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Abstract
It has been unclear whether optimal experimental design accounts of data selection may offer
insight into evidence acquisition tasks in which the learner's beliefs change greatly during the
course of learning. Data from Rehder and Hoffman's eye movement version of Shepard, Horland
and Jenkins’ classic concept learning task provide an opportunity to address these issues. We
introduce a principled probabilistic concept-learning model that describes the development of
subjects’ beliefs on that task. We use that learning model, together with a sampling function
inspired by theory of optimal experimental design, to predict subjects’ eye movements on the
active learning version of that task. Results show that the same rational sampling function can
predict eye movements early in learning, when uncertainty is high, as well as late in learning when
the learner is certain of the true category.
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1. Introduction
Learning about the world and querying the world are both central to competent behavior in
many situations. Consider the process by which a physician diagnoses a patient's illness. It is
not possible to conduct every relevant medical test. The physician must conduct tests that
are expected to provide the best improvement in the ability to correctly diagnose and treat
the patient [54]. The new information obtained by the most recent test is used to better select
the next test, in an iterative process. During this process, the physician's beliefs about the
patient's illness may change drastically. Suppose a patient has a deep cough. The presumed
cause of the cough may be nasal drip, caused by an allergy, and anti-allergy medication
might be an appropriate treatment. However, suppose a chest X-ray were to show abnormal
appearance of a lung. In this case, pneumonia or tuberculosis would become more probable
explanations of the illness, and the most appropriate diagnostic tests and treatments would
change drastically.

What is known about how human beliefs develop as new information is obtained, and about
how people's queries relate to their beliefs at the time those queries are made? Can Bayesian
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statistics help explain how beliefs develop, and can theory of optimal experimental design
help explain people's queries? Research on Bayesian reasoning, and on Bayesian theories of
concept learning, suggests that Bayesian statistics may provide a useful language for
understanding human belief revision. If beliefs can be described in a Bayesian framework,
then principles of optimal experimental design [43, chapter 6, pp. 105–119] can be used to
identify potentially useful queries. A variety of articles suggest that this framework may
provide a useful foundation for a descriptive theory of human queries as well [27].

The present article concerns learning and selective attention in Shepard et al.'s [46] concept
learning task. In this task, subjects learn to categorize objects where each object has three
binary dimensions, such as size (large or small), shape (square or circle), and color (black or
white). Accounts of learning in this task have largely been based on one or more
mechanistic theories, rather than on rational principles (for a review, see [32,55]), with the
notable exception of Anderson [2]. Many of these accounts of learning have as a critical
component a selective attention mechanism, to describe when during learning a subject
attends more to the size dimension, when to color, and so on, as a function of the type of
concept being learned. However, data on selective attention per se have not been available.
In order to directly measure subjects’ attentional focus, Rehder and Hoffman [38,39]
separated the stimulus dimensions in space as characters on a computer screen, in an eye
movement version of the task. Subjects’ eye movements then provided direct evidence for
what stimulus dimension a subject was attending to at each point in learning.

One interesting property of Shepard et al.'s [46] task is that learning takes place over an
extended period of time, involving dozens or hundreds of trials, and that subjects’ beliefs
can change drastically over the course of learning. In this article, we introduce a
probabilistic model of learning to help explain how beliefs develop as subjects perform this
task. One key property of our model of learning is our extension of earlier probabilistic
learning and inference models [9,49,51] to cases of imperfect memory or noisy data. We
then evaluate whether this probabilistic model of learning can offer insight into eye
movements in this task using theories of optimal experimental design, rather than
mechanistic (process) theories of selective attention. More specifically, we introduce a
model of eye movements (queries) in which the subject's eye movements are optimal at each
point in learning, but in which the specific eye movements change during learning as a
function of the development of knowledge during the task. At each point in learning, our
model represents a learner's knowledge as a probability distribution over the possible
concepts.

The rest of this article is structured as follows. In Section 2, we discuss Shepard et al.'s [46]
classic task, our Bayesian model of subjects’ learning on that task, how model performance
compares with human data, and novel predictions derived from our model. In Section 3, we
discuss Rehder and Hoffman's [38,39] eye movement version of Shepard et al.'s task.
Section 3 also introduces our eye movement model, and shows how this model can provide
a rational explanation of much of Rehder and Hoffman's data. Section 4 summarizes our
findings, what we take them to imply, and lays out issues for future research.

2. The task; our probabilistic concept learning model
Shepard et al.'s [46] task involves eight objects, formed by taking every combination of
three binary stimulus dimensions, such as size (large or small), shape (square or circle), and
color (white or black). Concepts are comprised of a subset of those eight objects.1 There are

1An equivalent alternative is to describe concepts as separating two types of objects. Here it is easier to discuss whether an object is
consistent with a concept or not.
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256 (28) possible concepts, although behavioral experiments have mainly considered only
the 70 (8 choose 4) concepts of size 4. ([10] is a notable exception.) Shepard et al. [46]
defined a taxonomy of six types of concepts; Table 1 gives illustrative examples. Type I
concepts are defined by a single stimulus dimension, for example “large,” or “circle”. Type
II concepts are defined with reference to two stimulus dimensions; an example is “large
square or small circle.” Type III, IV, and V concepts require attention to all three stimulus
dimensions for correct classification, but above-chance performance can be achieved by
attending a single dimension. One Type IV concept is “large, but also the small white circle
and excluding the large black square.” Type VI concepts require attention to all three
stimulus dimensions; they are usually learned by memorizing the specific set of objects that
is consistent with them.

In an individual trial, (1) an object is drawn at random from the set of eight objects, (2) the
learner judges it as consistent or inconsistent with the true, hidden concept, and (3) the
learner is given feedback. The objects are usually drawn without replacement to form a
block of trials, such that objects appear in a random order but with the constraint that each
object appears exactly once (or twice) in a block. Shepard et al. [46] found that across
several experimental manipulations, criterion performance was reached most quickly on
Type I concepts. The number of trials to criterion performance was ordered as follows:

(Types III, IV, and V were not reliably different from each other.) Nosofsky et al. [32,33]
obtained similar results, with 44.0, 85.4, 121.6, 127.0, 133.8, and 189.2 trials to criterion
performance, for concept Types I through VI, respectively.

2.1. Introduction to the probabilistic learning model
In this section, we introduce a new probabilistic model of how the learner's beliefs develop
over the course of many trials, in Shepard et al.'s [46] concept learning task. This model is
similar in spirit to Anderson's [2] model, but makes fewer assumptions as to the cognitive
processes underlying inference. We explicitly specify a generative model, which is meant to
capture the learner's beliefs about the task. Learning, in our model, is optimal Bayesian
inference with respect to that generative model.

