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Abstract: Regarding biological visual classification, recent series of exper-
iments have enlighten that data classification can be realized in the human
visual cortex with latencies of about 100 ms, which, considering the visual
pathways latencies, is only compatible with a very specific processing architec-
ture, described by the so-called Thorpe model.

Surprisingly enough, this experimental evidence is in coherence with al-
gorithms derived from the statistical learning theory, following the work of
Vapnik. More precisely, there is a double link: on one hand, the Vapnik the-
ory offers tools to evaluate and analyze the Thorpe model performances and
on the other hand, this model is an interesting front-end for algorithms derived
from the Vapnik theory.

The present contribution develops this idea and experiments its perfor-
mances using a tiny sign language recognition experiment.
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Un classificateur déterministe biologiquement
plausible

Résumé : En ce qui concerne la classification visuelle biologique, des ex-
périences récentes ont permis de mettre en lumiére le fait que le cortex visuel
humain pouvait discriminer des objets de son environnement en 100 ms, c’est
a dire avant méme de les avoir réellement analysés, ce qui n’est compatible
qu’avec une architecture trés spécifique, décrite dans le modéle de Thorpe.

Cette évidence expérimentale est tout a fait cohérente avec les algorithmes
dérivés de la théorie statistique de I’apprentissage issue des travaux de Vapnik.
Plus précisément il y a un double lien: d’une part la théorie de Vapnik offre
un outil pour évaluer et analyser le modéle de Thorpe, d’autre part ce modéle
est un pré-traitement intéressant pour des algorithmes issus de la théorie de
Vapnik.

La présente contribution développe cette idée et la teste a travers une
expérimentation de reconnaissance en langue des signes.

Mots-clés : Classificateur neuronal, Apprentissage supervisé, Dimension de
Vapnik, Modéles biologiques
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1 Introduction: biological classification is a fact

Biological visual classification is a well-known and very common, but still
intriguing fact. As illustrated in Fig. 1, an “object” is recognized in very
extreme situations: here, even if there is no explicit visual cues (edge, texture,
etc..). For subjects not aware of this picture, the recognition usually takes
about a second. A step further, it appears that this classification is made
“before” any visual bottom-up analysis: here, we seem to recognize the dog
itself before being able to perceive some of the dog silhouettes edge or texture.
In other words, data classification seems to lead to visual analysis, contrary to
earlier views of visual data processing [40] and a bottom-up processing, with
extraction of some “symbolic” information is not likely to be the front-end of
such data classification mechanism.

More generally, the ability to group stimuli into such categories is a funda-
mental well-established cortical cognitive process (e.g [24]).

Figure 1: The recognition of the dog in this picture (image devised by R.C.
James) occurs “before” its silhouette or shape is perceived. This picture is well
known because computer vision scientists confessed not being able to analyze
it [40].

In order to avoid any ambiguity, let us state that, in the present work, data

classification simply means being able to put a unique label on a given data
input (e.g. “oh, there is a dog”). This differs from categorization (e.g. [1])

RR n® 4489-2



4 Thierry Viéville and Sylvie Crahay

where not only a label but a more complex “semantic structure” is extracted
from a given data input. The fact this label is unique is illustrated in Fig. 2,
where an ambiguous picture is presented, with two possible classifications. At
a given time, only one alternative is perceived.

Figure 2: An example of “multi-stability” picture: the young women’s chin is
the old woman’s nose. (originally published by W.E. Hill in 1915 as “My wife and
my mother-in-law”). The very well known fact, here, is that, at a given time,
either the young zor the old woman is perceived, but neither both of them,
nor any intermediate shape.

Recent series of experiments have enlighten this biological mechanism: data
classification can be realized in the human visual cortex with latencies of about
100 ms [51] which, considering the visual pathways latencies [42], may only be
compatible with a very specific processing architecture and mechanism, the
so-called Thorpe model. Even “high level” visual data classification such as
face recognition [17] as pointed out recently by [50] can be realized at such a
very fast rate.

This is an experimental evidence that data classification leads to visual
bottom-up analysis and not the other way round, for the simple reason that
there is enough time only to do it in the former way.

This may be viewed as a truism, but when considering many data clas-
sification biological models (see e.g. [33| for a review) or statistical artificial
algorithms (see [36] for an overview) it appears that it is not the case.

INRIA



A deterministic biologically plausible classifier 5

Surprisingly enough, this experimental evidence is in coherence with al-
gorithms derived from the statistical learning theory, following the work of
Vapnik: the architecture of the derived algorithms have the same architecture
as what has been proposed by [52]. More precisely, there is a double link: on
one hand, the Vapnik theory offers tools to evaluate and analyze the Thorpe
model and on the other hand, the Thorpe model is an interesting front-end for
algorithms derived from the Vapnik theory.

The goal of this work is to develop this double link.

In a 1st section we review! the Thorpe model and describe its compu-
tational properties. In the next section we revisit the well known nearest-
neighbor classifiers because this may be one of the simplest way to explain
the concepts of the Vapnik theory we have to considered here. Applying this
piece of theory, we propose in the third section a notion of “optimized nearest-
neighbor classifier” which: (i) statistical dimension is minimal and which (ii)
seems to be the best computational representation of the Thorpe model. Ex-
perimentation of this mechanism is reported in the last section.

2 Computational properties of the Thorpe model

As pointed out in the introduction, data classification can be realized in the
human visual cortex with latencies of about 100 ms [51] as detailed in Fig. 3
. Indeed, not all visual information can be analyzed on the basis of this first
wave of information processing (e.g. facial expression or identity, or complex
stimulus recognition as proposed in Fig. 1 or 2 are only available later) but
object “labelization” is already performed when such a cognition occurs.

More precisely, such latencies [42] are only compatible with a specific feed-
forward and straight-forward neuronal architecture [52], as schematized in
Fig. 4, with two pathways: (fast) data classification and category learning.

Let us review and analyze data classification and then discuss category
learning.

L About footnotes Since this paper presents material from both computer science and life
science, we have introduced several footnotes reviewing basic facts for both sizes, providing
the reader with a self-contents document.

RR n® 4489-2
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Figure 3: Primate visual data classification, from [52] with permission: “Primates
can categorize complex visual stimuli very quickly, with reaction times that average 250 to 260 ms but that
can be as short as 180 ms. Depicted is a plausible route between the retina and the muscles of the hand
during a categorization task. Information from the retina is relayed by the lateral geniculate nucleus of
the thalamus (LGN) before reaching V1, the primary visual cortex. From there, processing continues in
areas V2 and V4 of the ventral visual pathway before reaching visual areas in the posterior and anterior
inferior temporal cortex (PIT and AIT), which contain neurons that respond specifically to certain objects.
The inferior temporal corter projects to a wvariety of areas, including the prefrontal cortez (PFC), which
contains the visually responsive neurons that categorize objects (1). To reach the muscles in the hand, signals
probably need to pass via the premotor cortex (PMC) and primary motor cortez (MC) before reaching the
motor neurons of the spinal cord. For each processing stage, two numbers (in milliseconds) are given: The
first is an estimate of the latency of the earliest neuronal responses to a flashed stimulus, whereas the second

provides a more typical average latency.”

Reviewing data classification in the brain

The underlying architecture of the data classification pathway of the Thorpe
model may be decomposed in two blocks:

1. from the stimulus input s a very high dimensional array of “internal
values” values x = ¢(s) is computed,;

2. from a subset of this vector of values x the data classification, i.e. the
detection of a “label” r = C(x), is performed in “one step”.

INRIA
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Figure 4: An abstract simplified view of the Thorpe model and its relations
with hippocampal areas, see text for details.

From stimulus input to internal values.

The complex cellular characteristics of the parietal and ventral? division of
the visual system make it especially suitable to provide various combinations
of the data input. Such combinations should help for data classification, as
discussed in the sequel.

2 About the “ventral” visual pathway. Prior to the inferior temporal cortical area, is the
so called parietal/ventral pathway (sometimes improperly called “parvocellular” pathway),
neurons in the inter-blobs of V1 project to the pale stripes of V2. This pale stripes of V2
project to the inferior temporal cortex. Other feed-forward pathways include the V4 visual
area, see [6] for general review. This pathway is composed of feature detectors (simple,
complex and hyper-complex cells) (e.g. [35] for an introduction). Neurons in this pathway
show a low sensitivity to contrast, high spatial resolution, and low temporal resolution or
sustained responses to visual stimuli. See for instance [20], Chap 2 for a discussion.

RR n® 4489-2
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In the case of fast data classification, the magnocellular® pathway of the
parietal /ventral division of the visual system is involved, as asserted by [16]
where it is demonstrated that rapid categorization of natural scenes is color
blind.

Here we consider the detection of static visual information, while data
classification of dynamic visual events involves other cortical tracks* where

motion detection occurs®.

From internal values to data classification.

A step further, neurons found in the inferior temporal (IT) cortex respond
to very complex stimulus features (e.g [8]), regardless of size or position on
the retina. For instance, some neurons in this region respond selectively to
faces of particular overall feature characteristics. Damage in this area induce
disorders® of object recognition. There are many neuro-physiological evidences

3 About (magno,/parvo)cellular streams. There are two classes of cells from the retina and
LGN: magnocellular, and parvocellular. These two cell types are contained in different parts
of the LGN, and they have different response properties: (i) magnocellular cell receptive
fields are 2-3 times larger than parvocellular cell receptive, fields parvocellular have better
acuity, resolution magnocellular have better sensitivity, magnocellular cells respond well to
moving stimuli, whereas parvocellular cells do not parvocellular cells respond well to color
stimuli, whereas magnocellular cells do not.

The magnocellular pathway (older than the parvocellular in phylogenetics) continues the
processing of visual detail leading to the perception of shape in area V3 and movement in
areas Vb and MST. It has less synaptic relays than the parvocellular pathway, but is faster.

4 About the “dorsal visual pathway. Here a second visual cortical pathway, parietal an dor-
sal, in which the neurons in layer 4B of V1 project to the thick stripes of V2 is considered.
Area V2 then projects to V3, V5 (or MT, middle-temporal cortex), and MST (median supe-
rior temporal cortex). This pathway is mainly an extension of the magnocellular pathway,
but not only.

5About V5. Simplifying the situation: cells in V5 are particularly sensitive to small
moving objects or the moving edge of large objects; cells in dorsal MST respond to the
movement of large scenes such as is caused with head movements; cells in ventral MST
respond to the movement of small objects against their background. See for instance [20],
Chap 10 for a discussion.

5Common examples of such disorders include visual agnosia, or the inability to identify
objects in the visual world, and prosopagnosia, a subtype of visual agnosia that affects
specifically the recognition of once familiar faces.

INRIA



A deterministic biologically plausible classifier 9

(e.g. [20, 45]) about the fact that the visual temporal areas’ function is related
to data classification.

