, the channels return to their deactivated state from the
inactivated state.

Mentioning this phenomenon is important because for a
given axon, this causes an additional delay before a new
impulse can enter and propagate through the axon. In [17],
the authors show that the during the inactivation after an AP,
new impulses fail. They also show that the inactivation period
increases at lower temperature, although, for the purpose of
this work we are looking at neurons operating at a physiolog-
ical temperature of 37oC only. Hence, if the inter-arrival time



between two impulses should be larger than the inactivation
period of the Na+ ion channels.

IV. SYNAPTIC TRANSMISSION
In this section, we discuss synaptic transmission which

starts with neurotransmitter release from the vesicles, diffusion
through the synapse and the EPSP generation at the soma
of the postsynaptic neuron. Neurotransmitter release can be
identified by the arrival process in a queueing network whereas
the diffusion and EPSP generation constitute the processing of
the synaptic queueing network.

A. Neurotransmitter Arrival
Synaptic transmission starts by the arrival of neurotrans-

mitters in the synapse. Neuro-spikes from the axon cause
vesicles to move towards the cell membrane of the axon
terminal and fuse with it. The neurotransmitters housed in
the vesicles are then released in the synapse. Thus, synaptic
neurotransmitter release can be thought of as the process by
which the neurotransmitters arrive in the synaptic medium.

Neurotransmitter release is a random process in that even
with the presence of neuro-spikes, vesicles might not be
released or vice versa. The probability of such a scenario is
quite low [20], therefore, if we ignore such cases, the release
process depends directly on the arrival process of spikes.

B. Diffusion Through Synapse
The neurotransmitters released in the synapse reach the

postsynaptic neuron by means of diffusion through the synaptic
medium. The linear diffusion equation governs this process of
diffusion [7] given as

∂c(x, t)

∂t
= D∇2c(x, t) (7)

where c denotes the concentration and D denotes the diffusion
coefficient. Considering gaussian diffusion, the solution of the
diffusion equation in an n-dimensional space from a position
x is calculated by the theory of Greens function as

G(x, t) = (4πDt)−n/2exp

[
−(x− x′)2

4Dt

]
(8)

where the Greens function tells us how a point of probabil-
ity density initially at position x evolves over time and n-
dimensional space. The above PDF exists under the condition
of normalization stated as∫

G(x, t)dx = 1 (9)

Assuming that diffusion for the current problem is a
homogeneous process in one dimension, we modify (8) as

G(x, t) =
1√
4πt

exp

[
−(x− x′)2

4t

]
(10)

(10) along with the condition provided in (9) describes the
time distribution for diffusion of a neurotransmitter from one
neuron to the next.

Further 
Propagation

Presynaptic 
Axon

EPSP summation 
and Postsynaptic 

propagation 

Diffusion through 
synapse

Presynaptic axonal 
propagation

.

.

.

Neurotransmitter queues 
on ligand-gated servers

Fig. 4. Single-input single-output neuron queue model.

C. EPSP Generation
When neurotransmitters reach the ligand-gated channels

present on the dendrites and soma of the postsynaptic neuron,
they attach themselves to these channels and a flow of ions
starts between the cell and its surroundings. As discussed
earlier, the dendrites and axons have a similar structure and
operation. The ion inactivation in dendrites is however, due to
Ca2+ ions instead of the Na+ ions. The flow of ions causes
a change in membrane potential generating EPSP pulses. The
analysis presented for axons in Section III is also valid for
dendrites.

The EPSP generated at each of these ligand-gated channels
is independent from EPSP generated from other channels.
Subsequently, the cell body sums these independent EPSP to
generate a potential difference. If this potential difference is
above the threshold voltage, an AP is generated in the post-
synaptic neuron, following a positive feedback amplification
of the EPSP. Otherwise, the EPSP pulse dissipates without
causing an AP in the postsynaptic neuron.

