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Abstract

Various alternatives have been developed to improve the Winner-Takes-All (WTA) mechanism in vector quantiza-
tion, including the Neural Gas (NG). However, the behavior of these algorithms including their learning dynamics,
robustness with respect to initialization, asymptotic results, etc. has only partially been studied in a rigorous mathe-
matical analysis. The theory of on-line learning allows for an exact mathematical description of the training dynamics
in model situations. We demonstrate using a system of three competing prototypes trained from a mixture of Gaussian
clusters that the Neural Gas can improve convergence speed and achieves robustness to initial conditions. However,
depending on the structure of the data, the Neural Gas does not always obtain the best asymptotic quantization error.
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1. Introduction

Vector quantization (VQ) is an important unsu-
pervised learning algorithm, widely used in different
areas such as data mining, medical analysis, image
compression, and speech or handwriting recognition
[1]. The main objective of VQ is to represent the data
points by a small number of prototypes or codebook
vectors. This can directly be used for compression,
clustering, data mining, or (with post-labeling of the
prototypes) classification [9,14].

The basic ”winner-takes-all” (WTA) or batch
algorithms like the popular k-means clustering di-
rectly optimize the quantization error underlying
vector quantization. However, these methods can be
subject to confinement in local minima of the quan-
tization error and can produce suboptimal results.
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A variety of alternatives to overcome this problem
have been proposed, some of which are heuristically
motivated while others are based on the minimiza-
tion of a cost function related to the quantization
error: the self-organizing map (SOM) [12], fuzzy-
k-means [2], stochastic optimization [7], to name
just a few. These algorithms have in common that
each pattern influences more than one prototype at
a time through a ”winner-takes-most” paradigm.
Neural gas (NG) as proposed in [13] is a particularly
robust variation of vector quantization with the
introduction of neighborhood relations. Unlike the
self-organizing map, [12], the NG system takes into
account the relative distances between prototypes
in the input space and not on a predefined lattice.
In practice, NG algorithms yield better solutions
than WTA; however, the effect of this strategy
on convergence speed or asymptotic behavior has
hardly been rigorously investigated so far.
Methods from statistical physics and the theory
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of on-line learning [8] allow for an exact mathemat-
ical description of learning systems for high dimen-
sional data. In the limit of infinite dimensionality,
such systems can be fully described in terms of a few
characteristic quantities, the so-called order param-
eters. The evolution of these order parameters along
the training procedure is characterized by a set of
coupled ordinary differential equations (ODE). By
integrating these ODEs, it is possible to analyse the
performance of VQ algorithms in terms of stabil-
ity, sensitivity to initial conditions, and achievable
quantization error. This successful approach has also
been reviewed in [8,16], among others.

The extension of the theoretical analysis of sim-
ple (WTA-based) vector quantization with two pro-
totypes and two clusters introduced in an earlier
work [5] is not straightforward. Additional proto-
types and clusters introduce more complex interac-
tions in the system that can result in radically dif-
ferent behaviors. Also, the mathematical treatment
becomes more involved and requires, for instance,
several numerical integrations. Here we introduce
an additional prototype and a mixture of clusters.
We investigate not only WTA but also the popular
Neural Gas approach [13] for vector quantization.
This is an important step towards the investigation
of general VQ approaches based on neighborhood
interaction such as self-organizing maps.

2. Winner-Takes-All and Neural Gas

Assume input data ¢ € IRV, generated according
to a given probability density function P(§). Vector
Quantization represents the input data in the same
N-dimensional space by a set of prototypes W =
{wi € ]RN}Z.Szl. The primary goal of VQ is to find a
faithful representation by minimizing the so-called
quantization or distortion error
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where ©;; = ©(d(¢, w;) — d(¢, w;)). For each input
vector £ the closest prototype wy; is singled out by the
product of Heaviside functions, ©(z) = 0if x < 0; 1
else. Here we restrict ourselves to the quadratic Eu-
clidean distance measure d(&, w;) = (£ — w;)2. The
constant % [ dEP(£)E? term is independent of pro-
totype positions and is subtracted for convenience.

