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Abstract

This paper addresses the question of the functional role of the dual application of pos-
itive and negative Hebbian time dependent plasticity rules, in the particular framework of
reinforcement learning tasks. Our simulations take place in a recurrent network of spik-
ing neurons with inhomogeneous synaptic weights. The network spontaneously displays a
self-sustained activity.

A Spike-Timing Dependent Plasticity (STDP) rule is combined with its �opposite�, the
�anti-STDP�. A local regulation mechanism moreover maintains the output neuron in the
vicinity of a reference frequency, which forces the global dynamics to be maintained in a
softly disordered regime.

This approach is tested on a simple discrimination task which requires short-term
memory : temporal pattern identi�cation. We show that such temporal patterns can be
categorized, and present tracks for future improvements.

1 Introduction

Since the �rst observations of synaptic plasticity [3], the measurement techniques have consid-
erably grown up. Important interest has recently come over the �ne dependence on the timing
of spike arrival in the synaptic potentiation or depression phenomena. Those time dependent
mechanism have been popularized as �Spike-Timing Dependent Plasticity� (STDP), and var-
ious models and implementations have been proposed. It can be noticed however that both
�positive� and �negative� spike-timing dependence have been observed, depending both on the
animal and on the location. At the present time, too few measurements have been made for an
exhaustive description of the spike-timing dependent rules taking place in the brain.

More generally, the biological mechanisms of knowledge acquisition and memory formation
remain at a very early stage of understanding. We propose in the present paper to explore the
mechanism of a dual application of STDP and anti-STDP for the realization of a classi�cation
task in an arti�cial neural network. The idea is to use the spontaneous capacity of random
recurrent neural networks to form complex patterns of activity, and to use STDP and anti-
STDP mechanisms as positive and negative reward to �shape� those patterns of activity in
order to ful�ll at best the external constraints.
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Our paper is organized the following way. The second section gives the model of neuron, the
STDP plasticity rule, and the structure of the network we simulate. The third section presents
some basic features on the e�ect of STDP and anti-STDP on the local and global neuronal
dynamics. In the fourth section we present the main learning task we use: a discrimination
task between several temporal sequences. We also make comparisons with other methods, and
present some tracks in terms of biological plausibility. The �fth section presents our conclusions
and discussions about the future work.

2 Neuron and network models

We are mainly interested in the group behavior of arti�cial neurons. For that, we simulate
rather simple and classical models of integrate-and-�re neurons.

2.1 Neuron model

The model of neuron we use is the leaky integrate-and-�re [13]. This well-known model does
not ful�ll every biological constraint, but reasonably models the temporal behavior of spiking
neurons. It is easy to implement, and thus allows the simulation large networks.

We actually use a discrete implementation of this model where a time step roughly corre-
sponds to one millisecond. The membrane potential of neuron i at step t is given by:

ui(t) = γui(t − 1) +
N∑

j=1

wijδ(t − Tj) (1)

where γ is the neuron's leak, wij the synaptic weight from neuron j to neuron i, Tj the date of
the last EPSP arrival from neuron j, and

δ(x) =

{
1 if x = 0 ;
0 elsewhere.

(2)

If ui(t) > θi(t), the neuron �res, and its voltage is reset to its resting potential 0.
In our model the threshold θ is given by a random gaussian draw of mean θ̄ = 1.0 and

standard deviation σθ = 0.2.

2.2 Learning rule

Our synaptic update rule is a particular implementation of the Spike-Timing Dependent Plas-
ticity (STDP) [2], where the long-term potentiation is additive while long-term depression is
multiplicative [14]. The weight change ∆w depends of the temporal di�erence ∆t between
the presynaptic EPSP arrival and the postsynaptic spike. The weight change is given by
∆w = F (∆t) with

F (∆t) =

{
A−αe−∆t/τ if ∆t < 0 ;
−A+αwe−∆t/τ if ∆t > 0.

(3)

where A− and A+, and α are the learning coe�cient, and τ is the relaxation rate. We set
τ = 10 and A+ = 1 ; thus two parameters are still needed in order to characterize the rule: α
and A−. The �anti-STDP� simply corresponds to a STDP with a negative α.
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2.3 Network structure

The network we simulate belongs to the category of random recurrent neural networks. All the
synaptic weights are set according to a Gaussian draw (see �gure 1 for the precise parameters).
Those parameters are set in order to allow the internal self-sustained activity to compete with
the external stimulation. It can be noticed that a precise analysis of the spontaneous activity
of comparable random networks of integrate-and-�re neurons is given in [11].

In this particular setup, we use a three-layers network. The �rst layer is composed of input
neurons, which receive the signal from the environment. Those neurons send connections toward
every neuron of the internal layer. The internal layer is composed of a hundred of fully connected
neurons. At last, some output neurons receive synapses from the internal layer. Those output
neurons do the �read-out� of the internal activity. The output neurons are moreover mutually
inhibitive.