The number of neurotransmitters that successfully attach to
the ligand-gated channels depends on the number of channels
available at a time and the concentration of the neurotrans-
mitters in the synapse. The number of neurotransmitters is
usually very large as compared the channels so the excessive
neurotransmitters either wait in the synapse till they are served,
degraded or the presynaptic neuron re-uptakes them. This
process is analogous to clients leaving a queue or packets being
dropped from a queue after a certain time without service.

V. NEURON QUEUEING MODEL
Now that we have analyzed the key aspects of neural

communication, we model it using a queueing perspective. To
view the neuron from a queueing perspective, we need to break
down the neuron model into queueing constituents namely, the
servers and the buffers/queue.

A diagram for the system is provided in Fig. 4. We assume
that there are two constituents of the system. The first con-
stituent is composed of just a single server. This server models
the propagation of neuro-spikes through the presynaptic neuron
axon. The absence of a queue in the network relates to the fact
that an axon can serve only one impulse at a time and does
not contain any buffer where another incoming impulse can
queue. Therefore, until an impulse passes through the entire
system, we cannot have another impulse enter the axon. The
spikes generated by the axon server then proceed to release the
neurotransmitters in a synapse. The discipline of the axonal
server is first come first serve (FCFS).



The second constituent of the system is a fork-join queue-
ing network that deals with neurotransmitter release, synaptic
diffusion, dendritic propagation and EPSP generation. The
number of branches for this fork-join synaptic queue is be
equal to the number of ligand-gated channels available for
neurotransmitters attachment. To simplify the process, we
assume that all the services of the synaptic communication
are performed at the ligand-gated channels and each such
receptor channel acts as a server. The synapse would thus act
as the buffer of the system. The identification of the synapse
with a queue is natural because when one neuron is trying
to communicate with another, its respective neurotransmitters
remain or buffer in the synapse while a previous impulse is
being serviced by a neuron.

The summation of the EPSP in the soma may or may
not result in further spike generation. Thus, depending on a
threshold it might end up in a sink or might be transmitted
through the axonal body. The probability of failure pf to go
beyond the threshold voltage is usually quiet low because
neural communication is quite reliable as discussed in [13]
and [17] but it is an essential parameter for any reliable model
reliable model of communication [7]. In case there is a failure,
further axonal propagation does not happen. Therefore, the
second network is composed of single server queues with
FCFS discipline queues in parallel.

A. Analysis of the Axonal Server
1) Arrival Process: Any sum of EPSP above the threshold

level of the presynaptic neuron generates an AP in the axon.
The arrival of this EPSP excitation to the presynaptic neuron
is a stochastic process. Since there can be several independent
sources that produce the excitation, the arrival process at the
axonal server can be considered as a Poisson process.

2) Response Time: To determine the response time of an
axon, we should first look at what constitutes the service of
an axon. After an impulse enters an axon, as long as it is
propagating within an axon, we consider it under service.
Additionally, after an impulse leaves, the axon cannot have any
further impulses pass through it until the Na+ ion channels
return from their inactivation state. Thus, the total response
time of an axon is a summation of the Na+ ion inactivation
period and the response time for propagation through the axon
body

RA = RNa +RAP (11)

where RA is the average total response time of an axon, RNa
is the average time it takes for Na+ ion channels to become
reactivated and RAP is the average response time for impulse
propagation through the axon.

Considering that the axons of a particular neuron type
have an average length of E[LA], and conduction speed s,
the average response time for propagation through such axons,
RAP , is given as

RAP =
E[LA]

s
(12)

Therefore, using (5), (6) and (12), we can provide expres-
sions for response time of an axon for any general case and
for an unmyelinated neuron case as

RA = RNa +
E[LA]√

d2V (x,t)
dt2

d
4·ρ·Im

(13)

RA−nm = RNa +
E[LA]√

d
8·ρ·c2·r∗

(14)

We see that the response time of the axonal server depends
on the conduction speed, diameter, length, resistivity of the
axoplasm, the Na+ ion inactivation period and several other
physiological factors for an axon.