We use probability theory to describe the learner's prior beliefs, and how those beliefs
change in response to new information. We use standard probabilistic notation, in which
random variables begin with capital letters, and specific values of random variables begin
with lowercase letters. For example, C represents the learner's beliefs about the a priori
probability of each of the concepts, represented in a prior probability distribution over all
concepts ci. (In our probability model, which includes 70 possible concepts, C is a vector
with 70 probabilities that sum to one.) C = ci represents the event that C takes the value ci,
for instance that the true concept is “small”. The learner typically wishes to know P(C = ci|X
= x), the posterior probability of a particular concept given a particular observed datum x.
For instance, the learner may wish to know the probability that “small” is the true concept,
given that in their first trial of learning, they observe that a small black circle is consistent
with the true concept. [For concise notation in the article, we will use lowercase letters to
denote specific values taken by random variables, for instance ci, rather than C = ci.] The
posterior probability of the concept “small” is not=observed directly. Rather, P(ci|x) is
calculated according to Bayes’ [4] theorem, with reference to both the prior probability of
the concept “small”, P(ci), and the a priori likelihood of observing the small black circle as a
positive example, if the true concept were “small,” P(x|ci). By Bayes’ theorem, the posterior
probability of a particular concept is calculated as follows:
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The simulated model learner obtains the posterior probability of every concept in this way.
P(x), the probability of the observed datum, is a normalizing constant that is computed by
summing P(x|ci)P(ci), the numerator of the previous term, over all concepts ci:

2.2. Capturing the learner's intuitions with prior probabilities
If the learner had no intuition that certain concepts were more plausible than others, each
concept could be given the same prior probability. However, in the case of Shepard et al.'s
[46] task, some concepts, such as “large”, are much more plausible than other concepts, such
as random collections of objects. In a probabilistic modeling framework, we seek to capture
the learner's intuitions by giving more plausible concepts higher prior probability, and less
plausible concepts lower prior probability.

In the current article, our primary focus is on understanding what Rehder and Hoffman's
[39] subjects believed, so as to most accurately understand subjects’ eye movement
behavior, rather than on providing a complete explanation for why subjects had particular
beliefs. We therefore set the prior probability of each concept of a particular type to be
inversely proportional to the average number of errors committed by Rehder and Hoffman's
study participants (“Err.” column in Table 1) when learning that type of concept, εi, raised
to a power, λ, a free parameter in our model:

Choice of this particular function is relatively arbitrary; it serves to provide spread in the
prior distribution. If λ = 0, all concepts have equal prior probability; if λ is large, Type I
concepts have most of the prior probability. All concepts of a particular type, for example
the Type I concepts “small” and “circle”, receive the same prior probability. Our model only
assigns non-zero prior probability to the 70 concepts that include exactly 4 of the 8 objects,
because most empirical research focuses on these types of concepts. Because Type III–V
concepts are not reliably different from each other in the speed at which they are learned
[32,46], and because Rehder and Hoffman's [39] data do not include Type III or V concepts,
our model gives Type III and V concepts the same prior probability as Type IV concepts.

Note that our primary goal in setting priors in the present concept learning model is to
capture the learner's beliefs as accurately as possible, so as to predict the learner's eye
movements. While the errors committed by Rehder and Hoffman's [39] subjects provide a
reasonable basis for understanding what the learner's prior beliefs are, and serve as a
reasonable basis for a model that describes the process of learning and eye movements,
those errors do not constitute an explanation of the ultimate source of the learner's beliefs
about each type of concept's plausibility.

A number of a priori criteria that do not depend on empirical data could be tested as
providing a basis for prior probabilities in our model. One such criterion is the number of
stimulus dimensions that must be attended, on average, to correctly classify an object, if the
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true concept is known with certainty. Shepard et al. [46] discussed this criterion. Type I
concepts require a single dimension; Type VI concepts require three dimensions, and other
types of concepts require intermediate numbers of dimensions. Another criterion, which
Feldman [10,11] has investigated in relation to concepts’ learnability, is Boolean
complexity. In future work, we intend to investigate whether some of these a priori criteria
might provide a suitable basis for the prior probability distribution.

2.3. Belief updating: the likelihood function
Although the assignment of prior probabilities is frequently thought to be the most important
part of a Bayesian model, the likelihood function—which describes how new information
changes beliefs—is equally critical. In the case of our concept-learning model, the
likelihood function should describe the learner's beliefs about how the example data,
including their labels (in the form of the feedback given after each trial), are generated.

The likelihood functions of classic Bayesian reasoning models [9], and recent Bayesian
concept learning models [28,49,51] would appear to be applicable in this task.2 However,
these models have the property that if an observed datum is incompatible with a particular
hypothesis, that hypothesis is eliminated from consideration. Under these models, one
exposure to every possible object uniquely identifies the true concept, by eliminating all
other concepts. If applied to the concept-learning task, these types of models would predict
that after a single block of trials, in which each object is viewed once with feedback, the
learner would know the true concept with complete certainty. This result would hold
irrespective of the type of concept being learned, and irrespective of the prior probabilities
of each concept, such as whether the concept had prior probability 1/10 or 1/1000. Empirical
results strongly contradict this implicit claim of those models, however. In fact, no concept
is learned after a single block of trials, and there are clear distinctions wherein some types of
concept (such as the Type I concept “square”) are learned more quickly than others (such as
the Type VI concept “large black square or small white square or large white circle or small
black circle”). The limitation underlying the classic likelihood functions is that a single
observation completely eliminates incompatible concepts. For instance, observation of the
large white circle as a positive example would immediately eliminate concepts such as
“square”, “small”, and “black circle or white square.”