Discussing the “grand-ma” neurons behavior.

At a computational level, the neuronal outputs of the TE and STS transform
feature’s maps of objects into object files (e.g. [24]). With this kind of behav-
ior, such neurons are sometimes called “banana” or “grand-ma” neurons [20)|
because they selectively respond during object recognition.

This must be understood (see e.g. [45] Chap 8 for a discussion about the
IT neuronal behavior) with the following properties:

e there is not a unique “grand-ma” neuron for a given “grand-ma”: indeed,
several neurons code different configurations of a given object, for in-
stance depending on its visual aspect (e.g. its 3D orientation). In other
words, we must have several prototypes for a given object;

e we must have not only “grand-ma” neurons but also “no-grand-ma” neu-
rons: indeed, the detection of the occurrence of an object must be learn
not only with examples where the object is present, but also with exam-
ples where the object is absent, in order to discriminate between these
two situations. As a consequence the “no-object” case must be also coded
and the object recognition is a relative comparison of both cases;

e “grand-ma” neurons also partially respond to object with are not only
“grand-ma’”: since we may have coded examples where the object occurs
with other objects, i.e. we may have coded “grand-ma with a banana”,
“srand-ma with john-smith” etc.. in order to be able to detect “grand-
ma’” in several situations, it is clear that these neurons also respond to
other objects.

7 About IT. The inferior temporal cortex is though to consist of three parts: The TEO
(the occipital division of the intra-temporal cortex), the TE (the median division), and the
STS (superior temporal sulcus).The TEO is used for making discriminations between 2-
D patterns which differ in form, color, size, orientation, or brightness. The TE is used for
recognition of 3-D objects. Both the TE and STS are thought to be used in facial recognition
and in the recognition of familiar objects. The STS may be the place in which the feature
maps of objects (which contain separate information about each primitive of an object, such
as color, orientation, or form) become object files.

RR n® 4489-2



10 Thierry Viéville and Sylvie Crahay

With these considerations, the selection mechanism of the data category
may be viewed as a simple nearest-neighbor mechanism: i.e. for a data, the
mazimal proximity to the prototypes is selected, the data category being the
proximal prototype’s category.

In the computer implementation of the Thorpe model (called spike-net, e.g.
[14]) such “nearest-neighbor” mechanism behavior is implemented, although
the underlying “distance” is a general semi-distance because it is based on a
finite precision quantification and sparse representation, as discussed in the
next section.

With some post-processing® categorization [19] may be derived from this
nearest-neighbor mechanism.

Analyzing data classification properties.

Regarding fast data classification, the Thorpe model [50] is based on the fol-
lowing property (as demonstrated, for instance by masking experiments® [39]):

8 From nearest-neighbor classification to categorization: given object classification, the
final categorization of a complex object may be related to a combination of labels. In order
informally to discuss this aspect, let us consider “fancy” examples:

(i) “centaurs” may be detected as something which proximities w.r.t. “horse” and “human”
prototypes are equivalent; this is roughly equivalent to add a new prototype in between;
(ii) frogs exist within two forms: tadpoles or frog itself, detecting the category frog requires
to detect something which proximities w.r.t. tadpoles or to frog-it-self prototypes; this is
not equivalent to add a new prototype, but to detect either one or another category;

(iii) similarly, categories such as “fish” defined, says, as “animals with slippers and tail except
dolphins or whale” .. require to post-process the result of different data-classification.

In other words, the prototype-proximity mechanism intrinsically define “conjunction” of
prototypes but not “disjunction”; a category defined by a logical expression seems to be put
in a disjunctive normal form in order to be implemented by combinations of such nearest-
neighbor classifiers.

A first extension, allowing to combine the influence of several prototypes is the notion of
K -Nearest-Neighbor Estimation (see e.g. [19], Chap 4 for an introduction).

9Visual masking experiments. The perception of a briefly presented shape is strongly
impaired, when it is followed by another “masking” pattern. However, as demonstrated by
electro-physiological measurements during visual masking experiments [39], such mask does
not reduce the initial response, but shorten it and neurons in IT respond briefly to a stimulus
presented during 20 ms and then masked.

This suggests that processing is not inhibited but interrupted by the mask, halting the

INRIA
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e the very short observed latencies [46] are only compatible with an infor-
mation flow related to the emission of the first spikes (when not a unique
spike by neuron) of each neuronal layer.

This is not only due to process short latencies. As developed in [50], this
assumption is based on the experimental evidence that, most of the time,
a second spike arriving via a synapse is significantly attenuated, when not
inhibited, for 50-100 ms (e.g. for some thalamic excitatory inputs to cortical
pyramidal cells [48]).

This has two consequences:

1. the transmitted information is much more related to the occurrence of a
neuronal signal than to the quantitative value transmitted (e.g. via the
spike frequency). See [27] for a development about rate versus temporal
order coding,

2. since the latency of the first spike of a given neuron is a direct decreasing
function of the neuron input value (a quantitative model is proposed in
[27]), only neurons with the highest values generate spikes fast enough
to be taken into account.

A step further,

e (i) let us consider that the temporal discrimination of a neuron (see e.g.
[9] for an extensive study) is of about 7 = 1 ms, considering that two
spikes arriving within the same 1 ms are viewed as simultaneous input
by the next neural input and

e (ii) let us assume that at each stage, the neural inputs received during a
temporal window of 7" = 10..20 ms (e.g. [50]) is taken into account, as
schematized in Fig. 5

response not only to those neurons related to the stimulus, but other neurons also. Roughly
speaking, processing switchs to another target.

A step further, [46] demonstrate that most of the information about the input is available
in a short epoch of about 40 ms.

RR n® 4489-2



12 Thierry Viéville and Sylvie Crahay

With these assumption, the temporal discrimination is simply made during
n = T/t consecutive intervals'® (like when building a temporal “histogram” of
the spike occurrences) and we easily compute the number of possible combina-
tions, i.e. C' = [T'/7]", where N is the number of neural inputs, active during
the 1st T' ms. This differs from what was assumed in the original formulation.

<@ msec
temporal resolution
Previous 1St 1
stage l
eurons i th % _]ithspike delay

outputs N th !
T 10... 20 msec iy 15t spike delay

" temporal window ZF | nput neuron

Figure 5: Schematic representation of the spike temporal combinations: only
the spikes received during a temporal window, i.e. during the first T =
10..20 ms are taken into account. Spikes within a temporal resolution of
about 1 ms are considered as simultaneous (in this example the 1st spikes of
the 1st an nth neurons). The 1st spike neuronal delay is considered as the
most relevant neuron information, in this “fast brain” neuronal behavior. Fur-
thermore, neurons outputs are treated by the input neuron using a progressive
inhibition mechanism, as detailed in the text.

10 About the measurable number of permutation. There are N! possible permutations for a
given set of N data. However, in practice, at a given temporal resolution 7 and during a time
window T it is not possible to observe all these permutations. What happens is that when,
at a given time ¢, an input ¢ has been detected, all inputs in the I; = [t..t + 7] interval are
viewed as “synchronous with ¢”. This means that the I; interval is not fixed but triggered by
the 1st occurring input. However, we are in a situation where N is very large, so that at the
end of each I; interval yet another spike very likely (almost) immediately occurs, starting a
new I;, ., interval and finally allowing to consider consecutive intervals of duration 7.

INRIA
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Yet another step further, the Thorpe model assumes a progressive inhi-
bition mechanism!!, the 1st spikes increasing the inhibition for other input
spikes emitted by other neurons. This shunting inhibition mechanism (see e.g.
[15] for a biologically plausible simulation) may be related to fast-spiking in-
hibitory inter-neurons in contact with the soma of pyramidal cells (e.g. [4]).
As a consequence, not all neuronal inputs but only the firsts, are taken into
account.

These facts have two consequences, regarding the computational process:

Quantification of the neuronal information: the quantitative value mea-
sured from a given neuron by the next neuronal input is thus directly
related to its delay d as schematized in Fig. 5. As discussed previously,
this delay is thus a bounded value (with min and maz values) with a
finite precision.

The ratio between these two quantities, i.e. T'/7 ~ 10 — 20 is the number
of steps of the data value. This number will be precious in order to
evaluate the statistical performances of the model.

Sparseness of the neuronal information: among the rather huge number
of input neurons (typically the dimension n of the neuronal “vector” has
an order of magnitude of 10°) only a rather small number is taken into
account. This is a key point in the Thorpe model and it has been ex-
perimented that a simple “threshold” mechanism (canceling information
small enough to have a delay higher than the time window) is already a
plausible model of the neuronal mechanism.

In the computer simulation of the Thorpe model[14]), the number of
degrees of freedom is of about 10%2. It is expected to be higher in the

1 Quantification of progressive inhibition mechanisms. It has been quantified considering
the previous stage neuronal inputs (---v;,---) in the order of their occurrence weighted by
“inhibition coefficients” (-w;,---) and limited by a threshold 6, obtaining for the neuron
output ¢ an expression of the form :

oc=_Sg (Zaiwiw—0>

0 < a < 1 is the decreasing ratio (typically around 1/2 for simulations)
while Sg(u) = if u <0 then — lelse if w > 0 then 1 else 0 is the sign function.

RR n® 4489-2



14 Thierry Viéville and Sylvie Crahay

brain, around 10% as estimated in [50]: it is bounded by both the short
time window and by the progressive inhibition mechanism.

Here we consider that (a) during the learning phase, for a
given set of prototypes, i.e. for a given “labelization”, a sub-
set of significant components, has been selected, defining the
number of degrees of freedom, while during the classification
phase only these components are considered.

This differs from (b) thresholding the highest values. In
this second case a variable number of degrees of freedom is
taken into account.

Solution (a) indeed reduces the number of degrees of free-
dom, solution (b) simply reduces the quantification steps, as
discussed previously. This was not made explicit in the original
formulation.

This notion of sparse classifiers'? [21, 22| has also been developed in com-
puter data classification, designing an approach where non-mandatory
components of the input data are canceled. In other words, a very small
dimensional linear sub-space of the input data space (defined by equa-
tions stating that all other components are equal to zero) is considered.

12 About sparse classifiers. It is clear that not all n components of the input data are
likely relevant for a given classification process. It is thus suggested to “forget about” non-
mandatory coefficients (i.e. set them to zero) [21, 22] in order to reduce the number of degrees
of freedom of the estimation process. This approach is formalized as the minimization a £!
criterion (i.e. minimizing the absolute value of the classifier parameters) because it is well
known, as extensively used in the Lasso estimation method [53] that minimizing such a
norm allow variables to vanish. This is simply due to the fact with these piece-wise linear
constraints, finding the minimum of such a criterion corresponds to a linear-programming
problem which minimum is on the vertices, defined by the fact that some of the absolute
values vanish (e.g. [28]). Although experimental performances seem rather good, there is
no guaranty that this process indeed cancel a maximal number of redundant data, while the
complexity of the minimization process is also not easily bounded.