B. Analysis of the Synaptic Transmission
1) Arrival Process: The arrival distribution of the synaptic

distribution depends on the departure distribution of the axonal
server. Several works on distributions of firing rate of neurons
such as [21] and [22] have identified the distribution of firing
neurons to be Poisson distribution. This is apparent from the
analysis for axonal server given above as well. A Poisson input
distribution to the axonal server, if deterministically served,
generates an output which is also Poisson distributed.

2) Response Time: The service time of the fork-join synap-
tic queue network involves several processes such as time taken
for diffusion through the synapse and the dendritic propa-
gation. In such scenarios, we often assume network service
time distributions to be some unknown general distribution.
Therefore under the analysis presented, we can say that the
fork-join synaptic queue is a network of parallel M/G/1 queues.

The total response time of synaptic transmission RS is a
summation of the average dendritic transmission time RD and
the average response time for diffusion through the synapse
RN .

RS = RD +RN (15)

Assuming the average dendritic length of E[LD] and a
dendritic diameter of dD, the average propagation time through
a dendrite can be a modified form of (14) as the dendrites are
also not coated by myelin [23].

RD = RCa +
E[LD]√

dD
8·ρ·c2·r∗

(16)

where RCa is the average Ca2+ ion channel inactivation time.
It is difficult to model fork-join queues analytically and in

fact, to date, analytical results exist for only two server systems
[24]. Usually for more than two queues, approximations for
mean response time exist in case of homogeneous servers.
This suits the current analysis because the servers we are
considering here are homogeneous in nature.

We assume that the parallel queues of neurotransmitters in
the synapse are independent and identically distributed (iid).
In [25], the authors have presented an approximation of the
mean response time of a set of iid fork-join queues with M/G/1
queues in parallel service as

RN ≈ R1 + σ1FNαN (17)



where R1 and σ1 are the mean response time and standard
deviation respectively for one M/G/1 queue with no fork-join
properties. FN is a constant which scales according to the
service time distribution of the servers and αN is a scaling
factor that helps scale simulation results according to the
results of a physical experiment.

If we consider a unit distance between the two neurons
through the synapse, the PDF of neurotransmitter diffusion
given in (10) can give us a service time distribution of
neurotransmitter service for unit distance case. It should also
be mentioned here that a normalization constant according to
(9) also has to be multiplied so that the PDF does not exceed
the unit area under the curve condition. Thus, the distribution
of service time for a single M/G/1 neurotransmitter service is
given as

G(t) =
1√
4πt

exp

[
−1

4t

]
exp

[
−t

2.57 · π

]
(18)

where the normalization constant exp
[
−t

2.57·π

]
is approximated

numerically to a precision of 10−6.
Since the failure rate of neurotransmitters generating an

AP from their individual EPSP is quiet low in case of a valid
stimulation to the presynaptic neuron [17], there must be a
high degree of synchronization in their diffusion though the
synapse. In other words, this means that the mean response
times of each of the fork-join queues is quite similar. Thereby,
the standard deviation term from (17) can be neglected for
successful transmission case resulting in

RN ≈ R1 =

∫
tG(t)dt (19)

C. Total Response Time
Both the axonal server and the fork-join synaptic queue are

in series, therefore, the overall mean response time of a neuron
to a single impulse is the summation of the mean response
times of the axonal transmission and the synaptic transmission.

R = RS + (1− pf )RA (20)

(20) can be written in its explicit form as

R = RD +

∫
tG(t)dt+ (1− pf )

[
RNa +

L√
d2V (x,t)
dt2

d
4·ρ·Im

]
(21)

This shows that the mean response time of a neuron de-
pends on the diffusion characteristics, ion channel inactivation
periods and the physical parameters of the neuronal structure.
These characteristics match the results of previous neural
communication models [6], [7], [8] and experimental results
in [13], [14], [16], [17] and we see that the response time
characteristics depend on propagation speed, axonal myelina-
tion and the diffusion distance through the synapse. Although
our work is aimed at the Human nervous system, the results
generated can be applied to any neuron type with provided
characteristics.