The input data is presented sequentially during
training and one or more prototypes are updated on-
line. Algorithms studied here can be interpreted as
stochastic gradient descent procedures with respect
to a cost function H (W) related to E(W). The gen-
eralized form reads
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where 7; is the rank of prototype w; with respect to
the distance d(§, w;), i.e. 7; = S — > ., ©;;. Rank
rj = 1 corresponds to the so-called winner, i.e. the
prototype w; closest to the example £&. The rank
function f(r;) determines the update strength for
the set of prototypes and satisfies the normalization
Ziszl f(r;) = 1; note that it does not depend ex-
plicitly on distances but only on the ordering of the
prototypes with respect to the current example.

The corresponding stochastic gradient descent in
H(W) is of the form

7 [
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where 7 is the learning rate and & is a single exam-
ple drawn independently at time step p of the se-
quential training process. We compare two different
algorithms:

(i) WTA:
Only one prototype, the winner, is updated
for each input. The cost function directly min-
imizes the quantization error with H(W) =
E(W). The corresponding rank function is

fwra(ri) = H Oij (4)
J#i
(ii) Neural Gas:

The update strength decays exponentially
with the rank controlled by a parameter A.
The rank function is f(r;) = ﬁh)\ (rs)
where hy(r;) = exp(—r;/A) and C(\) =
Zi:l exp (—r;/\) is a normalization con-
stant. The parameter A\ is adjusted during
training; it is frequently set large initially and
decreased in the course of training. Note that
for A — 0 the NG algorithm becomes identi-
cal with WTA. We divide f(r;) according to
its ranks as
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where g;(k) = 1 if r, = k; 0 else and
> x9i(k) = 1. In a model with three proto-
types, this can be written in terms of Heavi-
side functions

g =T
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3. Model

We choose the model data as a mixture of M
spherical Gaussian clusters:

M
P(§) = poP(lo) with
o=1
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where p, are the prior probabilities of each cluster.
The components of vector £# are random numbers
according to a Gaussian distribution with mean vec-
tors ¢,B, and variance v,. The mean vectors are
orthogonal, i.e. B; - B; = §;; where ¢ is the Kro-
necker delta. The parameters £, describe the sepa-
ration between the clusters. This model can be ex-
tended for mixtures of many Gaussian clusters with
M < N by choosing a coordinate system where the
orthonormality conditions B;-B; = d;; are fulfilled.

Note that the Gaussian clusters strongly over-
lap in high dimensions. The separation between
the clusters is apparent only in the IRM subspace
spanned by {B1,Bs,...,By}. It is therefore a
non-trivial task to detect the structure of the data
in N dimensions.

4. Analysis of Learning Dynamics

We give a brief description of the theoretical
framework and refer to [3] for further details. Fol-
lowing the lines of the theory of on-line learning,
e.g. [8], in the thermodynamic limit N — oo the
system can be fully described in terms of a few

characteristic quantities, or so-called order param-
eters. A suitable set of characteristic quantities for
the considered learning model is:
R, =wj B, and Qj; =w; - w/. (8)
Note that R;, are the projections of prototype vec-
tors wj on the center vectors B, and Qj; correspond
to the self- and cross- overlaps of the prototype vec-
tors.

From the generic update rule defined above,
Eq. (3), we can derive the following recursions in
terms of the order parameters:
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where h! and b are the projections of the input
data vector £#:

B = whh et and bE =B, - ¢~ (10)

Note that the last two terms in Eq. (9) come from
(€4)? —hi —hk —I—Qﬁ‘;l, where (€#)? is the only term
that scales with N.