To account for the empirical finding that a single example observation does not eliminate
incompatible concepts, we assume that the subjects do not encode the examples perfectly in
memory. To model this, we include two generators of data. One data generator is
uninformative, and labels objects as consistent or inconsistent with the true concept
randomly with equal probability. The other data generator is veridical, and always correctly
labels example objects. We use a parameter μ, between zero and one, for the probability that
the informative data generator generated a particular observation. When μ = 1, the model
behaves in a manner analogous to earlier probabilistic concept learning models [49,51], and
learns the task in a single block of trials, irrespective of the type of concept and prior
distribution. When μ = 0, the likelihood function is uninformative and no learning ever takes
place. Hence, μ can also be thought of as a learning rate (Fig. 1, [35]). The likelihood of a
particular observation x (a combination of an object and its label as consistent or
inconsistent with the true concept), given a particular concept (ci), where gv and gu are the
veridical and uninformative data generators, respectively, is given by:

2Tenenbaum [49,50] and Tenenbaum and Griffiths [51] focused on situations where the learner encounters only positive examples.
However, Tenenbaum's models can update beliefs based on negative instances, provided that the likelihood function specifies how
those instances are generated.
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with P(gv) = μ, for the veridical generator and P(gu)=1 — μ, for the noise generator. In the
case where all stimulus dimensions are observed at once, as in the classic concept-learning
task, if the veridical data generator is selected in a particular trial, then there are 8 equally
probable observations (4 positive and 4 negative); if the noise generator is selected, then
there are 16 equally probable observations (8 positive and 8 negative). In this case P(x|ci)
reduces to (1/8)μ+(1/16)(1 — μ) if x is consistent with the concept ci, and (1/16)(1 — μ)
otherwise. To approximate the learner's beliefs, the likelihood function assumes that the
observations are conditionally independent of each other, given the true concept. The
psychological premise of this assumption is that the learner does not know that the objects
are drawn without replacement in each block of trials, and believes that objects are drawn
randomly throughout learning.3 Bayes’ theorem is used to update beliefs.

2.3.1. Belief updating illustrated with an example—The likelihood function is
illustrated with a simplified example, where the concepts “square” and “large” each have
prior probability 0.50, and the other concepts have prior probability zero. (Except for the
simplified prior probability distribution, this example is identical to the full concept-learning
model.) Let μ = 0.20. We assume that the learner is exposed to all stimulus dimensions, as is
the case in most versions of Shepard et al.'s [46] task. The likelihood of a particular
observation, if all stimulus dimensions are attended, is 1/8 given a particular concept and the
veridical generator, and 1/16 given a particular concept and the noise generator, as in the
full-scale model.

Suppose that on a particular trial, the learner sees the large white circle as a positive example
of the concept. The learner believes that with probability 0.20, the observation is veridical;
and with probability 0.80, the observation is uninformative. In the equations below we use x
to denote that the observed object is the large white circle, labeled as a positive example of
the unknown true concept. There are 16 possible observations, corresponding to each of the
8 objects as positive and negative examples of the true concept. We use gv to denote that the
veridical generator of data is selected, and gu to denote that the uninformative generator is
selected. We use cs to denote that the true concept is “square,” and cl to denote that the true
concept is “large.” If the observation is from the veridical data generator, then the posterior
probability of “square” is 0:

[P(cs|gv) = P(cs), and P(x|gv) = P(x), because P(cs) and P(x) do not depend on G.] Similarly,
the probability of the concept “large,” given this observation, would be 1:

3We believe that this discrepancy between our generative model of this task, and the actual task, is minor. However, it would be
interesting, in a future experiment with human subjects, to actually draw example objects independently, with replacement, throughout
learning.
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If the observation is uninformative, then posterior probabilities of “square” and “large”
would each be 0.5, unchanged from the priors. Consider the posterior probability of “large”:

The learner, of course, does not know whether the veridical or uninformative generator of
labels was selected on this trial, and therefore must average over both possibilities. The
posterior probability of the concept “square”, given the observed datum x:

Similarly, P(cl|x) the posterior probability of “large”, given the observed datum x, is 0.6.

2.3.2. Comment on μ—We introduced μ as reflecting imperfect encoding of examples in
memory on the part of the learner. Other conceptualizations of μ are also viable. An ideal
observer, with perfect perception and memory, would update beliefs in the same manner as
our likelihood function if it believed that individual examples (such as the large white circle,
if drawn on a particular trial) were correctly labeled with probability μ, and randomly
labeled (positive or negative by flip of a fair coin) with probability 1 — μ. If an ideal
observer has μ<1, that observer is skeptical about the process by which examples are
labeled. In fact, classic work on conservatism in Bayesian reasoning [9] suggests that even
in situations with no memory component, μ is likely to be less than 1 for human subjects.
This suggests that although we primarily describe μ as reflecting imperfect memory, it may
also represent some element of skepticism on the part of subjects. Another way of describing
our likelihood function would be to state that we do not know whether a particular learner
remembers a particular example, but that we believe that in general, learners remember
examples with probability μ. In that case, our concept leaning model might not describe the
beliefs of any particular learner, but rather would describe the mean of all learners’ beliefs.
Computation of the model learner's posterior probabilities does not depend on which
explanation of μ one favors.

Our model learner's likelihood function illustrates how imperfect encoding or memory, or
the learner's belief that the data are noisy, can be modeled in a generative framework of
optimal inference. This likelihood function behaves in the same manner as that of Oaksford
and Chater [35], and a similar manner as conservative likelihood functions from classic
research on Bayesian reasoning [9]. Most authors have viewed conservatism as an error, or
at least as a suboptimal property of human inference. Our generative formulation shows that
if a learner is skeptical that data are noisy, being conservative in belief updating is the
optimal Bayesian behavior.

2.4. Simulation of the probability model's learning
Does our model account for results in the classic non-eye movement concept-learning task,
in which all three stimulus dimensions are presented in every trial? Fig. 2, top panel, shows
how the model's classification performance improves during the course of learning, for each
type of concept. Qualitatively, the most important result is that the ordering observed in
empirical investigations (e.g. [39,46]) is preserved, with high performance on Type I
concepts achieved most quickly, followed, in order, by Type II, IV, and VI. Because the
concept-learning model explicitly represents beliefs about the probability of each concept, at
each point in learning, it will also prove possible to query the model learner in ways that go
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beyond available empirical data on human learning. Note that although the probability
model that our model learner uses to calculate posterior probabilities does include Type III
and V concepts, for easiest comparison to Rehder and Hoffman's [39] results, we plot only
Types I, II, IV, and VI in the charts in this article. We set λ = 5 and μ = 0.10 in all
simulations in this article, choosing those values by hand. (The qualitative pattern of results
is maintained across a wide range of parameter values; in future work we intend to optimize
these parameters quantitatively.)

2.4.1. The model learner's probability of error—The goal of studying concept
learning is largely to know how people's beliefs change through experience. However,
evidence for belief change has largely been in the form of error rates during learning. It is
therefore important to assess the model learner's error rates. Here we predict the model
learner's error rate (Fig. 2, top panel) using a probability matching response function, in
which a response is picked proportional to the estimated probability that is correct, rather
than the optimal winner-take- all response function. This appears to be necessary to keep the
model learner's error rates from decreasing too rapidly, compared with the human data. Use
of probability matching response functions is thought to be common in human subjects (but
see [44]). Note that the choice of response function here does not affect the model's learning
or eye movements.