INRIA
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Category learning: the role of the hippocampus

The Thorpe model does not describe category learning, assuming categories
are already learned. We fill this gap in the next sections and must first review
the biological basis of this mechanism.

It is commonly admitted (e.g. [20] Chap. 7 and 8) that the hippocampus
plays a predominant role of memorization in data classification. More precisely,
it acts as an episodic memory which stores the “raw data” until it has been
integrated in long-term memory areas.

This integration is interpreted as the category learning process (e.g. [45],
Chap. 6) i.e. the tuning of the different input contributions used to detect a
given object.

The hippocampus receives its inputs via the parahippocampal gurus and
the entorhinal cortex; efferent connections pass through the entorhinal cortex
back to the visual association areas ([45], Chap 6). It receives input from
virtually all association areas in the neocortex.

The modelization of this biological learning mechanisms in this structure
is dominated by “Hebbian-like” classifiers (including the well-known Percep-
tron). As summarized in [29], this kind of mechanism may correspond either
to long-term potentiation or long term depression synaptic mechanisms. It
may also correspond to allosteric properties of cell bodies. This is the case for
hippocampal cells [23]. The precise role of these pathways is however still only
conjectured and not really well established [20].

The architecture of what is called Hebbian learning (e.g. [43] for a formal
description) corresponds to a conjunction of pre and post “synaptic” influences
which tends to modify the weights of the classification layer.

If x; is the pre-synaptic vectorial value of the data input and a; the post-
synaptic vectorial representation of a given category, the linear Hebbian-like
correction rule writes ap,+ = dp; x; for some small 05, (e.g. [20]).

We point out the fact that this adaptation rule is not restricted to standard
neural nets a-la Hopfield. It is also used in other architectures: alternatives
are based on competitive models (e.g. following the pioneer work of [37]) or
“anti”-Hebbian (i.e. Hebbian rule with a negative sign in order to de-correlate
signals) rules.

RR n® 4489-2



16 Thierry Viéville and Sylvie Crahay

Unfortunately, as pointed out in [20] and confirmed by a recent discussion
[29], such model still describes the “neuronal architecture of cortical maps in
a rather crude way”.

Nevertheless, this is a standard point of view and as a first step, in the
sequel, we are going to demonstrate that such a Hebbian-like rule is sufficient
to tune and optimized sophisticated classifiers (i.e. related to the Vapnik the-
ory), showing that the best data classifiers derived from the statistical learning
theory are biologically plausible.

3 Revisiting deterministic artificial classifiers

Defining the problem

Here, the “data classification” formalization problem is addressed. Roughly
speaking, such a mechanism allows to “label” quantitative data. This mecha-
nism is typically used in object recognition paradigms. In such a case, data
often corresponds to a set of “features” measured from inputs related to the
observed object. See [49] for a recent comprehensive and introductory treatise
on the subject and [41] for a formal introduction.

Given :

e a data vector x € R"
(i.e. data is represented by an array of numerical values) and

e categories r € {1..R}
(i.e. the class or category is numbered from 1 to R)

a classifier C is a function :
C:R"—{1..R}

which associates a category to each data.

For a given input data x belonging to a category r we use the classifier to
estimate this category, i.e. 7 = C(x).

Such a classifier is trained (i.e. calibrated) by a calibration set i.e. a set
of M pairs {---,(x;,7;),---} if Vi, r; = C(x;). As such, the present paradigm
corresponds to supervised learning.

INRIA
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In our context, this calibration set contains typical features allowing to
characterize the categories. It is thus ezact data. In other words the calibration
set is not “sampled” but “chosen”. We refer to such a paradigm as deterministic
learning. This differs from usual paradigms used in statistical learning [49],
where a training set which may contain mistakes is randomly sampled.

Nearest-neighbor (NN) classifiers

If we consider the calibration samples as prototypes, it is a natural idea to say
that a data belongs to a category iff it is “close” to one of the prototype.
For N prototypes, the classifier is thus formally'® defined by:

C(x) = arg max,, ;_; y ¢i(x) (1)

where the “proximity” ¢;() to the ith sub-category related to the prototype of
index 7 is to be defined now. Such a mechanism is illustrated in Fig. 6.

In order to develop our ideas, we consider, in the Euclidean space R", a
quadratic form ||v||3 = v’ A v defined by a positive definite symmetric matrix
A.

This matrix A is “application dependent” in the sense that it weights the
relative importance of each data component, including inter-relations between
these components. It is thus provided as a prior: information. This will be
used in the sequel.

The present technical restriction to a constant Euclidean metric is
only used to simplify our developments.

We also have in mind that some more general metric, considering
not simply the Euclidean space R™ but a general Riemaniann manifold
as data space. Although out of the scope of this paper, this a direct
extension of this work.

13 General categories and proximity definition. Let us consider that each sub-category
related to the prototype of index ¢ corresponds to a “region” of the data space, defining a
partition of this space. Let us define the border of each region using a general equation
ci(x) = 0. This defines an hyper-surface which, according to the Jordan theorem, delimits
what is inside (say when ¢;(x) > 0) and outside (when ¢;(x) < 0) this region. In this general
context, equation (1) precisely determines the region of a given data. There is thus no loss
of generality.
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18 Thierry Viéville and Sylvie Crahay

Combining these ideas, but in the simple “Euclidean case”, we consider, for
some threshold 6;, the following so called minimal thresholded linear squared
proximity to a prototype, i.e. :

a0 = —|x x| +0+ x|} 2
= —x[[a+2 05 Ax) = |jxil[5 +0; + ||x][a
= 2x{ Ax— |jxil3 +6; (2)
: bi = |[xillA -6
_ T B ) AN 7
= a; x—b; with a = 2Ax,

Here we:

e consider the opposite of the squared distance ||x — x;||4, say the proz-
1mity, to the prototype x; for the chosen metric,

e add the same quantity ||x||4 to every c;(x) so that:
- the comparison in (1) is not modified, while:
- this allows to cancel quadratic terms in (2) and
obtain a linear function,

e add a threshold 6; in order to :
+ control the relative influence of each prototype
(the higher 6; the higher the proximity to the ith prototype) and also to

+ obtain a one to one correspondence:
=4
{xi = A" a;/2,6; = [Ja|[ 31 /4 - b}
between the linear function and the prototype data and threshold.

As a consequence we thus obtain a linear classifier and frontiers between
categories are represented by piece-wise planar hyper-surfaces, as illustrated
in Fig. 6. Let us called such classifier a [thresholded| nearest-neighbor (NN)
classifiers.

The biological plausibility of this mechanism reduces to the biological plau-
sibility!* of (1), since other operations are linear calculations. The biological

4 Biological plausibility of NN classifiers. Several neuro-scientists consider [artificial] neu-
ronal networks as plausible models of [biological] networks of neurons (e.g. [29] for a recent
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plausibility of “maximum” operators has been extensively studied in [59]. Such
architecture is known as “maxnet” or Hamming networks and weights of such
initialized networks may be trained (e.g. [58|) to obtain a a correct data clas-
sification.

In the statistical interpretation of NN classifiers (e.g. [49]), under “reason-
able” assumptions (i.e. normal distribution of the data in each category with
similar covariances equal to A1), this corresponds to a Bayesian classifier,
writing 6; = 2log(p(r;)) where p(r;) is the a-priori probability for a given data
to belong the ith sub-category.

Beside being conceptually extremely simple and also obvious to implement
in practice, this well-known classifier [19] has reasonable performances. More
precisely, the probability of error for the nearest neighbor rule (i.e. with §; =0
in (2)) given enough members in the training set is sufficiently close to the
Bayes (optimal) probability of error. It has been shown [11] that as the size of
the training set goes to infinity, the asymptotic nearest neighbor error is never
two times worse than the Bayes (optimal) error.

However, calibration or training set sizes never go to infinity! The real
problem is to understand the performances of the classifier for a limited cali-
bration set.

review). Following this track, let us consider “formal neurons” with inputs (---v;,- - ), out-
put o, weights (- --w;, ---) and threshold 6, defined by an expression of the form :

o+ viy-+) = Sg (¥, wivi — 6)
where Sg(u) = if w < 0 then — 1 else if u > 0 then 1 else 0. This is the simplest
model (see e.g. [58] for alternatives and [33] for a discussion about their plausibility).
With a few algebra, the arg-max operator in (1) is easily implemented using a “neuronal

network” design, i.e.:
C(x)=3,_4 NTOr

with ¢, = Sg (Zs:l..N,s;ﬁr Sg(cr(x) — cs(x)) — GT) with N -3< 6, <N -1
the computational complexity being of o( N?) since comparisons Sg (¢,(x) — ¢,(x)) are made
for all r # s.
Here, as the reader may easily verify, o, = 1 iff the data belongs to the rth category else
o, = 0. In other words the output is equivalently: (i) a number 7, index of a category, (ii)
a set of exclusive boolean signals o.., true for a given category.
Indeed, the point is not to claim that this is the way it is done in the brain, but simply
to state that this computation is simple enough to be performed by “standard” biologically
plausible computational elements (see [5] for a development).
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Furthermore, the present approach does not provide, as it, any “modeliza-
tion” of the calibration set. As a consequence, since no prediction/inference is
possible with this method, the quality of the training is highly dependent upon
the calibration set itself. It may not be very “accurate” with respect to data
which are not calibration data, i.e. generalization performances are expected
to be poor.

The Vapnik theory [55] allows to formalize and analyze this idea in the case
of a binary classification (i.e. when, in our case, there is only two prototypes).
This has recently be generalized to multi-categories, as discussed now.

Training capability and learning performances

The Vapnik learning theory [55]| allows to formalize the idea that efficient
models have a limited complexity. As such, it is a formalization and in fact an
improvement of the well-known Occam’s Razor principle!?.

Let us review this piece of theory following the recent works of Guermeur
[30, 32]. For a given classifier C, it relates:

e the expected risk R(C) (i.e. the “average” probability for the classifier to
provide a wrong answer) for a set of inputs, randomly chosen according
to an unknown probability distribution with

o the empirical risk R}, (C) (i.e. the “average” probability for the classifier

to provide a wrong answer) for the calibration set of size M;

this quantity being equal to zero for a deterministic classifier, as dis-
cussed!® previously.

5The Ockham razor. William of Ockham (may be the most influential philoso-
pher of the 14th century) stated: one should not increase, beyond what 1is
necessary, the number of entities required to explain anything (see for instance
http://pespmcl.vub.ac.be/0CCAMRAZ .html for details).

16 Deterministic selection of calibration sample. In this statistical approach, it is assumed
that the calibration samples are chosen by M independent draws from the same probability
distribution as the other inputs. In the present deterministic paradigm, we however assume
that calibration samples are chosen by an “expert”. On one hand, this means that it is a
“very lucky” set of draws, without mistake. On the other hand, this means that the expert
randomly choose a “representative” set of draws.