Figure 1: Experimental setup. N temporal patterns are to be presented to the network in order to
be classi�ed in K categories. The network is composed of three populations. The input layer is composed of
4 neurons (labeled A, B, C and D). The input connections follow a random Gaussian law of mean zero and
standard deviation 0.04. The hidden layer contains 100 fully connected neurons. The recurrent connections
follow a random Gaussian law of mean 0 and standard deviation of 0.02. The output layer is composed of K
neurons, with lateral inhibition (not represented). The output connections follow a random gaussian law of
mean 0.09 and standard deviation 0.01.

3 E�ects of STDP and Anti-STDP

We present �rst in this section some e�ects of the dual application of the STDP and the anti-
STDP rules. Since the STDP increases the synaptic weight when the postsynaptic neuron �res
shortly after the presynaptic one (in equation 3, ∆t < 0), and, conversely, decreases it when it
�res before (∆t > 0), the most noticeable e�ect of this rule is thus to reinforce the sequential
co-activation of the pre and post-synaptic neurons. On the contrary, no straightforward inter-
pretation of the anti-STDP rule can be given, since the depression of a co-activation path and
the potentiation of post-spike EPSP tends to radically modify the spike timing of the target
neuron (i.e. to decorrelate to the most EPSP arrivals and spike emission). To the most can we
say that the anti-STDP tends to "blur" the output neuron response.
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We present in the following two simulations examples where the positive STDP rule is
followed by the anti-STDP rule.

3.1 Reduction of response delay

Figure 2: E�ect of the STDP and anti-STDP rules on the response of an output
neuron. The left �gure represents the membrane potential of one input neuron (dashed line) and of the
output neuron (solid line). The central �gure shows the same thing after application of the STDP, which causes
the output neuron to �re earlier, whereas the right �gure shows the membrane potentials after anti-STDP,
which in that case prevents the output neuron to �re.

In the most simple cases, the interpretation of the STDP and anti-STDP rules is rather
straightforward. Let us consider a network only composed of 20 input neurons and one output
neuron with random connections from the input layer to the output one (gaussian draw of
mean w̄ = 0 and standard deviation σw = 0.1 ; in this application delays are also added to the
synapses and correspond to a poisson draw of mean d̄ = 5). We force the input neurons to �re,
and then externally stimulate the output neuron during 10 steps. Figure 2 gives the evolution
of the output neuron membrane potential after the synaptic adaptation. After several time
steps, the neuron is found to �re earlier. The neuron has learned to become more reactive to its
post-synaptic �ring. Conversely, the application of the anti-STDP tends to delay the answer
or even, in this case, prevents the output neuron to �re.

3.2 Recurrent network

The application of STDP/anti STDP on a recurrent network with self-sustained activity is a
much more challenging issue. We simulate here a network with no input, such that all the
activity comes from the reverberated activity of the internal layer (see section 2.3). In our
experiment, the STDP is applied for 2000 time steps, followed by 2000 steps of anti-STDP (see
Figure 2). During the STDP application, a progressive increase of the neurons regularity can
be observed. This e�ect can be interpreted as the strengthening of an internal co-activation
path, resulting in some neurons taking part in the dynamics at a high �ring rate, while others
remain silent (see �gure 3a). This e�ect is distinct from the previous one (section 3.1), and
is speci�c to the case of recurrent dynamics. Interestingly, the opposite e�ect happens while
the anti-STDP is applied. The neurons are found to de-correlate their activity and tend to �re
more aperiodically, �nally resuming the initial nearly random activity.

Those varriations in regularity can be measured in a practical way using an approximation
of the e�ective number of degrees of freedom using a straightforwrd linear annalysis [17], [10].
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(a) Activity

(b) Dimensionality

Figure 3: Application of STDP and anti-STDP on a recurrent network with self-
sustained activity. The network is here a full connected network. Weights are set with a gaussian draw
of mean zero and standard deviation 0.25. STDP is applied in the �rst 2000 steps (α = 0.001, A− = 2.5), and
anti-STDP in the last 2000 (α = −0.001). a) Activity of the network. Each neuron is represented by a black bar
when it �res, and by a white bar else. STDP raises the activity and synchronises the neurons, while anti-STDP
do the opposite. b) Evolution of the number of e�ective degrees of freedom (�dimensionality�) across the time.
This number is calculated every 100 steps with the values of neurons' membrane potentials in the last 100 steps.
STDP reduces the dimensionality, thus increasing the �order� of the system, while anti-STDP does the opposite.
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Our data set is composed of the membrane potentials of all the neurons over sliding windows
of 100 time steps. A Principal Components Analysis1 is �rst applied to the data set, followed by
a calculation of the entropy of the normalized principal values pi of the transformation matrix
:

S = −ΣN
i=1piln(pi) (4)

This value considered [10] is considered as an approximate log count of signi�cant principal
components weighted by their respective size, so that

D = eS (5)

is an approximation of the e�ective number of degrees of freedom. This measure of the e�ective
dimension is plotted on �gure 3b. The almost symmetrical e�ect of the two opposite rules is
clearly exhibited. Interestingly, a comparable duration for the two rules exposition allows to
restore the initial disordered activity, i.e. to erase of the initial memory trace.