In the limit N — oo, the O(1/N) term can be
neglected and the order parameters become self -
averaging [15] with respect to the random sequence
of examples. This means that fluctuations of the or-
der parameters vanish and the system dynamics can
be described exactly in terms of their mean values.
Also for N — oo the rescaled quantity t = u/N
can be conceived as a continuous time variable. Ac-
cordingly, the dynamics can be described by a set
of coupled ODE [3,10] after performing an average
over the sequence of input data:

% =0( (0o f(rs)) — (f(r:)) Ric)
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(11)

where (.) is the average over the density P(£) and
the (.), is the conditional average over P(¢|o). Here



we exploit the following relation in the last term of
994 in Eq. (11):

(S I | 2)
lim N = lim NZpU(UUN—i—f

N —o0 N —o0
Exploiting the limit N — oo once more, the quan-
tities h!', b become correlated Gaussian quantities
by means of the Central Limit Theorem. Thus the
above averages reduce to integrations in S + M di-
mensions over the joint density P(x) where @ =
(RN RG, oo Rl b b, bh,), which are fully spec-
ified by first and second moments [3,6]:
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Hence the joint density of hl', b# is given in terms of
the order parameters defined in Eq. (8). While most
of the integrations can be performed analytically,
some have to be implemented numerically. See the
Appendix for the computations.

Given the averages for a specific rank function
f(ri), cf. Egs. (B.7) and (B.14) we obtain a closed
form expression of ODE. Using the initial conditions
R+ (0),Q:;(0), we integrate this system for a given
algorithm and get the evolution of order parameters
in the course of training, R;,(t), Q;;(t). The behav-
ior of the system depends on the characteristic of
the data and the parameters of the learning scheme,
i.e. offset of the clusters ¢,,, variance within the clus-
ters v,, learning rate 1, and for NG, the rank func-
tion parameter A. As shown in [5], this method of
analysis is in good agreement with large scale Monte
Carlo simulations of the same learning systems for
dimensionality as low as N = 200.

Analogously, the quantization error, Eq. (1), can
be expressed in terms of order parameters

Note that E(W) does not depend explicitly on &;
here it is shown how the subtracted constant term
described in Eq. (1) and Eq. (2) becomes useful.

Plugging in the values of the order parameters
computed by integrating the ODEs, { R;» (t), Qs; ()},
we can study the so-called learning curve E in
dependence of the training time ¢ for a given VQ
algorithm.

ZPUUU'

5. Results
5.1. Learning Dynamics

We study the performance of both WTA and NG
in several cases using three prototypes and up to
three clusters. Stochastic gradient descent proce-
dures approach a (local) minimum of the objective
function in the limit » — 0. We can consider this
limit exactly by rescaling the learning time as t = nt.
Then, the O(n?) terms in Eq. (11) can be neglected
and the set of ODEs is simplified. For all demon-
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Fig. 1. Trajectories of prototypes on the plane spanned by
B; and Bz. The cluster centers /B4 are marked by crosses.
The trajectories are marked by solid lines (WTA) and dashed
lines (NG). The prototypes at initialization are marked with
squares and at = 10 with circles (WTA) and dots (NG).
Both algorithms converge at the triangles, where two pro-
totypes coincide at {—0.07,1.07}. The set of prototypes is
initially set (a) near the cluster centers, and (b) far away
from the cluster centers. In both figures the parameters are
p1 =045, 41 =4l =1, v1 =va=1,1—0, \; =2, )\f =
0.01 and ty = 50.
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Fig. 2. The corresponding order parameters R;2 at learning
time £ = nt for WTA (solid lines) and NG (dashed lines)
algorithms in the system described in Fig.1. The initial sets
of prototypes are defined in Figs.1(a) and (b), respectively.