An expression similar to (21) can be found specifically for

unmyelinated neurons by using the value of RA−nm instead
of RA in (20).

D. Impulses in the System
Apart from response time, other important measures of any

queueing network are the number of customers in the system
and its server utilization. These parameters become especially
more useful when we are talking about large networks of
queues. In our current scenario, customers in the system
correspond to impulses present in a neuron.

We first consider the axonal server which is a single server
system without any queue. Since there is no queue, at any
given time, only one impulse can be served by the axon.
Any other impulses that may come are rejected or dropped
until the axon is ready to receive impulses again. The server
utilization over a period of time, however, depends on the
rate of impulse arrival at the axonal terminal. For any single
server system, the arrival rate should be less than the service
time for stable operation. If this rate is equal or beyond, the
server utilization is hundred percent or in other words the
neuron is maximally stimulated. The human body has several
mechanisms in place to avoid such scenarios. However, tetanic
contractions are one such example where a motor unit (muscle)
is maximally stimulated by its associated neuron. This causes
violent twitches in the muscles and can be lethal in certain
cases. These contractions are usually the result of tetanus or
the effect of toxic substances.

For the fork-join synaptic network, a queue exists in the
synapse. To be stable, the arrival rate of the fork-join queue
must be less than sum of the service rates of the servers. The
number of neurotransmitters in the queue in such a case can
be calculated by Littles law which states

N = λQRS (22)

where N is the number of neurotransmitters in the queue, λQ is
the arrival rate in the queue and RS is the mean response time
of the synaptic system. It must be noted here that the number
of neurotransmitters in the synapse would be more than the
number of neurotransmitters in the queue. This is because
neurotransmitters stay in the queue until they are served, they
degrade or the presynaptic neuron re-uptakes them.

VI. SIMULATION RESULTS

A wide variety of neurons occurs naturally, with their own
respective response types. Evolution over millions of years
fine-tuned these various types of neurons to their specific tasks.
For all this variability, the characteristics of most neurons are
similar. Various characteristics of neurons such as propagation
speed through axons, effects of myelination, failure rates of
axonal communication, synaptic distances are known from
several studies [13], [23], [26], [27], [28]. Some of the key
results are compiled in I. Using these known parameters
and assuming some of unknowns, we demonstrate that the
characteristics of our current model are near a physical neuron
by simulations conducted in MATLAB environment.

Authors of [35] identify the Na+ ion absolute refractory
period in human motor neurons to be nearly 2.65± 0.65 ms.
It should, however, be noted that this refractory period might
vary with stimulus strength [36], but since it is a small change,
it can be neglected when the analysis of an entire system is



Fig. 5. The knee-jerk reflex arc [37].

being considered. Additionally, the time required for vesicle
release is identified in real-time by the authors of [13] to be
nearly 1.3 ms. We would be using the mean value of 2.65
ms for Na+ ion absolute refractory period and 1.3 ms as the
vesicle release latency in our analysis henceforth.

According to [24], the synaptic cleft between a presynaptic
and a postsynaptic neuron is approximately 20 nm in humans.
Furthermore, the probability of failure pf of AP generation is
taken at 3% according to the results of [17]. By (11), the time
for diffusion of neurotransmitters with at least 97% confidence
interval for a synaptic cleft width of 20 nm is derived to be
nearly 0.7 ms.

Using these known parameters and assuming some of
unknowns, we simulate a variety of scenarios in the next
sections in MATLAB environment.

A. Case study of a nervous circuit: the knee-jerk reflex arc
1) Overview: One of the key advantages of using a queue-

ing theory is the ease with which it can look at complex
networks to find the average delays faced by packets. Under
this motivation, we study a simple reflex action of the human
body, known as the knee-jerk reflex, which is often used by
physicians to test nervous diseases of the lower spinal cord.
The knee-jerk reflex is an example of a monosynaptic nervous
circuit in the body. This reflex is a reflex of proprioception
which helps maintain posture and balance, allowing to keep
ones balance with little effort or conscious thought. The
process of eliciting a knee-jerk reflex is detailed in Fig. 5.