This example clearly illustrates the complementarity of the two rules. Their concurrent
application may allow to control the degree of complexity of the internal dynamics, and thus
the nature of the network's response.

4 Application

4.1 Reinforcement learning

Reinforcement learning (also called reward learning or operant conditioning) is a class of learn-
ing problems where an agent attempts to adapt its behaviour to maximize its rewards. In
biology, it is often assumed that such rewards occur through the release of particular neuro-
transmitters.

Reinforcement is suggested to be one of the most primitive nervous adaptation mechanisms,
though it does not need any explicit model or consign. It can be noticed, for instance, that some
forms of operant reward learning have been shown to take place on very simple invertebrate
animals [4]. It is thus of real interest to understand the basis of reward operant learning in
order to allow deeper and anatomically founded analysis.

A lot of actor-critic models2 have been proposed in the recent years, few of which being
consistent with the known anatomy of the basal ganglia [8]. The main problem with such �high
level� models is the lack of knowledge of the real anatomy of the implied structures.

Unlike actor-critic models, we hypothesise that the reinforcement mechanisms do not need
any explicit model of the environment (so that one single structure may be involved). Our model
thus falls in the category of "direct Policy learning" methods[16], which are much coarser but
also more relistic than the highly sophisticated TD-learning [12] and Q-learning [15] methods.

We suggest here :

• To model the pattern generation mechanism with the use of a random recurrent neural
network with self-sustained activity. This endogenous activity is seen as a basis for short
term memory (STM) capacity, as already noticed by [9] and [7].

• To model the selection process with a balanced Hebbian/anti-Hebbian mechanism. A
Hebbian weight reinforcement is supposed to take place when a positive reward occurs,
while a anti-Hebbian reinforcement would take place when a negative reward occurs. This
kind of model has been realized for instance in [1] with stochastic neurons.

1which is a linear transformation to a new coordinate system where the greatest variance of the transformed
data lies on the �rst axis, the second greatest on the second axis, and so on.

2which separate the controllers in two part, one of which modelling the world (�critic�) and the other part
choosing the appropriate actions (�actor�).
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In our application (see �gure 1), we measure the reactivity of the output neurons to various
temporal input patterns. If the �rst neuron to spike belongs to the pre-de�ned category, a
positive reward is sent. In the other case, a negative reward is sent. We associate the positive
reards with the application of the STDP rule while a negative reward is associated with the
application of the anti-STDP rule. We hope the STDP to increase the reactivity of the output
neuron in the case of a correct answer, and the anti-STDP to do the opposite (see �gure 2).

4.2 Network's dynamics

In this application, all the delays are set to one and there is no refractory period. A light
background random activity is added to the system. The spontaneous dynamics is weak,
very irregular, and the neurons �re asynchronously. The standard deviation of the weights
distribution belongs to the lower limit of the parameter domain which allows such self-sustained
activity, provided signi�cant input is sent on the input layer. Such a network thus lies in the
parametric domain described by [9] and [7].

The �gure 3 has shown that a balanced application of positive and negative STDP may
maintain the network initial regime. The idea is thus to explore the parameter space through
this balanced synaptic process, for the system to improve its behavior. The use of both STDP
and anti-STDP is supposed to maintain the network activity in such a �viable� domain.

However, keeping this balance is not easy in practice. Despite our initial observations, the
positive STDP tends to dominate in the long term the anti-STDP. This small lack of symmetry
gives rise in the long term to a highly correlated internal activity which causes the dynamics
to become stereotypical and the network to ignore its inputs (blindness situation).

In order to prevent this, we add a regulation principle in order to increase the negative part
of STDP when a neuron's frequency starts to raise (and on the contrary does the opposite when
the frequency starts to decrease). Our mechanism is a local one which operates on parameter
A− in order to maintain the �ring frequency �close� to the target frequency ftarget:

A− =
fj(t)

ftarget

(6)

where fj(t) is the trace of the activity of the postsynaptic neuron :

fj(t) = γffj(t − 1) + (1 − γf )xj(t) (7)

where γf = 0.999 is a leak factor and xj(t) = 1 if neuron j has �red at step t and zero else.