Let x represent an unlabeled observation, such as the large white square, before the learner is
given feedback during a particular trial.4 Let A be a binary random variable that indicates
whether or not the correct response is “yes” in a particular trial, e.g. whether the random
object in the present trial is a positive (A = 1) or negative (A = 0) example of the unknown
true concept. P(α) is shorthand for P(A = 1). The subscript t is shorthand to condition on the
complete history of learning up to the present trial. For instance, Pt(C) specifies the
probability distribution that gives the learner's beliefs about the probability of each possible
concept, after t blocks of learning; Pt(c) is the probability of a particular concept c. The
learner's belief that a particular unlabeled observation x is consistent with the true concept is

In a given trial, the learner responds “yes” with probability Pt(α|x). The learner's probability
of error for a particular observation x is the probability of a false positive or miss (Table 2)

The model learner's overall probability of error is computed by averaging over all possible
observations x

Fig. 2, top panel, gives the model learner's error rates during learning, for Type I, II, IV, and
VI concepts; the bottom panel gives error rates from Rehder and Hoffman's [39] data. The
model learner shows fastest reduction in error rates for Type I concepts, consistent with

4In our model of the classic task, we assume that each observation x is of all three stimulus dimensions of an object. More generally, x
could be an observation that results from querying all, or any subset of, stimulus dimensions.
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Rehder and Hoffman's data. The model predicts that Type IV concepts will initially have
lower error rates than Type II concepts. This phenomenon may result from the high
similarity between Type IV and I concepts, such that above-chance performance on Type IV
concepts can be obtained by responding in accordance with appropriate Type I concepts. It
is hard to tell whether this prediction is consistent with the data, which are fairly noisy
during early learning. The model predicts that Type II and IV concepts will have relatively
similar error rates throughout learning, and that Type II concepts will be mastered first.
These predictions appear consistent with the data. Finally, the model learner shows the
slowest reduction in error for Type VI concepts, consistent with most empirical work. It
does appear that the model learner underestimated the relative difficulty of Type VI
concepts, compared with Type IV concepts. (However, Nosofsky and Gluck [31], did find
similar error rates for Type IV and VI concepts, even late in learning.)

2.4.2. The model learner's beliefs about the true concept—An advantage of
testing our model learner is that beliefs per se, as measured by the probability distribution
Pt(C), can be queried at each moment in learning, in addition to probability of correct
response. Fig. 3 gives the posterior probability of the true concept, over the simulated
learning blocks for four different concept classes. Before any learning has taken place,
because the prior distribution is relatively peaked (λ = 5), almost all of the model learner's
belief is concentrated in the six Type I concepts. (Entropy of prior beliefs in our model is
2.67 bits, barely larger than the 2.59 bits of a model with six equiprobable Type I concepts.)
During the course of learning, the probability of the actual concept increases, irrespective of
its type, following the ordering of Type I>II>IV>VI.

2.4.3. The model learner's uncertainty, throughout learning—While it is difficult
to chart the model's beliefs about the probability of each of the 70 concepts at each point in
learning, it is desirable to understand the model learner's subjective level of uncertainty over
all the concepts, at each point. Shannon entropy [7,45] is well suited to quantifying this
overall level of uncertainty. Fig. 4 shows the model learner's uncertainty about the true
concept, according to the type of concept being learned (i.e. the curve for Type IV
represents the uncertainty in the model learner's beliefs over all concepts, if the true concept
is of Type IV).

An interesting, unanticipated result is that for non-Type I concepts, the model learner's
subjective uncertainty (Shannon entropy) actually increases in early learning. This increase
in uncertainty is due to the large shift in probability mass (the model learner's beliefs) from
the Type I concepts (which begin with combined probability 99.4%) to the concepts of other
types. If the true concept is not Type I, then by five blocks of learning, non-Type I concepts
(there are 64 of these, versus 6 concepts of Type I) will obtain a majority of the probability
mass. Eventually, uncertainty decreases as the model learner narrows beliefs to the correct
concept.

It would be interesting, and potentially feasible, to test our model's claim that uncertainty
actually increases during early learning of non-Type I concepts. These tests should employ a
modified task measuring knowledge of the true concept per se, rather than correct
classification performance. With human subjects, these measures could potentially include
subjective report, reaction time, or galvanic skin response. Another possibility would be to
use fMRI to measure brain metabolic activity that correlates with entropy (or perhaps
variance). Preuschoff et al. [37] found brain activity that correlated with uncertainty of
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monetary reward probability. An fMRI study could address whether uncertainty in a
categorization task also correlates with brain activity. Bob Rehder (pers. commun., 2005)
has noted his impression that subjects initially focus only on Type I concepts, and broaden
their search if it later becomes clear that Type I concepts cannot account for the data.

3. Eye movements in concept formation
A primary motivation to develop a probabilistic model of learning on Shepard et al.'s [46]
task was to evaluate whether theories of optimal experimental design (or optimal data
selection) [3,27,34,43] could explain Rehder and Hoffman's [38,39] eye movement results.
In this section, we describe Rehder and Hoffman's experiment and their main results. We
also describe our eye movement model (formally, a utility function that quantifies possible
eye movements’ usefulness), and how its results may offer insight into Rehder and
Hoffman's data. Note that although our concept-learning model includes all types of
concepts that were considered by Shepard et al., we do not discuss model eye movement
results for concept Types III and V, because Rehder and Hoffman did not obtain eye
movement data from human subjects on concepts of those types.

3.1. Rehder and Hoffman's [38,39] task and eye movement data
Numerous models of category learning describe how selective attention to different stimulus
dimensions evolves, yet little direct evidence is available. Rehder and Hoffman [39] devised
a novel experimental design in which eye movements provided direct evidence for how
selective attention was deployed at each moment in time. This was accomplished by
representing the value of each stimulus dimension with abstract characters (such as $ or c̷ at
the bottom right of Fig. 5) at a particular vertex of a large triangle on a computer screen, and
recording eye movements throughout learning. In other words, rather than seeing a large
black circle in the middle of the screen, subjects might be presented with an “x” in the
bottom left, an “!” in the top middle, and a “$” in the bottom right. A small black circle
might be represented by having an “o” in the bottom left, and the other characters as before.

Among 72 subjects, a variety of patterns were observed. For the vast majority of
participants, the following findings held:

1. Early in learning, all three stimulus dimensions were viewed (fixated).

2. Improvement in categorization performance occurred before subjects switched to
viewing just the dimensions necessary for correct classification (“efficient” eye
movements). For instance, the modal pattern for Type I learners was for error to
drop from 50% (chance) to almost 0% after about 12 trials (1.5 blocks), but for the
number of dimensions fixated to remain high until about 16 trials (2.0 blocks).
(“Type I learner” means a subject who was assigned to learn a Type I concept.) For
Type II learners, errors decreased more gradually, beginning approximately on trial
40 (5 blocks), and decreasing gradually through approximately trial 72 (9 blocks).