strations, the NG algorithm is studied for decreas-
ing A with A\(f) = A\;(\s/\)/* where £/ is a learn-
ing time parameter. The influence of the initial set
of prototypes on the learning curves is investigated
by choosing different values of {R;,(0), Q;;(0)}.
Figure 1 presents the prototype dynamics in a
system with three prototypes and two clusters.
We examine two different initial sets of proto-
types: close to the origin at {R;1(0), Ri2(0)} =
{0,0}, Q4;(0) =~ 0,¥{4, j} in Fig. 1(a); and far away
from the origin on the side of the weaker cluster,
viz. P1, at {R11(0)7R12(0)} ~ {3,—2}, QU(O) =
Riy(0) - Rj»(0),¥{i,} in Fig. 1(b). While the pro-
totypes have different trajectories in WTA and NG
algorithms, they converge at the identical configu-
ration at large t and A — 0. Here, the projections
of two prototypes converge near the center of the
stronger cluster. The advantage of NG is apparent
in Fig. 1(b) where all prototypes already reach the
area near the cluster centers at an intermediate
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Fig. 3. Evolution of the quantization error E(W) in Fig. 1 at
learning time ¢ = nt for WTA (solid line) and NG (dashed
line) algorithms. The prototypes are initialized (a) near the
cluster centers and (b) far away from the cluster centers.

learning stage £ = 10.

This can be illustrated with the evolution of the
order parameters R;3(t) in Fig. 2. In Fig. 2(a), the
order parameters of both algorithms converge rel-
atively fast. In Fig. 2(b), the order parameters of
one prototype change rapidly compared to that of
other prototypes in WTA algorithm. One prototype
dominates as the winner and gets frequent updates
towards the cluster centers, while the other proto-
types are rarely updated. The NG algorithm par-
tially solves this problem by updating all prototypes
at the initial stages of learning.

The quantization error obtained from the order
parameters {R;,(t),Q;;(t)} is displayed in Fig. 3.
We observe that the quantization error decreases
faster in the WTA algorithm compared to NG meth-
ods at the initial stages of the learning. This behav-
ior can be explained by the fact that the Hyg dif-
fers from E(W) by smoothing terms in particular
in early stages of training. We observe that WTA
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Fig. 4. Trajectories of the prototypes on the plane spanned by B and Bga, corresponding to the WTA (solid lines) and the
NG (dashed lines) algorithms. Here, p1 = 0.45, p2 = 0.55, v1 = 1, va = 1.21, ¢; = 1 and ¢2 = 5. The cluster centers ¢, B¢ are
marked by x. The initial prototype configurations for both algorithms are marked with (1. While the asymptotic configurations
of WTA (circles) algorithm depends on initialization, the NG (dots) always produces identical asymptotic configurations. In
these cases, the NG algorithm always finds the optimal quantization error.

yields the best overall quantization error in the first
set of initial values in Fig. 3(a). This is mirrored
by the fact that, for large £ and Ay — 0, both algo-
rithms yield the same quantization error.

For WTA training, the prototypes reach { — oo
asymptotic positions corresponding to the global
minimum of E(W) for small learning rates n — 0.
However, learning can slow down significantly at in-
termediate stages of the training process. Transient
configurations may persist in the vicinity of local
minima and can indeed dominate the training pro-
cess. The NG is more robust w.r.t. the initial po-
sition of prototypes than WTA while achieving the
best quantization error asymptotically.

5.2. Asymptotic configuration

The dynamics of the prototypes while learning
on a model data with a larger separation between
the clusters are presented in Fig. 4. The initial
configurations correspond to the following val-
ues of {R;1(0), Ri2(0)}: (a) {—1,2}, (b) {—0.5,2},
(¢) {-1,1.5}, (d) {-0.5,1.5}, (e) {—1,1} and (f)
{—0.5,1}. In all panels, Q;;(0) = R;»(0) - R;(0).

In this case, the optimal configuration of pro-
totypes is with two prototypes representing the
stronger cluster as in Figs. 4(a to ¢). However, the
asymptotic configuration of the prototypes in the
WTA algorithm are sensitive to the initial con-
ditions. In some cases, viz. Figs. 4(d to f), this



configuration is not the optimal set of prototypes.
Therefore, even in this comparably simple model,
prototypes in WTA can be confined in suboptimal
local minima of the cost function E(W). The is-
sue of different regions of initialization which lead
to different asymptotic configurations are to be
discussed in forthcoming projects.