4.3 Temporal patterns classi�cation

Our method is tested here on a temporal patterns classi�cation task. The network must learn
to classify N di�erent temporal patterns in K categories. The number of potential categories
is given by the number of output neurons. In this experiment we take N = 4 and K = 3.
The total pattern duration is 400 steps (that is, 400ms). In a given sequence, each letter (from
A,B,C and D) corresponds to the stimulation of a particular input neuron for 100ms at a rate
of 100Hz. The four di�erent input sequences are the following:

• A, B, C, D

• A, B, B, A

• D, C, B, A

• D, C, C, D
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The expected category for each sequence is chosen for the answer not to rely at any time on
a single active input neuron. The network must thus develop its short-term memory capacity in
order to give a proper answer. We consider that the network's answer is the output neuron that
�res �rst after the input presentation (the most "reactive" neuron to that particular input).
Notice that the network is not supposed to answer too soon (namely not after the third element
of the sequence has been presented). In our setup, we introduce an unbalance in the category
repartition : the two sequences (A, B, C, D) and (D, C, C, D) correspond to the same output
neuron (neuron 1), so that the probability of a reinforcement occuring on neuron 1 is twice
stronger than on the other ones.

Figure 4: Temporal patterns identi�cation. This �gure gives the rate of correct pattern identi�-
cation during the learning process. The rates are computed on a sliding window of the last 100 presentations
of patterns.

A signi�cant improvement of the network response is obtained during the whole learning
process (see �gure 4): the STDP/anti-STDP mechanism is found to allow to associate a de-
crease (resp. increase) of the response delay for the output neurons when the correct (resp.
wrong) answer is given. Due to the regulation mechanism presented above (equation 6), the
synaptic saturation (and thus the catastrophic collapse of the performance) is avoided (or at
least postponed for a very long learning time).

In the given example, the network learns to classify some of the patterns but never manages
in learning all of them. If we look more closely on the success ratios for the four di�erent
patterns (�gure 5), we see that the network manages to classify (A,B,C,D) and (D,C,C,B) in
category 1, and (A,B,B,A) in category 2, but fails to classify (D,C,B,A) in category 3. The
reason of this mis�t lies in the statistics of the rewards : two success for one failure in the
"category 1" response. This "two against one" con�guration consolidates the actual response,
and prevents the weight to adapt to the speci�c failure case.

The given simulation is representative of typical network performances. The success rates
remain of the order of 60/70%, which is still good for a task that requires active short term
memory. This mixed success is thus a �rst step in order to validate the STDP/anti STDP
mechanism as possible implementation of the direct policy learning methodology in realistic
neurons. Its simplicity make of it a good candidate for plausibility. However, the poor capacity
to compensate unbalanced rewards on the output category also shows its limits. A simple
adaptation mechanism at the level of the neurons may possibly compensate this, giving more
credit to the most "rare" events (in the case of disbalanced positive or negative rewards).

8



Figure 5: Identi�cation rates for each of the four di�erent patterns. The rates are
computed on the last 100 presentations for a given pattern and correspond to the percent of correct answer for
this pattern. While three patterns are correctly learned, the network fails to give the appropriate answer for
D,C,B,A.

5 Discussion

We have shown with this model that the dual application of a STDP/anti-STDP mechanism
allows to extract from an active recurrent layer the information necessary to achieve an classi-
�cation task that requires short term memory.

This achievement is of course dependent of a signi�cant set of parameters (weights distribu-
tion, thresholds, coe�cients for STDP, etc.). Since the model uses a very sensitive mechanism
to keep the balance between two dynamics, the parameters must be set very precisely. An
interesting approach to resolve the parameter problem would be to use optimization mecha-
nisms, such as genetic algorithms, not to directly calculate the �good� weights, but the good
parameters. This approach has already given some interesting results with Hebbian rules [6]
[5], and we expect it to be operant with the dual STDP/anti-STDP approach.

In terms of biological modelling, two points remain under consideration. The �rst concern
is about the functional role of the various dynamical regimes we observe in simulation. We
did not fully elucidate whether a change in the regimes (synchrony/disorder) did take part in
the production of the correct answer. We can only suppose that the maintenance of a softly
disordered regime helps the system to explore various answers and to select and consolidate the
most appropriate ones.

A second question remains about the plausibility of such STDP/anti-STDP mechanisms.
Could they be triggered by the release of di�erent neurotransmitters, for instance dopamin and
serotonin? The release of such transmitters taking place on rather long duration in comparison
with the neuronal integration time, they may not be associated to a single spike response but
more realistically to a �ring pattern. This numerical experiment is thus a �rst step toward more
realistic and biologically-founded models, using refractory periods, delays and behavior-based
reinforcement tasks.
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