3. Eventually, efficient eye movements (to only the necessary stimulus dimensions,
given certain knowledge of the true concept) were used. For Type I concepts,
efficient eye movements are to a single dimension, such as the size query for the
concept “small”. Rehder and Hoffman's Type I subjects in general fixated only the
single relevant dimension, late in learning. For Type II concepts, efficient eye
movements are to the relevant two dimensions, such as the size–shape query for the
concept “large square or small circle.” Type IV concepts, in the general case,
require all three dimensions. In some cases, however, depending on what is learned
from the first dimension, Type IV concept objects can be classified with two
dimensions. Type IV subjects tended to fixate all three dimensions, although the
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average number of dimensions fixated by Type IV subjects was slightly less than
the number of dimensions fixated by Type VI subjects (Fig. 6). The finding that
Type IV subjects tended to fixate all three dimensions, even late in leaning, could
suggest that subjects found it more expeditious to plan a sequence of eye
movements in advance (e.g. a remembered scanpath or visual routine), rather than
to fixate a single dimension and then consider what dimension to fixate next.
Finally, Type VI concepts always require all three stimulus dimensions; the vast
majority of subjects always considered all three dimensions.

We will focus on these empirical findings when evaluating our eye movement model.

3.2. Quantifying eye movements’ usefulness
We model the history of learning with the assumption that the learner has viewed all three
stimulus dimensions, at each trial up to the present time. This matches the classic task, but is
a simplification in modeling Rehder and Hoffman's [39] eye movement version, in which
subjects sometimes do not view all stimulus dimensions, even early in learning. At each
point in learning, our concept-learning model is used to describe the model learner's beliefs.
Technically, the eye movement model is a subjective utility function for evidence
acquisition, in the sense of Savage [43]. When we refer to the usefulness of each possible
eye movement, we mean the subjective utility that the model learner expects to obtain, on
average, as a result of making that eye movement. In the equations below we refer to
queries, rather than eye movements per se, to reflect that a task could be designed so that
information is obtained by other means, for instance by asking a question, clicking a mouse
pointer on a computer screen, etc.5 (Matsuka and Corter [22], nicely show how mouse clicks
can be used to study attention allocation in category learning.) At each point in learning, the
learner picks between 8 possible queries: all dimensions, size–shape, size–color, color–
shape, size, color, shape, or null. The task for modeling is to see whether a principled utility
function, inspired by ideas from theories of optimal experimental design, can offer insight
into subjects’ eye movements in Rehder and Hoffman's [39] data. We propose the following
function to quantify a particular query's expected usefulness:

(Recall that the subscript t is shorthand to condition on the complete history of learning up
to the present trial. C is a random variable denoting beliefs about the true concept. Q is a
random variable that denotes a particular query, such as size, whose outcome is unknown,
and q represents one of several possible outcomes of that query.) Each term in the usefulness
function corresponds to a central idea, as introduced below:

1. pgt(Q). The learner wishes to correctly classify the randomly selected object that is
presented in a particular trial (exploitation).

2. It(Q; C). The learner wishes to learn the true concept (exploration).

3. —j(Q). The learner wishes to avoid making extraneous eye movements.

5Some eye movement models, for instance the E-Z Reader models of reading [40,41] explicitly account for oculomotor processes,
sub-second timing issues, saccade (eye movement) length distributions, and specific properties of visual acuity at different
eccentricities (angular distances from center of gaze). Our model is relatively abstract. We disregard issues of peripheral acuity,
because Rehder and Hoffman's [39] stimuli were designed to render peripheral information uninformative, except with respect to
stimulus position. We disregard the visual system's preference for relatively short eye movements, because the targets—at the vertices
of a triangle—are roughly equidistant from the current point of gaze. Timing issues would be interesting to consider in future work,
such as whether longer fixations (periods of focused gaze) tend to be to more informative features.
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The next sections explain the terms of the usefulness function in more detail, and describe
the rationale behind each term.

3.2.1. Classifying a random object: pgt(Q)—The learner's immediate task is correct
classification on a particular trial. The eye movement model's usefulness function captures
this idea (Baron, 1981, as cited in [3]) with its pgt(Q) term. This term quantifies the amount
that a query is expected to improve the probability of correct response on a particular trial,
the query's probability gain. Because objects are drawn randomly with equal probability, and
4 of the 8 objects are consistent with each concept, chance accuracy is 0.5. Formally

In the above equation, Q is shorthand for any particular query that the learner might make,
for example Qsize, in which case

The probability of correct response, given a particular outcome of a query, is

where P(α|q) gives the probability that the correct response on the trial is “yes”, given q.
The P(correct|q) term is derived from an optimal (not probability matching) response
strategy, in which the learner always responds “yes” if P(α|q)>0.5, and “no” if P(α|q)≤0.5.

Suppose that at time t, late in learning, the true concept were known with probability 1 to be
“large,” and that the learner were evaluating the probability gain of the size query (Qsize). If
the observation (q) were that the size dimension takes the value “small,” then P(α|q) =
0<0.5, so the learner would respond “no,” which results in 100% probability of being
correct. If the observation q were “large,” P(α|q) = 1>0.5, and the learner would respond
“yes,” again with 100% probability of being correct. Before making an eye movement, the
learner averages over each possible result of the query, in this case each with probability
0.50 of occurrence, and obtains pgt(Qsize) = 0.50.

3.2.2. Learning the true concept: It(Q; C)—The second term in the usefulness
function, It(Q; C), quantifies a query Q's value for reducing uncertainty about the true
concept C. We use the mutual information between the query Q and the concept C, given
learning to date t, to measure this

This term is an exploration term to quantify the anticipated future usefulness of what is
learned in the present trial. It also addresses the subject's presumed desire to identify the true
concept. Technically, mutual information is the expected reduction in entropy in C from
making query Q, or the initial entropy Ht(C) less the conditional entropy Ht(C|Q). Note that

Nelson and Cottrell Page 12

Neurocomputing. Author manuscript; available in PMC 2012 July 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Ht(C|Q) is the expected entropy given a query Q (such as size), not the actual entropy given
a particular result of the query q (such as small).