The asymptotic configurations for the NG al-
gorithm are independent of initial conditions as
shown in Figs. 4(a to f). During the learning process
with A > 0 the system moves towards intermedi-
ate configurations with minimum Hyg(W). Given
sufficiently large A and ¢, these configurations are
identical and therefore the NG algorithm is robust
with respect to initial conditions. In these cases, the
asymptotic configuration is the optimal configura-
tion and thus the NG algorithm achieves optimal
performance.

We demonstrate a model where the NG algo-
rithm does not yield optimal performance in Fig. 5.
In this more complex situation, the weaker cluster
(ps = 0.45) is divided into two Gaussian clusters
with p12 = {0.25,0.20}. This corresponds to a
system of three clusters, with ¢, = {1,1,5} and
poe = {0.25,0.20,0.55}. The distance between the
first two clusters is small compared to their distance
to the third cluster. In comparison to the previous
case, where the weaker cluster spreads out evenly
in all directions, here it has a particular orientation
along the vector (B; — B3). Because of this struc-
ture, the best quantization error is obtained when
one prototype is placed near each cluster center,
as in Fig. 5(a), even though one cluster has a very
large prior (p3 > p1 + pa2).

Similar to the previous case, the asymptotic con-
figuration for the NG algorithm is independent of
initial conditions. However, this configuration with
two prototypes near the center of the stronger clus-
ter in Figs. 5(b to d), is not the optimal configura-
tion. Even with prototypes initialized at the optimal
set as in Fig. 5(d), the NG algorithm may still lead
to suboptimal configurations.

The characteristics of the cost function H (W) of
NG, ie. its minima, can be radically apart with dif-
ferent values of \. While the NG may find the con-
figuration of the global minima of H(W) for large A,
these configurations do not always lead to the global
minima for smaller . Consequently, the asymptotic
configuration may correspond to a local minimum of
E(W) and the NG algorithm does not always yield
the optimal quantization error.
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Fig. 5. (a) The optimal set of prototypes (solid dots) in
a system with three clusters projected on the plane space
spanned by {B1, B3z}. The values of R;2 are not shown here.
The cluster centers £,Bs are marked by X. (b,c,d) Trajec-
tories of the prototypes using the NG algorithm with dif-
ferent initial conditions. Their initial (squares) and asymp-
totic (solid dots) configuration of the prototypes are indi-
cated. The parameters are p; = 0.25,p2 = 0.20,p3 = 0.55,
vi =vg =v3=1,¢ =¥l =1and l3 =5.

6. Conclusion

We have presented an exact mathematical analy-
sis of the dynamics of vector quantization for high
dimensional data. Performance is measured by the
evolution of the quantization error. In a learning
scenario with no sub-optimal local minima of the
quantization error, the WTA always converges to the
best quantization error. However, learning can slow
down significantly if the prototypes are initialized
far from the region of high data density. The NG is
less sensitive to the initial conditions and achieves
both robustness and optimal asymptotic quantiza-
tion error. Thereby, the convergence speed of NG al-



gorithms is comparable or (for initialization outside
the clusters) better than the convergence speed of
simple WTA mechanisms, while achieving the same
final quantization error.

In the presence of local minima, the WTA algo-
rithm may converge into different asymptotic con-
figurations depending on its initial conditions. The
NG algorithm is very robust, i.e. relatively insensi-
tive to initial conditions. However, we demonstrate
a test case where it does not find the best asymp-
totic quantization error. The above discussed sub-
optimal outcome of NG training might result from
the specific schedule at which X is decreased in the
course of training. The influence of both schedules
for n and A will be studied in greater detail in forth-
coming projects.

The formalism allows for the design of optimal
schemes in the framework of the model situation.
While this model clearly does not describe the com-
plexity of real world problems, it is useful to demon-
strate certain characteristics of both algorithms.
Further extensions could include more realistic
data structures, such as additional or non-spherical
clusters.