Striking the ligament of the knee with a reflex hammer just
below the patella stretches the muscle spindle in the quadriceps
muscle. Muscle spindles are sensory receptors present inside

TABLE I. AXON PARAMETERS [13][23][26][27] [28].

Type Myelin Diameter Propagation Speed
Alpha Motor Neurons Yes 13− 20µm 80− 120m/s
Gamma Motor Neurons Yes 5− 8µm 4− 24m/s
Type I Sensory Neurons Yes 13− 20µm 80− 120m/s
Type II Sensory Neurons Yes 6− 12µm 33− 75m/s
Type III Sensory Neurons Thin 1− 5µm 3− 30m/s
Type IV Sensory Neurons No 0.2− 1.5µm 0.5− 2.0m/s
Preganglionic Neurons Yes 1− 5µm 3− 15m/s
Postganglionic Neurons No 0.2− 1.5µm 0.5− 2.0m/s

Fig. 6. Queueing model for knee-jerk reflex.
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Fig. 7. Simulation of knee-jerk reflex over a range of propagation speeds.

a muscle which detect changes in the length of the muscle.
These spindles then produce a signal which travels back to the
spinal cord via a sensory neuron and synapses in the L4 spinal
segment.

The sensory neuron synapses with two motor neurons. A
femoral motor neuron then conducts the impulse back to the
quadriceps femoris muscle, triggering its contraction. Through
an interneuron, a tibial motor neuron carries the signal to the
hamstring muscle to relax it. This contraction, coordinated with
the relaxation of the hamstring muscle causes the leg to kick
[37].

2) Experimental results: Since the knee-jerk response is a
very simple and efficient way to detect nervous diseases, it has
been the center of various scientific studies for more than a
hundred years. Many studies are present where the latencies
from the time of stimulation to the time of response have been
conducted. In [38], the knee-jerk reflex latencies are found and
further divided as reflex latency, which is the time taken by
the nervous components of the reflex arc, and the reflex motor
time which is the time required by the muscles to move after
receiving signals from motor neuron.

3) Queueing model of knee-jerk circuit: Based on our
discussion of the knee-jerk reflex, we present the queueing
model for the circuit in Fig. 6. Application of an external
impulse to the knee produces sensations in the muscle spindle.
The muscle spindles synapse with a sensory neuron making the
first fork-join synaptic queue. This queue feeds the resultant
summed EPSP signals to the Sensory neuron server. The
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Fig. 8. Effect of propagation speed on response time.

sensory neuron is further connected with two fork-join queues,
one for the motor neuron of qudricep and the other with
an inhibitor interneuron. We can consider two independent
fork-join queues for each of the nervous connections because
the amount of neurotransmitter released is much higher than
number of gates for either of the connections. The interneuron
is further connected with the hamstring muscle though another
fork-join queue. Each of these neurons has an axonal server
as well.

4) Simulation of knee-jerk circuit: We now move on to
simulate our knee-jerk reflex arc model. The average axonal
lengths of the sensory and motor neurons for the knee-jerk
reflex have not been estimated in any study, therefore, we have
to approximate these. Since the axons of the sensory and the
motor neurons run the length of the thigh to the base of the
spinal cord near the hip, a good approximation would be to use
the average distance between the hip and knee joint. According
to US Center for Disease Control (CDC) statistics [39], the
average upper leg length for males and females aged 2029 is
approximately 40 cm. Using (21), we simulate for the entire
reflex arc over the conductions speeds for the range of values
provided in Table 1 and show the results in Fig. 7.

The shaded region of the graph represents the range of
values for reflex latency as described by [38]. We see that a
significant number of result data points fall within this range.
This shows that application of the current model to the knee-
jerk reflex nervous circuit gives similar results to those found
by experimental studies. The results can be further improved if
axonal lengths and the latencies are measured from the same
population or studies such as [35] are conducted on more
subjects.