Sometimes called ‘expected information gain,’ the use of mutual information to quantify
experiments’ (or queries’) usefulness was proposed by Lindley [20]. Oaksford and Chater
[34,35,56] used information gain in a model of Wason's [58,59] card selection task.
Oaksford and Chater [34] noted that mutual information is equivalent to the directional
Kullback–Liebler distance [18] from prior to posterior distribution, as well. Lee and Yu [19]
suggested using mutual information to predict eye movements. Denzler and Brown [8] used
information gain to control cameras in a robotic vision task. Renninger et al. [42] did so in a
shape-learning task model, as did Movellan [23] in a social contingency detection model,
and Steyvers et al. [48] in a causal network learning task. Nelson [27] reviews some
alternate ways an exploration term could be formulated, and shows that alternate
formulations give equivalent results in several psychological tasks.

3.2.3. Avoiding extraneous eye movements: j(Q)—Finally, we include a cost term,
j(Q), to represent the subjective cost of fixating one or more stimulus dimensions. This cost
does not depend on the history of learning t. We set j(Q) arbitrarily, to 0.04 per dimension
fixated. Hence, Qall, the size-shape-color query, has cost 0.12, and Qsize has cost 0.04. We
have simulated the model with various settings of this parameter. Results do not greatly
depend on the specific value chosen, so long as it is small and nonzero.

3.3. Results from the eye movement model
What eye movements does the model predict, at particular stages of learning? In each trial,
there are 8 possible queries: size–shape–color, size–shape, size–color, color–shape, size,
color, shape, and null. Before learning, the query to all stimulus dimensions (utility = 0.880)
is more useful than any query of two (utility = 0.585) or one (utlity = 0.292) stimulus
dimensions, consisten with Rehder and Hoffman's [39] empirical finding that early in
learning, learners tend to fixate all stimulus dimensions. This is due to the queries’ different
It(C; Q), their expected information gain with respect to the learner's beliefs about the true
concept. Because no learning has taken place, this is true irrespective of the true concept.
Before learning, pgt(Q) is zero for every query. (The learner's lack of knowledge of the true
concept is so pronounced that learning, for instance, that the object presented in this trial is a
large white circle does not help the learner do better than chance performance of 50% on
this trial.) Fig. 7 illustrates how It(C; Q), the open circles, and pgt(Q), the closed circles,
change during learning of the concept “small”, comparing the query to all stimulus
dimensions (left panel), and the size query (right panel). Comparing the open circles on the
two graphs, the It(C; Q) term always favors the query to all stimulus dimensions, relative to
the query to the size dimension alone. During learning, however, the It(C; Q) terms tend
toward zero, such that the difference between It(C; Qall) and It(C; Qsize) is miniscule.
Because of this, eventually the size query, which has the lower cost, becomes more valuable
(has higher utility, or usefulness) than the query to all dimensions (Fig. 9). In other words,
the model initially focuses on learning the correct concept, but as the correct Type I concept
quickly becomes known, the model shifts its focus to producing a correct response.

A similar pattern holds for Type II concepts (Fig. 8). We discuss results for the Type II
concept “large square or small circle.” For this concept, the efficient query (Qefficient) is to
the size and shape dimensions. Type II concepts have a smaller initial difference in It(C;
Qall) and It(C; Qefficient) than do Type I concepts. This is because a query to two stimulus
dimensions is expected to provide more information than a query to a single stimulus
dimension. The slower learning of Type II concepts, relative to Type I concepts, results in
slower decrease of the It(C; Q) terms and increase of the pgt(Q) terms.
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For Types IV and VI concepts (not shown), the model always prefers the query to all
stimulus dimensions.

3.4. Putting it all together
We now have results from both the concept-learning model and the eye movement model in
hand, so we can examine their behavior together. This is the critical test to evaluate whether
our model offers insight into Rehder and Hoffman's [39] data. Fig. 9, for the Type I concept,
“small,” shows that the error rate (dashed line) decreases well before the efficient query (×
marker) becomes more valuable than the query to all dimensions (+ marker).

Fig. 10 shows that the model behaves in a similar manner on Type II concepts. Importantly,
however, because learning develops more slowly in the case of Type II concepts, the error
rates decrease more slowly, and the point when the efficient query becomes more valuable
occurs much later, than in the case of Type I concepts. For Type IV and VI concepts, for
which Rehder and Hoffman's [39] subjects tended to fixate all stimulus dimensions
throughout learning (Fig. 6), the model also rates the query to all dimensions as having the
highest usefulness throughout learning.

Together, these results show that the model produces the main qualitative features that
Rehder and Hoffman [39] noted in their data. In each case, the model offers a principled
explanation of the result:

1. Initially, subjects consider all stimulus dimensions, because Qall provides more
information than any other query about the true concept, as quantified by the It(Q,
C) term. The greater usefulness with respect to the It(Q, C) term more than
overcomes the higher cost of Qall, versus other queries.

2. Error rates decrease during the course of learning, even as subjects continue to
fixate all stimulus dimensions, because correct classification performance results
from beliefs about several possible concepts, and not just about the concept that
later proves correct.

3. Subjects switch from Qall to Qefficient after achieving high classification
performance, because even though high classification performance is being
achieved already, it takes additional learning to rule out plausible alternate
hypotheses about the true concept.

3.5. Questions about the usefulness function
A number of points of confusion about our formulation of the usefulness function may arise.
Are all the terms necessary? Could some terms be formulated differently? This section,
formulated as a hypothetical question-and-answer session, discusses several points.

Isn't there a correct way to quantify queries’ usefulness? For the sake of argument, suppose
that the task included an explicitly specified set of external rewards. For instance, suppose
that the learner is paid $1 for each trial in which they guess correctly, up to a total of 300
trials. In this case, there is a unique, correct calculation of each query's usefulness, at each
point in learning, and dynamic programming could in principle be used to identify what
utility function applies at each point in learning, to maximize net total payoff (Javier
Movellan, pers. commun., 2005). Modeling the subjective utility (the perceived value to the
subjects) of money, however, would require separate specification of subjects’ utility
function for money, as well as of the temporal discount factor that subjects have for future
reward. Furthermore, external rewards are not explicitly specified on Rehder and Hoffman's
[39] task, so different people could have different ideas about what function implicitly
applies. Similarly, there is no guarantee that introduction of external rewards would
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eliminate intrinsic goals that the subject might have, such as identifying the true concept.
Accordingly, we view the current modeling objective as ascertaining whether ideas from
optimal experimental design can help describe subjects’ goals on Rehder and Hoffman's
task, rather than as ascertaining whether subjects have a theoretically correct model of the
value of information on the task.