This is not the unique strategy of such an expert: for instance a “discriminative” set of draws
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More precisely, for a chosen probability &, the expected risk can be bounded
with a probability at least 1 — § as follows:

R(C) < R};,,(C) + ¢(M,9) (3)
bias

“guaranteed risk”

where the bias (also called confidence bound) e(M, §) is a function of the chosen
probability d, the calibration set size M and the class of the classifiers, i.e. the
set of classifiers which is used during the learning phase.

Indeed, we expect this bias to decrease with the calibration set size M. The
learning mechanism is consistent iff limy;_,o.e(M,0) = 0. Better than that, if
the classifier functions are bounded, at the convergence, the smallest/optimal
value of the expected risk [55| is obtained.

It appears that if the classifiers class is too large, the process is not consis-
tent: with a very large class of classifiers, we can classify everything, but what
does everything does anything. Here, inconsistency means that the bound does
not decrease to zero when M increases.

Binary Vapnik-Chervonenkis classifiers.

For the case of binary classifiers which shatters the data into two categories (i.e.
performs a dichotomy), following the presentation of [49], we can quantify this
number of dichotomies by a shatter coefficient o, which is the maximal number
of dichotomies of M points that can be formed by 2-categories classifiers in
the considered class. Obviously o < 2M.

A class of classifiers which indeed can realize any shattering does not model
anything. On the contrary, a classifier in a class for which the amount of
shattering is limited will indeed induce choices / decisions, thus introduce
some additional knowledge in the process.

Formalizing this idea, from this shatter coefficient, Vapnik defines the V. di-
menston as the largest integer M for which the mazimal number of dichotomies

(in which examples close to the limit between two categories are chosen in order to help
building this border, or in which “exceptional examples” are highlighted because not easily
detected otherwise) is an interesting alternative, but in contradiction with the underlying
assumptions. A perspective of the present work is thus to extend this formulation.
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onm of M points that can be formed by 2-categories classifiers is not bounded,
i.e. oy = 2™ and by convention, V, = +oc if VM, oy = 2M.
These two definitions are indeed related since |55]:
oy < MY +1 if V., < 400
and they allow to derive, for classifiers with a finite V., a bound for the previous
bias, i.e.

(M, 8) < \/ = (log(803) — log(6)) < \/ 22 (V2 Tog(9 M) ~ log(s))

(obtained from [49] with a few algebra. Similar bounds, usually a bit better
but more complicated to write, are available (e.g. [55, 32|).

Vapnik-Chervonenkis classifiers have a finite V. dimension and are thus
consistent. This result has been completed by several authors: for instance
[18] shows that classifiers with small “complexity” (i.e. the V. dimension) have
better generalization performances.

For binary linear classifiers (i.e. a NN classifier with two prototypes) the V.
dimension is bounded by the number of degrees of freedom!” of the classifier
parameters.

If the V, dimension is finite but very large, the number of training samples
must be even larger to correctly bound the classifier bias. The following nu-
meric order of magnitude is easily derived from the previous formula:
V.=10 | V. =100 | V. = 1000
§~e~10"" | M ~10° | M ~10" | M ~10°
§~e~1072 | M ~10% | M ~10° | M ~ 10"
d~e~1073 | M ~ 109 | M ~ 10" | M ~ 10"

7 The V. dimension of linear binary classifiers. In the case of a linear classifier, based on
affine functions, in a space of dimension n, the number of linear dichotomies of a set of M
points in general position is (e.g. [41]):

om = if n <M then 237, ( Ml._l ) else 2M fi

where ( Z ) = p!(nniip)! is the binomial coefficient.

As a consequence, since o3y = 2M iff M < n+1, the V, dimension of a 2-categories classifier
is n + 1. As obtained in [55], it equals the number of parameters. This is not the case for
non-linear classifiers, where V. can be either lower or higher than the number of parameters.
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choosing § ~ € (i.e. a similar risk and bias) and solving numerically the previ-
ous equation with respect to M.

This is clearly a problem for neuronal networks used as classifiers, because
their V. dimension is higher than the order of magnitude of the number of
neurons. More precisely [2]|, for an arbitrary feedforward neuronal network
with a binary activation function the V. dimension is of o(W log(W)) where
W is the number of weigths free parameters in the network, while [38] for a
multilayer feedforward neuronal network with a sigmoid activation function,
the V. dimension is of o(W?).

Other asymptotic results have been obtained using different formalisms
(e.g. [44] for linear and quadratic classifiers). They all show that complexity
must be bounded and a number of times smaller than the calibration data set
size. In the Vapnik approach, from the previous formula, it appears that we
must have:

M

Ve
== log (M)

Learning performances of classifiers with margins.

We stated previously that a linear binary classifier has its V. dimension bounded
by its number of degrees of freedom and this result is true considering an un-
constrained linear classifiers. A step further, in the statistical learning theory
[55, 54] it is shown that the V, dimension is also bounded'® by:

chmin(llp)—;],n>+1 (4)

where D is the radius of a sphere containing all calibration data and p the
margin of the separating hyper-plane, i.e. the smaller distance between the
calibration sample and the frontier of the region of its class.

This improved bound is related to the fact that a structure is imposed on
the mechanism of the classification, constraining the margin to be higher than
a minimal value. This is true even if separating hyper-plane do not verify the
optimal property of support-vector-machines [55]. The important fact, here,

18We consider the smallest integer higher than [D?/p?] in this formula.
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is that this bound does not depend on the number of calibration data M used
in the computation of the separating hyper-plane.

As pointed out by e.g. [31], the definition of this margin is valid only if it
is an a-priori value which does not depends on the data set itself. Surprisingly
enough, this is not the case for standard SVM so that there is a small caveat
at this point in the Vapnik construction. This notion of margin has thus been
generalized to the case where data dependency occurs by [47] and then [32].

Another interpretation of the D/p ratio is that D is related to maximal
variation of the parameters values: their “bounds’, while p is related to the
minimal “non-negligible” values: their precision. This ratio is thus related to
the “number of steps” which define the numerical values of the problem. This
does not depends on the input data and the previous caveat is avoided.

Considering the Thorpe model discussed in a previous section we notice
two important facts: as being based on nearest-neighbor mechanism it us a
[equivalent to af linear classifier as, for instance a Perceptron (e.g. [49]). A
step further, we have evaluated that the order of magnitude of the number
of degrees of freedom is 103, while there are about 10 quantification steps.
From (4):

The V. dimension of the Thorpe model is of about 100,
does not depends on the neuronal network size and is likely
bounded because of the quantification steps (in relation
with the temporal resolution) rather than by its number
of degrees of freedom.

Such a low V, dimension is an impressive result, if we compare to usual
neural-nets, as reviewed here. It is clear that this is a very positive theoretical
justification of the Thorpe approach.

Introducing the so-called, Guermeur (Y}) dimension, let us now discuss how
to generalize this idea to multi-category classifiers.

Learning performances for multi-category NN classifiers

Several attempts have been made to generalize the previous formalism from
binary classifiers to multi-category classifiers: either combining several binary
classifiers (see [34] for a review and a quantitative comparison of existing solu-
tions) or using enhanced formalisms (e.g. [47] or [12] for a clean mathematical
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formulation). In [30] a lighter result is proposed, recently improved in [32] and
linked to other approaches in the field.

With this approach, a complexity bound using the notion of “covering num-
ber” (i.e. the smallest cardinality of a cover of the classifiers class by neigh-
borhoods of a given size) is obtained.

In the particular case of a linear classifier with N categories (in our case:
a NN classifier with N prototypes) it has been shown that, in coherence with
the previous V. dimension'®, (M, §) is an increasing function of the, say, Y,
dimension 20 : YN 1) &

g = a; — a;||?
o=y laal
minimal if and only if
2 N
% = w ; ||a;||? is minimal (5)
where D is the radius®® of a ball containing all calibration samples, other pa-
rameters being defined previously. Since D depends on the calibration samples

19 Relation between V, and Y, dimensions. In the particular case of a linear binary classifier

using the notation of (5) the V. dimension given in (4) writes:
Ve <min (n + 1,1+ D?||a; — as|?)

the 1st term being the number of independent parameters (i.e. degrees of freedom) of the
linear classifier, while the second term is exactly equal to the 1 + Y.

20 Derivation of the Y, dimension. More precisely, Theorem 1, 2 and 6 of [30] establish
that e(M, §) is an increasing function of

D=L S Ml — ay?
while appendix A.3 of this paper reviews that at the optimum
Y lla —ag|? = N X [fal?

eq. (5) being the combination of both.

2L Computing the input data radius. On one hand, D is easily bounded since:

max; ;| |x; —x;[/2 < D < max; j||x; — x|
(the left-hand size inequality is due to the fact that no sphere of diameter lower than
max; ;||x; — x;|| will contain the couple of points for which this maximum occurs; the
right-hand size inequality is due to the fact that any sphere of, say, center x; and radius
R = max; ;||x; — x;|| will indeed contains all points).
On the other hand, a precise estimation of D requires to solve the following quadratic-
criterion with linear inequality constraints :
ming ¢D? = ||c||> —d with D? — ||x; — c|[? = 2T x; — ||x:]|> =d >0

where c is the sphere center and D its radius. The reader will easily verify that, from the
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and not the classifier itself, this quantity is fixed and not to be optimized. The
advantage of using Y; instead of Y, as a criterion to minimize is that coupling
between prototypes is avoided.

This theoretical work also point out that minimizing the Y, dimension is
equivalent to minimizing the original heuristic criterion proposed by Vapnik
[54], with now a well-founded basis. This may be interpreted as mazimizing the
margin between the prototypes®?, and as a consequence the classifier frontier’s
margin.