Appendix A. Statistics of the projections

For convenience, we combine the projections h;
and b, into an D-dimensional vector where D =
S+ M as

T
= (W hy b ) (A1)

The details of the first and second moments are ex-
plained in [5] and summarized in Eq. (12). The con-
ditional means u, = (z), and the conditional co-
variance matrix C, = (x - 1), can be written in
terms of order parameters as

T
p’a':[U (Rla' RQU RSG’ 510’ 520 5pa’)
(A.2)
Qu - Qs R - Ry
Ret - R
C —, Q1s Rss Rs1 Sp (A3)
Ry - Rggy 1 -+ 0
Rlp . RSP 0 1

Appendix B. Averages

Averages of the form (04;), in Eq. 11 can be per-
formed analytically, see [3] for details. In contrast to
the case of two prototypes only, we encounter addi-
tional conditional means of the form

<®ab®cd>o and <(X)n@ab@cd>d
where (x),, is the n*" component of . The Heaviside
functions in Eqs. (4) and (6) are rewritten in the

form

Ou = @(aab - €xr— ﬂab) with

agp=1(0,...,+2,..., =2,...,0)
N d ~—~
at a at b
Bab = Qaa — Qub - (B.1)

The averages are then calculated as follows
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x exp (— %w'TC’U_lw')dw' (B.2)

(with the substitution ' = & — p,).

Because the covariance matrix C, is positive defi-
nite, C;/Q exists. Defining ' = C;/Qy, we obtain
'Ol =y, da’ = (det C,)Y/2dy and

<®ab®cd>a
1 1/2

1
x © (ach;/Qy + Od - Py —ﬁcd) exp(—in)dy

1

= Gy L, 0@l + o)

~ 1
X G(acdcclr/2y + ﬁcd,a) eXP(_§y2)dy (B3)
(where Bab,a = Qb By — Bab)-

Since exp(— %y2) has rotational invariance, it is pos-
sible to rotate the orthonormal coordinate system



y = (y1e1 +y2e2 + ... +ynvey) into y' = (y1e1 +
yheh + ... + yiy€e’y) where one axis, €], is aligned

with aabC;/ % and another axis, eb, lies on the plane
spanned by aabC;/ 2 and ach’;/ 2 This is done by
the Gram-Schmidt orthonormal transformation:

;o . Cal”
© T e
e = aCdC%Z - (a“lc’%ii eier (B4)
loeeaCo’™ = (acaCo’™ - €))€l ||
The other axes {e}, €}, ..., e} are orthogonal to
both ozabC;/2 and oszC';/2 and can be integrated

over using the substitution \/% Jrexp(—12%)dz =
1. We obtain from Eq. (B.3),

1 _
(©abOcd)o = ) /R2 S) (Otabc;/2 yrel + 5ab,a)

x O (acaCy/” - (1] + yaes) + Beao)
1
X exp <—§(yi2 + yéz)) dy’ dy .
(B.5)

We examine the Heaviside functions O(z) = 1
if z > 0; 0 else. G(aabC;/Qy’ + Bab,o) = 1 and

G(QCdC;/Qy' + Bcd,g) = 1 if the following condi-
tions are satisfied

i > i with yi = -2
Qab,o
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_ﬁcd,aaab,a - aabCa'acd U

2 ~2 5
\/acd,daab,a’ (aCdCUaab)

Yy > Y5 with g5 =

where we defined éqp 0 = HaabC;ﬂH. Substituting
the conditions into Eq. (B.5), we get
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We get the final result in closed form as

<®ab®cd>a
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X @
~2 ~2 2
\/acd,daab,a - (aCdCUaab)

dyy

(B.7)

with ®(z) = [ —=exp(—4a?) da. The one-fold
integration in Eq. (B.7) has to be performed numer-
ically.