What if the pgt(Q) term were eliminated? Intuitively, it may seem that the learner's goal is to
learn the true concept, and that this goal is served by the It(C, Q) term. Early in learning, if
the pgt(Q) term were eliminated, the model concept learner would behave similarly, because
the main driver for the query to all stimulus dimensions is its ability to provide information
about the unknown true concept. Late in learning, however, once the true concept is known
with high certainty, the model concept learner, rather than relying on the efficient query
relative to the true concept, would stop making eye movements altogether (switching to the
null query), because the cost of any query would more than outweigh the usefulness of its
miniscule expected reduction in uncertainty about the true concept. The paradoxical result
would be that as the learner comes to know the true concept with high probability, as
attested by the probabilities of each concept in the model, performance on the categorization
task would decrease to chance.

What if the It(C, Q) term were eliminated? This would cause the learner to have to rely on
the pgt(Q) term to identify useful eye movements. Unfortunately, in the first trial of learning
it is impossible to classify the object with greater than chance (50%) accuracy, irrespective
of the number of stimulus dimensions fixated. Thus, because of each query's cost of
execution, every query (except the null query) would have negative usefulness, and the
learner would not fixate any of the stimulus dimensions. In the second learning trial, the
learner's beliefs about the concepts would be the same as the learner's initial beliefs, because
no learning took place on the previous trial. Hence, the same situation would arise. The
problem would iterate indefinitely, and at no point in time would the learner fixate any
stimulus dimensions, or achieve greater-than-chance performance on the task.

What if the j(Q) term were eliminated, by setting the cost of each query to zero? Consider
what would happen when, late in learning, uncertainty is small and the true concept is
known with nearly 100% certainty. Even at this point, the learner would fail to switch from
fixating all stimulus dimensions to the efficient query, because Qall would be marginally
more valuable at reducing the miniscule remaining uncertainty about the true concept (Fig.
11). This behavior would make sense if eye movements were free. However, every eye
movement (saccade) has a biomechanical cost to execute. There is also an opportunity cost
in the other eye movements that must be foregone, and the inability to perceive any visual
stimuli due to retinal blurring during each saccadic eye movement's execution.

Could the It(Q, C) term be formalized differently? Several usefulness functions for
quantifying the value of information have been proposed. Nelson [27] provided
experimental evidence that some usefulness functions from the literature (Bayesian
diagnosticity and log diagnosticity) are not plausible models of human intuitions, and
behave poorly in several situations. However, based on a review of the literature, Nelson
concluded that several other usefulness functions are roughly equally reasonable as
descriptive models of empirical data from human subjects. These functions include mutual
information, which we use here, as well as probability gain and impact. If probability gain
were to be used as the basis of an exploitation term, it would quantify the expected
improvement of correctly identifying the true concept. (Note that this is different from the
improvement in probability of correct response on the current trial, which is already
quantified in the current eye movement model's pgt(Q) term.) Impact, the expected absolute
change in beliefs [15,30,60] is another candidate. Nelson reported simulations suggesting
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that these three usefulness functions in general behave similarly, in a two-category, binary-
feature scenario.6 Other plausible usefulness functions could also be proposed. Our
theoretical goal is to show that a reasonable usefulness function can offer insight onto
Rehder and Hoffman's [39] eye movement data, not to argue for information gain versus
other measures.

Should a term for intrinsic visual salience [12,13,53] be included? The justification for a
salience term would be that certain kinds of visual stimuli (such as high color contrast areas)
might be intrinsically interesting to the visual system, irrespective of one's current task. In
Rehder and Hoffman's [39] task, the values of the stimulus dimensions of the objects were
the only illuminated parts of the screen during each trial. A salience-based eye movement
model alone could not model Rehder and Hoffman's eye movement data, namely the
different patterns of eye movements observed for the different stimulus types, as the visual
stimuli were the same for all types of concepts. The other terms are each necessary to model
Rehder and Hoffman's eye movement data. For the sake of parsimony, we ignore visual
salience in the present model, although it could potentially be important on other tasks.

What likelihood does the model learner think they will use when evaluating each possible
query's usefulness? The current model makes the simplifying assumption that when
evaluating possible queries’ (eye movements’) anticipated usefulness, μ = 1. The implicit
psychological claim here is that when considering what eye movements to make, the learner
believes he or she will have complete confidence in the results. In future work we intend to
explore the implications of using the same likelihood function as in the concept learning
model, where μ < 1, when calculating possible queries’ usefulness.

4. Summary, discussion, and future work
Shepard et al.'s [46] task has received a great deal of study. Like much work in cognitive
psychology, process models have largely inspired theories of the task. Many of these models
have made claims about the learner's selective attention to different stimulus dimensions
throughout learning, in the absence of selective attention data. Rehder and Hoffman's
[38,39] insight was to devise an eye movement-based version of the task, so that the
viewer's eye movements could provide direct evidence for how selective attention is
deployed throughout learning.

Rehder and Hoffman noted that their eye movement data did not appear to fit existing
models well. RULEX, a rule-based category-learning model [33] would predict eye
movements to one dimension at a time, early in learning. Subjects, however, tended to fixate
all stimulus dimensions early in learning. ALCOVE, a connectionist exemplar-based model
[17] would predict a gradual transition between eye movements to all stimulus dimensions,
and eye movements to the relevant dimensions. However, subjects showed a relatively
sudden switch to efficient eye movements, which occurred after error rates were already
low. Rehder and Hoffman [39] hypothesized that multiple learning modules, some rule-
based and some similarity-based, control learning and selective attention on their task.
Rehder and Hoffman [39] suggested that perhaps the late switch to efficient eye movements
happens because subjects strategically “abandon alternative learning strategies after one
module has solved the learning problem,” or because of “cognitive limits that influence how
objects get prioritized in a visual field, or both.” Our results show that recourse to such a

6Jiri “George” Najemnik (pers. commun., 2005) noted that although Najemnik and Geisler [26] used probability correct, which is
equivalent to probability gain, in an ideal observer analysis of a visual search task, they obtain similar results using mutual
information, and that the two functions are too similar for determination of which of them best models human data.
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complicated set of explanations of Rehder and Hoffman's data may not be necessary, even
though some aspects seem consistent with ALCOVE, and other aspects with RULEX.