B. Effect of Propagation Speed
Propagation speed is one of the key parameters found by

most studies in neural operation. Usually, larger animals have
higher propagation speed through the axon as the APs have
to travel over a larger distance and give comparable response
times as those of smaller animals [13]. Propagation speed
also depends on the myelination of neurons, with myelinated
neurons having higher speeds.

Assuming unmyelinated neurons from the human cortex
and keeping a fixed response time across a unit length synapse

of (300µsec) and the length of an axon as 10 microns, we
generated Fig. 5. It shows that the as propagation speed
increases, the response time decreases. In other words, we can
say that as the signal travels longer distances over the same
period of time because of a higher propagation speed. The
result agrees with the vast majority of studies done on neurons
[13][18][28] which show that higher propagation speeds result
in quicker response from the neurons.

C. Effect of Axon Diameter
As discussed during the calculation of propagation speed,

the diameter of an axon is directly proportional to its propaga-
tion speed. Taking the case of unmyelinated neuron, we varied
the diameter of the axon to generate results shown Fig. 6. The
values for capacitance per unit area, c, is taken as 1µF/cm2,
the value resistance per unit area r∗ is taken as 2000Ω/cm2

and the resistivity is taken as 100Ωm according to [23]. We
see that as the diameter is increased, the propagation speed
increases which in turn cause the response time to decrease.
The response time characteristics are similar to those observed
physical experiments in [13] and [23].

D. Voltage Decay along Myelinated and Unmyelinated Neu-
rons

The Human nervous system contains both myelinated and
unmyelinated neurons [14]. Myelinated neurons are typically
found in sensory and motor neurons while non-myelinated
neurons are found in the brain and spinal cord.

Voltage decay along the axonal length is plotted in Fig. 7
using (2). We assumed that the AP was at a maximum potential
of 70mV at the start of two neurons, one myelinated and one
unmyelinated. For a myelinated neuron, the value of membrane
resistance rm is about 10 to 2000 times that of an unmyelinated
neuron [23] depending on the thickness of the sheath of myelin
outside the axon. For our current result we used a value
of 20 times. The resulting figure shows that over a similar
length, the signal of the unmyelinated neuron decays more
quickly. This was expected because as rm increases, the length
constant λ increases and the signal can travel longer distances.
An interesting fact here is that as the membrane resistance
increase for myelinated neurons, the membrane capacitance
cm decreases. This keeps the value of the time constant τ
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Fig. 9. Effect of axon diameter on response time.
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given by τ = cmrm nearly unchanged. The result agrees with
experimental results that larger animals, needing slower AP
decay, usually have myelinated neuron which operate at higher
propagation speeds [13]. Similarly, sensory and motor neurons
have myelination because they have to carry impulses over
longer distances as compared to impulses carried over much
smaller distances carried by the unmyelinated neurons in the
human brain.

E. Effect of Frequency
The frequency of the input to a neuron is directly propor-

tional to the internal resistance ri and results in a decrease in
the length constant. The results of Fig. 8 are generated using
the PDF provided by (18) for a unit diffusion distance. Our
results agree with those of [7] and [17] which state that as
the frequency of the input signal to a neuron increases, the
response time increases as well.
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VII. CONCLUSION

In this paper, we characterized neuro-spike communication
between a presynaptic and a postsynaptic neuron by providing
a queueing theory based model of the neuron. The model was
evaluated on the basis of its mean response time characteristics.
We found that the response time of neurons depends on a
host of features including their environment, type of neuron,
their physical dimensions and the input signals they are being
provided by their respective stimuli. We also motivated the
use of our technique and applied it to knee-jerk reflex arc.
Our results agree with experimental finding regarding the
characteristics of neurons. The model is very flexible and can
be applied to neurons from other animals as well.

The current model can be used to gauge the response time
characteristics of bio-inspired networks for new nanomachines
and it may also help build new benchmarks for the study of
the nervous system. Our future works aim to develop queueing
based network models for more complex neural circuits such
as those involved in human memory to understand the network
behavior of sensing.
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