In relation with this approach, following [41], an equivalence?® between a
N-category NN classifier and a binary classifier can be derived. More precisely,

normal equations, the solution is of the form:
c=>,0ix; with )" a; =1
while, writing u; = x; — c the series:
A =Y.x/>,land ' = (1 —a)c' + axs
converges to the expected solution, for
o = Sg(uf us,) min (Juf w, |/] uxl 2, minga, o [llui,]? = lluil?] / [2 Sg(af w,) (w, —u)" w])
where i, = arg max||u;||, since « is bounded to obtain: Vi, |[u{™|| < [[ulf"|| < [[uf,|I.
22 About the margin between prototypes of the same caregory. In the case of NN classifier
where several prototypes correspond to a single category, we may also consider:
Y, _ NWN-1) N 2
DT = D) Ziq,n;&” |lai — aj]|
i.e. only minimize the margin between prototypes of different categories, but not between
prototypes of the same category. This is an alternative, but we have experimented that it is
not very interesting because minimizing Y’ tends to maintain, for a given category, similar
thus redudant prototypes whereas maximizing the margin between prototypes of the same
category allows to minimize the number of prototypes.
23 The equivalent Vc dimension of N-category linear classifier. Let us consider a linear
space of dimension N (n + 1) and:
(1) The hyper-plane of parameter:
a= (al, b1, ey @4, bi, .an, bN)
is considered, this vector being builded by “concatenation” of N blocks of dimension n + 1
containing the piece-wise linear parameters.
Since the linear transformation (a; « a; — a,b; < b; — b) yields an equivalent classifier,
we do not have N (n + 1) but (N — 1) (n + 1) linear independent parameters.
(2) For each calibration data xj iith r; = k, we consider the N — 1 vectors, for i # j:
X, = (0..xg,1..0.. —xp, —1..0)
e S——

—1— —j—
i.e. with the block corresponding to [a;, b;] equal to [xx,1] and the block corresponding to
[a;,b,] equal to [—x, —1], the other components being 0.
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a NN-classifier is equivalent to a binary classifier of V:

veuin (|22 Slale s 10v-neen) 6

It appears that minimizing the V. of the equivalent binary linear classifier is,
up to a scale factor, equivalent to the minimization of Y.

Obviously, since a” x,;; = (a] xx — b;) — (a] xx — b;) we obtain:
) = arg max, aj x —b; & Vi # k,a’ x,; > 0
which defines the equivalence between both classifiers, as detailed in [41], Chap 5.

The margin p of this classifier is the minimal distance from x;; to the hyper-plane of
parameter a. In the linear sub-space of dimension N defined by ( ,01,..,0,b;,..0,by) this
minimal distance is zero since the corresponding components of x,; are constant values. As
a consequence, considering the hnear sub-space defined by a;,0,..,a;,0,..ay,0) we obtain:

p=mingal x;/\/3; |l = p /\/Z IIaz 2
where p is the margin in the original data space as defined in (

The radius D is the minimal value verifying for a center ¢
(01, dl, ey Cqy di, CM,» dM ) VK%J

D* > ||§ij —c[
= |x —cil]? + |Ixx + cil]? + (di — 1) + (di +1)°
= 2|[xg|® +2(ci —cr) xx + [[erl]® + [[eil]? + (dr —1)% + (di + 1)?
For ¢ = 0 this reduces to D* > 2||xx||> + 2. Furthermore, for small variations (e, , €4, )

around ¢ = 0 we obtain:
if h=p |x;—c|?

2|xe||* + 2 + 2% €c, +2eq, + o|[ec,|]) + o(lea, |)
if h=i |}x;—clf 2|[xk|[* +2 = 2 €c, — 2eq, + o|[ec, |]) + o(lea, |)
else llx,; — cll? 2|[xe|? + 2+ ||€c, |I? + l€ay, |2

so that |[x;; — c|[? increases for all linear combination of such variations. It thus a local
minimum, and in fact the global minimum, since this quadratic function is convex.This
quantity is thus minimal for ¢ = 0. A step further, in the calibration data linear space,
under the transformation x; — X; — c,, a; — a; and b; — b; — CT a; we obtain an equivalent
classifier for which the corresponding linear classifier margin p is unchanged. Let us choose
for c, the center of the sphere minimal radius D containing all calibration data x;, yielding
to a minimal value of maxy||x; — c.||>. This allows to finally consider a classifier with a
radius D? =2D? + 1.

Finally, combining these results, from (4), piece-wise linear classifiers are equivalent to a
linear classifier of V¢ bounded, according to (6).
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4 Designing optimized nearest-neighbor classi-
fier

Let us now discuss how to apply the previous piece of theory to nearest-
neighbor classifiers, which are biologically plausible mechanisms, as discussed
in section 2.

Fixed margin in NN classifiers

As noticed, e.g. in [26] for parametric estimation?, a “physical” parameterized
object is always represented though a vector of bounded parameters, with a
finite precision. More precisely, it is proposed that, at the specification®® level,
each numerical value of a parameter component z°

(i) is bounded i.e. ¢, < x' <z . and (ii) has a finite precision '

man max

so that there is a finite set of significant values.

i

This finite set size is [(z!,,, — 7 ..) /%]
Such a precision is in practice very easy to estimate (e.g. 1 mm for a pupil
ruler, 1 deg for a protractor, 1 pixel in an image, etc...).
At step further, two numerical values of a parameter 2! and 2’ can be
considered distinct only if:
2" — 2" > 24!

2 Local quasi-static estimation. It has been observed (e.g. [56]) that there is a real
gain to take this experimental specification into account: with such specification, “quasi-
static” estimation methods, with step by step variations from an initial estimate towards the
problem solution, are powerful strategies for local estimations (adaptations to limited range
variations from a default value, interactive estimation where a user given initial estimate is
to be refined, efficiency in tracking tasks ...), experimentally more efficient than standard
usual methods, because the stability of the estimation process is easy to control in this
case. Furthermore, the estimation is stopped as soon as the required precision is obtained,
whereas for standard methods, convergence to a non-negligible precision only is not so easy
to obtain, so that overhead occurs.

25 Physical parameter specification. We also attach to such a “physical” parameter: an
“initial”, “a-priori” or (iii) default value z{ (e.g. (%, + 2%,..)/2) plus a (iv) name and a
(v) physical unit (second, pixel, ...).
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Here, we have to double the value of the bound because each value may vary in a
+2! range thus their difference may vary in twice this range. If, on the contrary,
|z — 2| < 2% we cannot decide whether (i) these values are the same or (ii)
differ by a quantity too small to be measurable. In the latter case, we can not
say that they are equal, but indistinguishable.

Following this track, two vectorial parameters are indistinguishable if and
only if all components are indistinguishable, i.e.:

i ol noTod i ?
xzx'@maxi[ulglé\lZlu] <p=+n (7)

3 %
2zt =1 22
[Ix=x"]| Acoo lIx—x"|ac
1
1/(2x;) 0
€

with A, = 0 1/(2z?) --- | defining a diagonal metric, in coherence

with (2).

Here, we make the choice to consider not ||x — x'||a.c0 but ||[x — x'[|a,
because it is reasonable?® to consider that if many components are almost
indistinguishable, the vector is likely indistinguishable. These quantities are
anyway only order of magnitudes.

The diagonal metric A, has an obvious statistical interpretation in terms of
the inverse of a covariance or “quadratic information” (e.g. [57]). In this case,
the precision between two components may be “coupled” (i.e. correlated), the
metric not being diagonal any more. It is however obvious to diagonalize such
a covariance matrix, i.e. consider linear combinations of these components. As
a result, the precision is decoupled. There is thus no lack of generality with
the present “diagonal” approach.

|

{

26 On bounded versus average precision. A less conservative choice would have been to
consider ||x — x'||a, < 1 since:
% = x/|[a. /v/7 < [l = %] a0 < IIx = X'||a.
but, regarding statistical inference, such a choice could induce erroneous decisions (i.e. con-
sider as distinct indistinguishable values), whereas the drawback of our choice is only to
delay the decision (because with indistinguishable values, no decision is made). For the
classifier, the consequence of our choice is to increase the required data precision.
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A step further, these specifications allow to bound the parameter variation,
ie.:

LA — 7t 2
||x—x'||A€§D:\JZlM] (8)

i=1 21
as easily obtained with a few algebra.

In our context, this specification also allows to determine if two data of the
calibration set with different categories are distinguishable. If not, this means
that the corresponding categories are not distinguishable and the problem is
ill-posed.

With these specifications, the complexity of the classifier is bounded, in
relation with the notion of margin [30], discussed in the previous section. Here
the margin is a fixed quantity and does not depend on the input. This, for
instance, provides a bound of the V, dimension, combining (7) and (8) to bound
D/p, in the case of a linear binary classifier, as defined in eq. (4). Intuitively,
if we consider large margins, the category will be correctly estimated for data
close to the calibration data, but with some uncertainty or variants.

For a thresholded nearest-neighbor classifier, according to these specifica-
tions, from (2) and (7), we can decide that the category of an input data x is
r if and only if

2

min; ,,—||x — xi||f\f -0, < minj,,rﬁngx — xj||fx€ —-0; — p
& Max; ,;—rCi(X) > MaX;, +Cj(X) + p?
€ WA= r(a —a;) X — (b — b)) > p

also written

te = arg max,, _,c;(x)

. o ) 2 . 1,7, =T
1) = ()~ (30 > g wih { T2 2 2B R0

(9)

where p(x,7) defines “how much” x corresponds to the rth category.

This quantity is positive if and only if r is the category of x. Furthermore,
this decision is numerically significant only if this quantity is higher that p*.
Numerically, the higher the quantity, the better the decision. More formally:

r=C(x) & u(x,r) > p? (10)
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This quantity has also the following geometrical interpretation: since the
frontier between two categories is a piece-wise planar surface, this quantity is
in direct relation with the distance to the hyper-plane containing the planar
patch between category r;, and r;, i.e.

IU/(X7 ,r) = ||a20 - a]o||A€_1 d(X’ Binjo)

since?” for an hyper-plane P of equation a’ x — b = 0:
d(x, P) = [a" x — b|/|[al[a
In order to simplify the algebra in the sequel, from now on, we consider
the following transformation of our quantities, now normalized with respect to
their precisions:

T’ «+ z'/(22%) and @’ + a' (2z)
=
||x|| < ||x||a and ||a]| + [|a]|a-1 with a’ x + aT x

This will lighten the notations without loss of generality.

Centered normalized NN classifier

A step further, we observe that if we consider the linear functions ¢;(x) =
al’ x — b; defined in (2), it appears that we can add or subtract a constant
term b, an identical linear factor a, and multiply by a positive constant ¢ > 0,
ie.
ci(x)=¢ [aiTx - bi] —(a"x —b)

without modifying the comparison in (1). This is the most general transfor-
mation®® we can apply if we want to preserve the fact that c;(x) are linear
functions.

T Distance to an hyper-plane. The distance d(x, P) is the minimal value d(x,z) = ||x—z||a
for a point z € P, i.e. with a” x — b = 0. From the related Lagrangian:
min, max, %Hx —z||A + X (@Tx —b)
and the normal linear equations yield the formula for d(x, P).
28 Invariance in the arg-maz equation: In equation (1), the reader can easily verify that
any strictly increasing transformation ¢t : R — R of the proximities ¢;(x), i.e. ¢;(x) —
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In order to cancel this indetermination, we apply the following transforma-
tion to the (aj, b;) parameters:

a « ca-4 a = cXa/N
' S 7 with b = XN b/N (11)
bi — Cbi—b _ 9

c = 1/p

which allows to center and normalize the classifier parameters so that, after
this transformation:

N N N
> a;,=0,) b;=0,p=1and |[C|][* = ||a;]|* is minimal (12)

i=1 i=1 i=1

(easily verified?® with a few algebra) and we obtain a unique parameterization
for this classifier with N (n + 1) components.