There were two main goals underlying the research discussed in this article. The first was to
evaluate whether a probabilistic model that describes learning as optimal Bayesian inference
could help explain Shepard et al.'s task. It appears that the Bayesian concept learning model
at least qualitatively matches key properties in data from Shepard et al.'s task, such as rapid
reduction in error for Type I concepts, similar error rates for Types II and IV concepts
through much of learning, and the expected ordering of concept types in number of trials to
criterion performance. Our second goal was to evaluate whether, given that Bayesian
learning model, eye movements (selective attention) on Rehder and Hoffman's [38,39] task
could be modeled as a process of optimal experimental design. We view our eye movement
modeling results as a proof of concept that a usefulness (utility) function that is inspired by
principled statistical ideas can reproduce important properties of human behavior. A model
with an unchanging set of goals (the usefulness function), inspired by ideas from the theory
of optimal experimental design, and with beliefs that develop in a principled way, modeled
with Bayesian statistics, produces the key findings that Rehder and Hoffman [39] reported:
early fixations to all stimulus dimensions, the gradual reduction in classification error, and
the late shift to efficient eye movements.

This article reports work in progress. In the future we hope to address several issues:

1. What is the source of prior beliefs? Here we primarily focused on identifying what
the learner's beliefs are, at each point in learning, and on how those beliefs change
during learning. We therefore used error counts from Rehder and Hoffman's [39]
data as a basis for assigning prior probabilities. A priori statistical measures, such
as Boolean complexity [10], could perhaps also be used in assignment of prior
probabilities. It would be remarkable if subjects’ intuitions about different
concepts’ relative plausibility could be explained in such a principled manner.

2. What range of eye movement (utility) functions can offer insight into Rehder and
Hoffman's [39] data? We chose a usefulness function that seemed plausible, based
on the task and on other research using optimal experimental design concepts to
understand human intuitions (reviewed by Nelson [27]). A variety of other
formulations of the usefulness function could be considered. For instance, the
learner's goal of identifying the correct concept, which we quantified with mutual
information (information gain), It(C, Q), might alternately be quantified with
impact (absolute change in beliefs impact, [15,30,60]), or with probability gain [3].
It would also be helpful to more thoroughly consider the explore/exploit tradeoff.
Exploration, in our model, is quantified by It(C, Q), and exploitation is quantified
by pgt(Q). In the present model, we simply added those terms, and did not optimize
their relative weight. However, subjects may place more weight on one of these
terms. In general, we sought to be conservative in not optimizing every aspect of
model construction, to avoid overfitting. In the future, we hope that minimum
description length [36] or other techniques may enable us to consider a wider range
of models, while insuring against overfitting empirical data.

3. What more can be learned from a more fine-grained analysis of the data? Rehder
and Hoffman [39] reported that their subjects could be clustered according to their
eye movements and error data. Optimizing model parameters to subgroups of
subjects (see [57]), or even to individual subjects, could potentially inform
discussion of the subjects and the model alike. Another important analysis of data
would be a backward stationarity analysis of errors on individual stimulus items, to
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see whether (or the extent to which) individual items show gradual decrease in
error (Steve Link, pers. commun., 2005).

The models introduced in this article contribute to a growing body of research in rational
analyses of cognitive tasks [1,2, pp. 409–410]. This line of research is analogous to ideal
observer analyses of perceptual tasks [16,24]. It was presaged by Brunswik's [5] molar
analysis and Marr's [21] computational analysis; others have recently discussed it as well
[6,25]. The focus is on the nature of problems that cognition solves, on what would
constitute optimal solutions to those problems, and on whether those optimal solutions might
approximate human cognition. Our results, of course, do not demonstrate what architecture
the brain uses to learn categories, to categorize objects, or to deploy selective attention via
eye movements. However, our results demonstrate that a single model, with a small number
of parameters, based on Bayesian statistics and theory of optimal experimental design, can
(1) provide a parsimonious account of classic concept learning results, and (2) help explain
the central findings that Rehder and Hoffman noted in their compelling eye movement data.

In life, virtually every interesting learning or inference scenario involves some active
contribution of the learner in deciding where to look, what questions to ask or experiments
to conduct, or what data to attend to. Optimal experimental design-inspired models of
evidence acquisition, however, have seldom considered tasks where beliefs change so
drastically, as information is sought out, decisions are made, and feedback is given, over
dozens or hundreds of trials. The present model suggests that unified, rational accounts of
learning and information acquisition may apply to a wide range of behavior. Our model
contributes to a growing body of work using information-and decision-theoretic concepts to
model perceptual tasks [19,23,26,42,47,52]. We hope it may also spur work to explore the
relationship between active information acquisition in perceptual, such as eye movement,
and other learning and inference tasks.
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Fig. 1.
Belief update if μ = 1, top; if μ<1, beliefs change less but in same direction, bottom.
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Fig. 2.
Error rates through learning. Top: model learner. Bottom: data from Rehder and Hoffman
[39], courtesy Bob Rehder and Aaron Hoffman.
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Fig. 3.
The model learner's posterior probability of the correct concept.
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Fig. 4.
Model learner's uncertainty (Shannon entropy) about the true concept, where the true
concept is of the specified type.
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Fig. 5.
Example stimulus from Rehder and Hoffman's [39] experiment. Reprinted from Fig. 2 in
Rehder and Hoffman [39]. © 2005 Elsevier. Reprinted with permission.
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Fig. 6.
Number of stimulus dimensions fixated (y-axis), during different blocks of learning (x-axis).
Reprinted from Fig. 3 in Rehder and Hoffman [39]. © 2005 Elsevier. Reprinted with
permission.
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Fig. 7.
Components of the usefulness movement function for the concept “small.” At left, Qall, the
query to all stimulus dimensions; at right, Qsize, the efficient size query.
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Fig. 8.
Components of usefulness function for the Type II concept “large square or small circle.”
Left panel, the query to all stimulus dimensions; Right panel, the efficient query, to size and
shape.
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Fig. 9.
Error rate and selected queries’ usefulness, Type I concept, “small.”
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Fig. 10.
Error rate and selected queries’ usefulness, Type II concept, “large square or small circle.”

Nelson and Cottrell Page 31

Neurocomputing. Author manuscript; available in PMC 2012 July 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 11.
If cost j is zero, Qall is the most useful query, throughout learning.
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Table 1

Example concepts

Type Objects Err.

I 8.2

II 31.2

IV 36.9

VI 70.6

Note: Err. column is average number of errors in Rehder and Hoffman's [39] study.
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Table 2

Probability matching illustrated

True state

Response A = 1
Pt(α|x)

A = 0
1– Pt(α|x)

“Yes” Pt(α|x) Hit [Pt(α|x)]2 False positive Pt(α|x)
[1 – Pt(α|x)]

“No” 1– Pt(α|x) Miss [1– Pt(α|x)]Pt(α|x) Correct rejection
[1– Pt(α|x)]2

Note: In each cell, the top line gives the event of interest; the bottom line gives its probability of occurrence. The learner believes the probability
that the observation x is a positive instance of the true concept is Pt(α|x).
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