We also observe that this classifier has (N — 1) (n + 1) — 1 independent
parameter components, i.e. degrees of freedom, because n + 2 parameters are
constrained via the choice of a, b and .

Defining a Y, minimal NN classifier

Minimizing, from (5), the dimension Y,/D* = N*(N —1)/2 ¥, ||a||?, for
a fixed number N of prototypes, considering a centered normalized classifier,
while preserving the margin of the calibration set (---,xy,---) corresponds to

t(c;(x)) will not change the comparisons. On the reverse, if ¢() is not a strictly increasing
transformation comparisons may be modified for some ¢;(x).
The most general transformation is thus a composition with a strictly increasing function.
Now, if we want to preserve the linearity, i.e. that ¢;(x) being linear, t(c;(x)) is still linear,
this transformation must be linear, the only solution being of the form t(c;(x)) = ¢c;(x) —
(a” x — b) with ¢ > 0.

29 Derivation of centered/normalized linear classifiers.
The constant ¢ is simply chosen in order to have p? =1 in (9).
The quantity a and b are obtained solving Y"v [ca; —a] = 0, Y~ [¢b; —b] = 0.
Finally, if we consider the criterion ming||¢a; — a||? the related normal equation is precisely
>V [ca; —a] = 0.
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the following optimization problem:

N
2 __ 12 s Zzazzojzzbz:(]
€1 = 3 la * with { T e e — (b — ) > 1

(13)
as easily obtained, combining (5) with (9) and (12).
As being a convex quadratic criterion with linear constraints, it has a unique
minimum and the local minimization of this criterion leads to the global min-
imum.

In order to solve this minimization problem, we can easily write the
Lagrangian of this constrained criterion:

1
L= 3 Do lalP+d ] aie [(ai —a;)" x — (bi — bj) — 1] +a Y b+ a
i ijk i i
with the related Kuhn-Tucker3? conditions:

TP = arg max,,_,, az-T X; + b;
a;jr > 0& q and 7; = arg max,,j#ka? Xk + b;

and (ai — aj)T Xk — (bl — bj) =1

and the related normal equations:

0 = —gé = ik Qihk — 2 jk Qhjk + = S,om+a
T
0 = aaach = ap+ 2k hjk Xk — Doik QirkXk + 0 = an— 2 paneXk+ 0

with ank = 30; Qink — 22 Qhjk-
The optimal solution of (13) thus writes:

ah:ZOéthk—ﬂWith Zahk-i-&:() (14)
k k

these equations being used in the sequel to implement the minimization pro-
cess.

300n Kuhn-Tucker conditions. We consider for the purpose of this derivation, weak in-
equalities (>) instead of strict inequalities (>). The Kuhn-Tucker conditions state that the
Lagrangian multiplier o, (i) vanishes iff the inequality is strictly verified and (ii) is posi-
tive if the inequality is verified as an equality. In practice, this bound is numerically never
attained.
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Edited nearest-neighbor classifier.

Let us now consider, not a fixed set of N prototypes, but discuss how to edit
it.

A traditional criticism about NN classifiers pointed at large space require-
ment to store the entire calibration set and the seeming necessity to query
the entire calibration set in order to make a single membership classification.
There has been considerable interest in editing the training or calibration set in
order to reduce its size (e.g.: proximity graphs, Delaunay triangulation) elimi-
nating “redundant” data (see [19] for a review). Such editing mechanisms only
delete redundant but do not optimize the calibration data used as prototypes.

Eliminating redundant data prototypes has another important consequence:
it is expected to bound the classifier complexity. More precisely, from (5):
Y,/D? = w SN l|asl|?, it appears that the classifier complexity is an
increasing function of the cube of the number N of prototypes. Eliminating
redundant prototypes indeed reduces this complexity.

A step further, it is also expected that when the calibration set size M
increases, the number N of required prototypes does not increase with the
same order of magnitude. This conjecture can be qualitatively explained as
follows.

Geometrically, NN classifiers approximate the frontier between two
categories by piece-wise linear elements, as discussed previously.

If these borders are regular, they are correctly approximated by a
finite and bounded number of planar patches. For instance, if the classi-
fier border is piece-wise linear or very close to a piece-wise linear hyper-
surface, a finite number of prototype will correctly represent this border.

As a consequence, an increase of the number of calibration data,
will generate only redundant prototypes as soon the classifier border is
correctly represented.

In order to apply this idea, we not only need to eliminate redundant
prototypes.

In our context, considering a margin as discussed before and using the
notation introduced in (9), a prototype of index h is redundant with respect

31Tn comparison, a prototype of index h is completely redundant if, for all input data :
arg max, ¢;(X) = arg max,, j.,Cx(X)
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to the calibration set if, for all calibration data indexed by I:

pn (X, 1) > p°

where the gy (x;,r;) is the margin defined for a classifier C;, builded with all
prototypes except the hth prototype.

At the algorithmic level, editing the prototypes is a complex process: when
eliminating a redundant prototype of index h, other redundant prototypes of
the same category may not be redundant anymore (since they might be re-
dundant because of the action of the hth prototype), while non-redundant
prototypes of another category may become redundant (because the hth pro-
totype may not interfere anymore with these prototypes). We thus must edit
the prototypes one by one to properly detect redundancy. An exponentially
complex search space is thus to be explored and several heuristics have been
proposed to deal with this algorithmic complexity (e.g. [19]). Two new strate-
gies are introduced here.

The margin strategy. In order to deal with this algorithmic complexity,
considering both the existing methods in the literature and some preliminary
experimentations on our side, we propose the following heuristic:

1. edit the redundant prototypes one by one, if any and

2. consider always the prototype which preserves a mazimal subset of min-

imal margins. If we consider the margins in increasing order:

Hn = {l’l’h(Xh?rll) <. < /'l’h(le7rlM)}

compared as follows:

1< <i palxy,ry) = pw(xy, 1)
and (Xli: rli) < Hp (Xlw rli)

this means that we eliminate the redundant prototype with a maximal
Kr

Mp < Upr = di € {1..M},

This mechanism is rather general, since it is not related to fact that ¢;(x) are
linear functions. It attempts to preserve the minimal margin of the classifier
and the next minimal margin, etc.. As such, it allows to obtain the “safest”
set of non-redundant prototypes.

This mechanism has a polynomial complexity. More precisely: with at most
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N redundant prototypes, computing margins (in o(N) from its definition)
and sorting the result for each prototype (this operation complexity being
of o(M log(M)) with a “quick-sort” method) at each step of the editing mech-
anism, we obtain a complexity lower than o((N + M log(M)) N?).

This mechanism is indeed sub-optimal, i.e. we have no guaranty to obtain
an absolute minimal number of non-redundant prototypes. But we obtain a
somehow minimal set of prototypes and we also preserve the classifier margins.
A formal study of this mechanism is a perspective of the present work.

The magnitude strategy. Let us finally point out the following comple-
mentary heuristic.

Considering Y, minimal NN classifiers, i.e. minimizing (13), if a prototype
of index A is redundant, it has no influence on the linear inequalities constrain-
ing the criterion minimization, the quantity ||a,|| is thus minimized without
any interaction with other components and its minimum is indeed ||a|| = 0.
Furthermore, in order to have no influence anymore in the comparison (1) by,
is set to a huge value.

On the reverse, if we can set ||a,|| = 0 and by, to a huge value, in coherence
with (13), the ith prototype is redundant. As a consequence, minimizing (13)
allows to eliminate redundant prototypes.

A step further, when there are several redundant prototypes, deleting the
redundant prototype with the highest magnitude ||a;|| maximizes the local de-
crease of the Y, dimension, yielding another sub-optimal but reasonable strat-
egy.

Both heuristics have been implemented as discussed in the experimental
section.

Stratification of NN classifiers.

In order to discriminate between categories which are not linearly separable a
natural idea |55, 47, 32| is to consider also non-linear combinations or functions
of the original parameter components, building an extended parameter vector.
For instance, it is known (e.g. |[3|) that considering algebraic functions (i.e.
polynomials) is sufficient to define classifiers of relatively huge complexity since
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polynomials approximate any regular curve. Other alternatives exist but, for
our purpose polynomials are sufficient.

A polynomial is a linear combination of monomials, such non-linear clas-
sifiers thus appear as a linear classifier in the extended parameter space®?.
A step further the margin between two prototypes increases (perhaps slowly)
with the dimension for the simple reason that, being the sum of the squared
differences between components, it increases with the number of components.

In order to control the complexity increase® of the classifier, the principle of
minimal structural risk minimization has been proposed [54]: in this framework
a series of “models” with increasing complexity (e.g. V. dimension, related to
the margin or to the number of degrees of freedom) is defined. The estimation
method scans this hierarchy in order to find an estimation which “guaranteed
risk” defined in (3) is minimum. A higher complexity model is considered if and
only if it significantly increases the performances. This corresponds, in (3), to
a trade-off between the model bias (increasing with the model complexity) and
the empirical risk (decreasing with the model complexity). A unique optimum
is assumed to occur (e.g. [47]).

In our context, we thus have the double choice to (i) consider more or less
prototypes as discussed previously and (ii) to consider classifiers with mono-

32 Precision and bounds of monomials. In relation with our specifications, we easily calcu-
late the precision me and bounds [Mmin..Mmaz] of a monomial M of degrees o = (- -+, a;, - - -).
To simplify the derivation, let us consider -without loss of generality and up to an affine
transform- a centered normalized monomial, i.e.:

m = [T () € [~1.1] with ui = S Emartina 2 e 1]
thus obviously bounded by [—1..1]. The precision m. of this monomial is obtain by a simple
derivation, up to the 1st order: _
. . . . J
me = Z?:l,aj>0 H?:l,i:,éj(ul)ai a;j (w?)%tul with u! = m
so that a minimal constant bound |m| < 377, a; u! is derived. Combining these formula,
we obtain, up to the 1st order: _
n z!
Me = 251 % =T, 072
330n the complexity of non-linear combinations of parameters. It is in fact demonstrated
[7] that polynomial support-vector machines have a V, dimension which increase is exponen-
tial in the polynomial degree, since a polynomial of degree d in n variables has K = (ZT;!)!
monomial. Several alternatives exist. e.g. basic radial Gaussian function (RBF). They
have similar properties and performances, for instance RBF without any constraints have

an infinite V, [7].
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mial of degree d = 1,2,3,... This corresponds to a multi-model** parametric
estimation (e.g. [57]).

Sparse classifiers [21, 22| consider a model of maximal complexity, the algo-
rithm reducing the model complexity during the learning phase. For classifiers
a-la-Thorpe [52], the selection of a small subset of components is realized by
simply cancel those with a minimal magnitude. It allows to consider a minimal
number of pertinent monomial at a bounded degree d and not only to bound
this degree d using all monomial with a degree less than d. At a given degree,
we thus suggest to use a sparse subset of monomial, combining both methods.

Considering Y, minimal NN classifiers, we propose to combine both ap-
proaches and to :

- consider classifiers with monomial of degree d = 1,2, 3, .., postponing the
analysis of classifiers having monomial of degree > d after classifiers of degree
< d have been analyzed. This allows to find a classifier of minimal degree;

- cancel all @} components which are small not enough not to violate the clas-
sifier calibration (those with the smallest magnitude according to the Thorpe
strategy) in order to limit the number of degrees of freedom.

We finally have all ingredients to obtain fixed margin, centered and normal-
ized Y, minimal, edited sparse and stratified nearest-neighbor classifiers. Let
us now discuss how to implement such an optimization.

34 Advantages of the multi-modeling strategy. In [57], for such a strategy it had been
highlighted that:

1. estimating a parameter or calibrating a classifier does not only mean calculating nu-
merical values
.. but choosing which model (e.g. “shape” equation or “mechanism” law) best repre-
sents the calibration data set,

2. general models may be irrelevant / singular / etc ... on some data set (i.e. data
set with some specific constraints) and specific models (which make explicit such
constraints) must be considered,

3. non-linear (thus iterative) local estimators of general models must be initialized with
a relevant initial value. Such a value can be provided by the estimation, even biased,
of a simpler model.
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Implementing optimized nearest-neighbor classi-
fier

Optimized nearest-neighbor classifier initialization and on-line mod-
ification

For a given calibration set (---,xg,---) of size M we initialize the set of pro-
totypes (---, (a;, b;),---) from the calibration set itself, as defined in (2), thus
starting with N = M prototypes. This is a standard NN classifier at this
stage.

As such, we already have an initial solution (likely not a very good one)
and have only to improve this solution.

At this stage we also detect if the data calibration set is co-
herent with respect to the precision margin: the occurrence of two
indistinguishable calibration data of different categories raises an
error.

As far as “real-time” reactivity is concerned, as soon as a new data calibra-
tion is given, without any lack of reactivity, the system is able to provide a
first-approximation classification, inserting this data as a new prototype (with
eventually other data no more calibrated because of this insertion).

This guarantees that the classifier is immediately calibrated with respect
to this new calibration data. This new sub-optimal solution is then simply to
be improved.

If, on the contrary, a calibration data is deleted, the current solution is
simply to be re-optimized, taking benefit of the fact that one constraint is
removed.

Optimization is thus an independent process, realized “when time is avail-
able”.

With, these simple rules, the learning mechanism is entirely adaptive with
respect to calibration data addition / deletion and also with respect to the
computation time resources.
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Using Hebbian rules for the optimization

When minimizing (13), one usual track is to consider the dual problem of this
convex problem, i.e. solve it in function of ay,. Although computational ex-
pensive, this usually an efficient strategy (e.g. [31] for a review) used by SVM-
like algorithms, requiring a quadratic minimization under multi-dimensional
linear inequalities. However, in our context it would have been quite difficult
to relate such algorithm to biologically plausible mechanisms.

Following another track, the normal equations (14) tell us that the opti-
mal solution is an affine combination of the calibration data, with a constant
sum of weights. We thus also can iteratively obtained this affine combination
considering a unique calibration data and a unique prototype at each step.

This corresponds to Hebbian-like learning rules as discussed previously:
considering a calibration data x;,{ = 1..M and a classifier parameter (as, by), h =
1..N such a rule is of the form:

ah<—a§L:ah—5xlandb;ﬁ—bﬁlzbh—u (15)

for some increment (d,v) (here we omit the indexes on ¢ and v to lighten the
notation) which are to be computed in order to decrease the criterion, while
preserving the constraints.

As extensively discussed elsewhere [20, 45, 29| and reviewed within this
work, this rule corresponds to biologically plausible learning mechanisms.

If there is not such increment, this means that there is no linear
combination of the form ap+ = >, dnr Xx which decreases this
convex criterion. There is thus no local linear variation, compatible
with the normal equations (14) which may improves this criterion.
We thus are at a local minimum. This local minimum is the optimal
value, because the criterion is quadratic and thus convex. This very
simply demonstrates the convergence of this method.

The application of this rule is to be followed by another Hebbian-like mech-
anism:
Vk,ay, < a; + dx;/N and by < by +v/N

in order to preserve > ;a; = 0 and }_; b; = 0, as the reader can easily verify.
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Using (15), let us look for a (d,r) increment decreasing the constrained
criterion (13).

Writing 6 = 2 (x} a3)/||xi||%, and assuming x; # 0 (otherwise the
Hebbian rule has no effect) and x] aj # 0 (otherwise our derivation is
singular), the criterion decreases iff:

[lag |12 = 6% ||xi[* — 26 (x{ an) + |[an]|* < |[an]|?
& 4r2(xf an)?/[Ix|]? — 4r(x] an)?/|Ix]|* <0
& K2—k<0
& 0<k<1

the decrease being maximal for k = 1/2, while the decrease for values
k > 1/2 corresponds to a decrease for a value 1 — &, below 1/2.
We thus look for a couple (k,v), 0 < k < 1/2, with a maximal value
of x while the constraints:
max,,—, [a Xy — b;] — max,, 4, [a] xx —bj] > 1
are verified.
These constraints can be rewritten in a more compact form:

if rp =7, max(ul,wr —cpk+v)> v
ko

. 16
if rp #rp uk > max (vi, wg — ¢k K+ v) (16)
with the following notations:
u?c = maxri:rk,,-;éh[aiT X — b,] Vg = MaXp#r, [a]T X — b]] +1
up = maxe—_plal xx—b]—1 v, = maer;,éTk,j?éh[a? X — bj]
wy = aj X, — by o = 2(x] an) (x{ x)/|Ix>

(17)
A step further, since these constraints were already verified at the
previous step, for the previous value of (ap,by) i.e. for Kk = v =0 we
also can write, from (16):
if 7 = rp, then max(u}, wy) > vg and if 7, # 73, then wy > max(vy,, wy)
As a consequence, (i) if 7, = 7, and u}, > vy, the corresponding inequal-
ity is already verified and (ii) if 74 # rp, we already have uy > vj.
The inequalities (16) thus reduce to:

ifry=rp andup <uvp wp—cpk+v>ug
if ri #£ 1 Up > W — Cp K+ V
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finally rewritten as:
MAX ;. =r, ul, <oy (v — wi + cp £) < v <ming, 2, (up — wg + cx k)

Summarizing: in order to find a solution to (15) decreasing (13), we have
to look for a maximal value of x compatible with the following inequalities
(written using (17)):

0< &k <1/2 with { Umin(K) = MaXy, =r, ul <vy (Vg — Wk + cx K)
Vmin (K‘) < Vmaa:(/{) Vmaz(/’f) = minrk#wh (uk — Wk + G ’f)
(18)
while kK = 0 is a known solution.

In (18), if Vk,rx = rp,uj, > v there is no minimal bound for v, thus
no maximal bound for b,. As a consequence b, may have huge values, large
enough for the hth not to be used in the comparison process. This simply
means that this prototype is redundant and can thus be deleted. We again
verify that we can edit the prototype list, within the minimization process.

In both paradigms, since the criterion is convex, we may choose a; and x;
either sequentially or randomly, the choice of a strategy being of no influence
on the final result, but only the calculation duration. This means that there
is no specific constraint in choosing a (ap,x;) couple as soon as all couples are
finally selected.

Let us finally note®**that the same method could have been used to minimize
Y, instead of Yy in (5).

Computer simulation. If a computer simulation is to be derived, this spe-
cific linear programming problem can be solved, searching a maximal

35 Using Hebbian rules to minimize the Yg' dimension. If we consider the minimization
of Equ |la; — a;]|? instead of 3> ||a||? in (13) using the Hebbian rule defined in (15) we
easily derive:

arg min,, 3., [la; — a,|[* = arg min,, 37, [lan — a2
so that if we replace a; with ag = ap — 0 x; in order to obtain:

S un llan = agl2 > 320 [ah — ayl|? = 327 llan — a;1[* =26 74 (an — a) xe + 8% 3200, |Ixil
writing § = 2k Ej.\;h(ah —a;)T'x;/ E;\;h 1/]|x:||* the previous inequality reduces to 0 <
k <1 as for the derivation proposed for Y, and the rest of the derivation is identical, as the
reader can easily verify.

A step further, with 6 =2k Zﬁ”#h (an — aj)Txl/ZﬁTj#h 1/||x:||* the same mechanism
would have been used to minimize Y,".
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value k € [0..1/2] such that v,in(k) < Vma(k) using a dichotomous
method for a maximal efficiency.

If any solution, (15) is to be used with:
§ =2k (x{ an)/||xi||? and, say, v = (Umin(K) + Vimaz(K))/2

A step further, in order to speed up the computation, redundant pro-
totypes can be deleted before the optimization, using either the margin
strategy or the magnitude strategy. This may change the final result since
we do not simply minimize the convex criterion, but edit it. However,
results are expected to be qualitatively similar.

Regarding the minimization itself, the following heuristic:

- initialization phase: considering each couple (aj, x;) once,

- iteration phase: selecting the couple which yielded a maximal decrease
of the criterion,

- termination phase: until all couples do not decrease the criterion any-
more

has been implemented in order to maximize the local decrease of the
criterion.

Biological plausibility. As far as biological plausibility is concerned, the
previous derivation states that any a small k > 0 compatible with (18)
decreases the criterion.

A biological system may thus simply use “epsilon-values”, (say, k ~ 1073
since all quantities have been normalized with respect to unity), checking
Umin(K) < Vmaz(K) in (18).

This test is easily done by a min/max operator, which is biologically
plausible as reviewed previously and shown in [59],

A step further, this optimization rule also integrates a “switch” (detecting
redundant data, detecting if an increment is valid, etc..). This is related
to so called inhibition mechanisms, commonly observed in such biological
neuronal layers, [29].

As a conclusion what is proposed here is fully compatible with what
happens in the hippocampus (e.g. [20] Chap. 7 and 8, [45] Chap. 6).
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5 Experimental results

Interactive 2D demonstration

In order to validate the previous method, a piece-wise optimized classifier
has been implemented. Incremental adaptation to new data is automatic and
integrated in the process. Please refer to the on-line3® software documentation
for details. The present implementation has been designed so that the “training
loop” execution can be eventually controlled (start/stop or suspend /resume it,
get a temporary information on the fly, etc...).

Example of results, shown in Fig 7, 8 9 and 10, illustrate the method
behavior and allow to validate the implementation. The module can be exper-
imented on Internet.

Figure 6: An example of raw nearest-neighbor classification, with 45 proto-
types. A margin of 8 pixels is specified as an input of the optimization process.
The equivalent Vapnik dimension as defined in (6) is bounded by the number
of degrees of freedom V, = 132. The Guermeur dimension as defined in (5) is
huge Y, ~ 10*.

36In http://www-sop.inria.fr/odyssee/imp the imp.math.Classifier classes.
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Experimenting with several trials of different configurations, we have ob-
served that both editing strategies may be useful, yielding a better result,
depending on the input, while sometimes optimizing without editing may be
better, as visible in the reported example. The recommendation is thus to try
all three alternatives on a given calibration set and select the best result, i.e.
with a minimal number of prototypes.

However, in any case, a simple optimization without prototype edition leads
to a relevant result, close to the best solution. This experimentally showed that
this mechanism is -by itself- a relevant method.

Figure 7: An example of result corresponding to the raw classification given
in Fig. 6: here redundant prototypes have been edited but no optimization
performed. We obtain more than one prototype for each category and this is
a sub-optimal result. We have also observed that both editing strategies (the
margin strategy and the magnitude strategy detailed in this paper) yields the
same number of prototypes but not the same prototypes. With 6 prototypes:
V. = 15, still bounded by the number of degrees of freedom and Y, = 122.

In order to qualitatively compare this with a standard SVM method, we
have also considered the 1-to-1 multi-class C-SVM method (comparing each
pairs of category using a standard SVM and choosing the category with the
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Figure 8: An example of result corresponding to the raw classification given in
Fig. 6: now the classifier is optimized after prototypes edition, with 6 proto-
types: Y, = 44. Both the margin and the magnitude editing strategies yields
the same result in this case.

best result), as implemented®” by Chen and Lin [10]. This is illustrated in
Fig. 11.

Experimenting on bench-mark data

In order to validate the method on a real data set, we have considered Pima
indians diabetes as provided by B.D. Ripley®. The goal is to decide whether
a subject has a diabetes or not3?.

We have selected this data set since performances of other methods are
available for comparison, as reported by [22]. Percentage of test errors on the
Pima data set, for a test set of 269 samples are:

3TA free-ware library for support vector machines, thanks to [10], is available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm

38 Available at http://www.stats.ox.ac.uk/pub/PRNN

39Gee http://www.stats.ox.ac.uk/pub/PRNN/README. html for details.
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Figure 9: An example of result corresponding to the raw classification given
in Fig. 6: now the classifier is optimized without prototypes edition, with 5
prototypes: Y, = 35. The difference with Fig. 8 illustrates that prototype
edition being a non-linear process, different optimal solutions may be output
depending on the obtained criterion. Surprisingly, in this case, the best solu-
tion is this obtained without prototype edition. This fact varies with the input
margin and the data set.

SVM method 23.8 %
Sparse classifier 22.7%
Neuronal network 279 %
Other methods 24.2-25.3 %

‘ Piece-wise linear classifier ‘ 23.81 % ‘

In our experimentation we have used only 200 among the 300 training sam-
ples provided because of some missing data. Using an equivalent implemen-
tation, we have obtained a performance of 23.81 % of errors on the test data
set, to be compared with the error percentage of 23.8 % for a SVM method
and 24.2-25.3 % for other methods in the literature. We have obtained an
equivalent V¢ = 392, bounded by the number of degrees of freedom.

Performances are thus similar to existing methods. This was not likely to
occur because we are using here a training data set with “mistakes”; i.e. such
that our model does not apply. This is also a confirmation that using “simple”
Hebbian-like rules leads to relevant results in this case.
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Figure 10: An example of result corresponding to the raw classification given
in Fig. 6: now the classifier is optimized with a second order polynomial model,
with 5 prototypes: Y, = 28. In this case, we obtain a solution with 5 proto-
types regardless the fact that prototypes have been edited or not, before the
optimization. With this data set, second order polynomial model yields an
optimal Y, dimension.

Let us now turn to an experiment in a deterministic context.

Sign-language recognition
Description of the experiment

We consider a tiny experiment related to the recognition of the Quebecian
Sign Language Alphabet?’. This can not be considered as a real experiment
of sign-language recognition, whereas it is only used to evaluate the present

method. ) ) ) )
The static (one image) spelling of four subjects have been recorded using

a standard video system with a resolution of 384 x 288, as follows:

Subject data |
Sy Experimented | 2 series of 9 letters (1 particularly good)

Ad Beginner 2 series of 9 letters, 1 acceptable, 1 "bad" (used as counter-example)
Th Beginner 3 series of 9 letters, 2 without shadow, 1 with hand shadow

Li Beginner 1 series of 9 letters good quality

40Gee, e.g. http://www.unites.uqam.ca/surdite
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Figure 11: An example of result corresponding to the raw classification given in
Fig. 6: here a standard 1-to-1 SVM method is utilized and 10 support vectors
are used by the algorithm. Since N (N — 1)/2 SVM, with n + 1 degrees of
freedom each, are used, although the margin between categories is higher with
this method, but degrees of freedom are involved.

examples of such images being given in Fig. 12.

Figure 12: An example of the nine letters taken into account in this experi-
ment, here sub-images containing containing the hand have been automatically
cropped as discussed in the text.
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The following experimental configurations have been chosen in order to
evaluate the method with respect to various combinations of data:

Ezperiment label | learning set test set

Experiment 1 Sy, 9 letters from all samples except 1 series Sy, 9 letters from the last sample
Experiment 11 Th, 9 letters from all samples except 1 series | Th, 9 letters from the last sample
Experiment 2 Sy, all samples of 9 letters Th, 3 series of 9 letters

Experiment 3 Th, series of 9 letters without shadow Th, 2 series of 9 letters with shadow
Experiment 4 Sy/Li, all samples of 9 letters Th, all samples of 9 letters
Experiment 41 Th/Li, all samples of 9 letters Sy, all samples of 9 letters
Experiment 42 Sy/Th, all samples of 9 letters Li, the sample of 9 letters

learning and test sets intersection being always empty.

Parameter extraction

In order to extract relevant parameters, using standard image analysis meth-
ods, edges are detected and binarized using a fixed threshold. This simple
paradigm is sufficient, with the lighting conditions of the data acquisition, to
pre-process the image.

The first and second-order momenta (center of gravity, main orientation
and lengths) are computed as schematized in Fig. 13. This allows to encapsu-
late the hand in an ellipse. This also allows to crop a rectangle in the image
containing the hand, eliminating a part of the background influence.

The ellipse position (related to the hand position in space) and the ellipse
length (related to the hand size and camera proximity) are not relevant to
detect the hand sign, whereas the ellipse orientation and the ellipse length
ratio (i.e. eccentricity) are. These two parameters are related to the hand
relative position (whether it is open/close, tilted, etc..) and are thus used by
the classifier with the second-order momenta.

A step further, the histograms of the edge abscissa and ordinates are com-
puted, these histogram being smoothed and normalized, as shown in Fig. 13.
It has been experimentally verified, in this context, that this provides a rele-
vant set of parameters to discriminate different hand signs. Therefore, there
are combined with the previous parameters in order to parameterize the data
input to the classifier.
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2nd order localisation

Input image Edges magnitude

!

st

WY |

Abscissa histogram

Figure 13: Extracting relevant parameters from raw images, see text for details.

Performance evaluation

In order to compare the performances of the present method with a well es-
tablished mechanism, we use a standard 1-to-1 SVM method, as discussed

previously.
Obtained results are summarized in the following table:

Ezperiment label | Raw classifier | standard 1-to-1 SVM | optimized NN classifier
Experiment 1 11 % 11 % 11 %
Experiment 11 30 % 22 % 27 %
Experiment 2 37 % 33 % 28 %
Experiment 3 61 % 61 % 61 %
Experiment 4 56 % 41 % 62 %
Experiment 41 30 % 37 % 31 %
Experiment 42 0% 11 % 0%

where the percentage of errors have been reported. They clearly demon-
strate, that up to the 1st order, both methods have similar performances.
This was not entirely obvious since we have implemented the optimization us-
ing a biologically plausible minimization method. A step further, we clearly
observed that the deterministic method have better performances when the
calibration data set has no mistakes, while performances are degraded when it

contains errors.
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These experimental facts nicely illustrate, without any surprise, the advan-
tage of the present methods .. and its drawbacks !

Training time for the standard SVM method (about 50 ms + 20 ms) and
Optimized NN classifier (about 100 ms 4 40 ms) have the same order of magni-
tude but always significantly longer for the second method since the Hebbian-
like optimization method is not optimal, as discussed previously. Testing time
is faster for optimized NN classifier (about 0.2 ms £ 0.1 ms) than 1-to-1 SVM
methods (about 0.8 ms £ 0.2 ms), not surprising because the number of com-
parisons is higher in the latter case. This difference is however too small to be
significant.

The real important fact here is that Hebbian-like optimization does not
induce huge computation times, but only a little overhead.

6 Conclusion

We have proposed an approach which allows to consider deterministic classi-
fiers in the case where categories are not linearly separable. The -somehow
very simple- key idea was to consider piece-wise linear classifiers of minimal
dimension, as a generalization of support-vector machines. This is an alterna-
tive to non-linear combinations of data input usually used as a front-end to
linear methods. Here, both approaches are easily combined.

As such, this allows to re-interpret basic nearest-neighbor classifiers, based
on the notion of prototypes, with respect to the statistical learning theory and
obtain an optimized version of this basic mechanism. A key feature is that
optimizing the statistical dimension of nearest-neighbor classifiers allows to
automatically edit them, i.e. remove some of the redundant prototypes.

Although out of the scope of the present study, the generalization to cal-
ibration data set containing mistakes is likely straightforward, following the
usual SVM methodology.

A step further, we have proposed to consider the notion of margin as a fixed
predefined specification related to the a-priori precision of the input data. Not
being related to the data itself, it yields a clearer application of the underlying
theory.
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We also have made explicit and experimented that SVM like mechanisms
can easily be implemented using Hebbian-like correction rules. Such opti-
mization mechanism is not as fast as the standard method, but its biological
plausibility is much better, while final performances are similar.

This point of view is in deep relation with fast visual recognition in the
brain. It may, for instance, explain why biological classifiers have better gen-
eralization performances, although the input data has a huge dimension.

More precisely, it has been possible to estimate a bound (~ 10%) of the V,
dimension of the Thorpe model, showing that its generalization performances
are expected to be much better than standard models based on neuronal net-
works.

Here the Thorpe model has been completed, proposing a mechanism not
only for data classification, but also for category learning.

The main limitation of this approach, with respect to biological learning, is
that we have limited the point of view to supervised learning. This paradigm is
a valid track (e.g. [25]) and was mandatory to relate what is actually known in
statistical learning with biological learning. However, it is a limited paradigm
and the next step is to consider generative models (e.g. [13]), breaking this
gap.
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