The remaining average to be computed is

((%)n©atOcd)o
1
T (2m)P72(det Cy )12 /RD (@)n 0 (atab - T — Bap)
X @(Oécd Sx— ﬂcd) exp ( — %(m —p)"
x Cyl(x — p,))de . (B.8)

Similar to Eq. (B.3), we obtain the form

<(x)n®ab®cd>a

1 -

= 1
X @(ach’;/Qy + 5Cd,g) eXp(—gyz)dy
+ (Ho’)’ﬂ<®db®0d>0’
=1+ (HU)"<@ab@Cd>a’ (Bg)

(where I is an integral to be computed).

Consider the integrals contributing to I

Ij = / (C3/)n (1); O (abCoy + Pabo)
R
X ®(ach’;/2y + Bcd,o)

x exp(— 5 (9))dly); (5.10)

we perform integration by parts [ udv = uv— [vdu
with

U= @(aabcgﬂy + Bab,o)e(acdogﬂy + Bcd,o) )

0= (O exp(~3 W)3)



du =

dv =

and

I;

= (C3/%)nj (/R

2

(9 (aabC;/Qy + Bab,o))
J
©
(C]

(ach;/Qy + Bed,a’)d(y)j
(aabO;/Qy + Bab,o)

0 (@(ach;/ ‘y+ Bcd,a)) d(y); ,

>< [
(?yj
1
—(C5/")nj () exp(—5 ()]

0
X
+

)d(y);

we obtain

[—e(aabc;”y + Babo) O (caCh*y + Bea,o)
< ment3wd)] + [ €

) |:ay <@ (aabC;/Qy + Bab,a’))
J
X G(acdcclr/2y + Bcd,a) + G(aabci/2y + Bab,a)

0 (@(acdc;/ y + Bcd.,a)) ] d(y);

1
0

1
X GXP(—g(y)?

>< [
(9yj

00 (aabci/zy + Bab,a)

6yj

~ 1
(acdoclr/zy + ﬂcd,o) eXp(_E (y)g

+ /G(aabci/2y+gab,a)
R

X

90 (eaCs’*y + Bod,o)
ex
Y.,

J

The sum over j gives

= Gy G

D

( / 90 (s o’y + Bavo)
]RD 8y

j=1 ’
- 1
X @(ach;/Qy + Bed,o) eXP(—§y2)dy

00 ((Xch;/2y + Bed,a’)

1/2 2
+/]%D® (aabcg Yy + 6ab,a’) ay

J

1
< exp(—§y2>dy>
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1

1/2 2
(27T)D/2 ((Caaab)n /]RD 6(aabcg Yy + ﬁab,a)

- 1
x O(teaCl*y + Bed,o) exp(—§y2)dy

+ (Ogacd)n/

4] (Oéch;/Qy + Bed,a’)
RD

~ 1
X @(aabC;my + Bab,o) exp(—§y2)dy> . (B.12)

where §(-) is the Dirac-delta function. In the last
step we have used

9
9y

D
= Z(Oéab)i(cgﬂ)ij <5 (canC Py + Bab,o)) :
=1

(6 (aabC;/Qy + Bab,a’)

Calculating the first term only,

1

Iazica' ab)n 0 aCd/2 ~aa’
b (27r)D/2( Qab) /RD (@aCy"?y + Bavo)

- 1
x O(0tcaCl®y + Bea,o ) GXP(—ng)dy )

we rotate the coordinate system as in Eq. (B.5) and
obtain the following

1

%(Caaab)n/Rf (OtabC;/2 yhel + Bab,o)
x 0 (0eaCl'? - (yiel + yheh) + Bea.o)

1
X exp (—5(1112 + yéz)) dy’ dyy

Iab =

Caaa n o ~ P 1
— %/ 1) (aab,ayi—i_ﬁab,a) exp <_§yi2)

Bcd,o’dab,a' + (acdcaaab)yi ) d /
2

Y1 -
~2 ~2
\/acd,aaab,o’ - (aCdCa'aab)

x@(

Substituting z = @ab,o 1,

(Cotap)n /:x’ 5(2+Bab,a)

()

X exp (
ﬁcd,a'dibﬂ + (acdco-aab)z

dz

dab,a’

Iab -

1

2

z

Qab,o

~ ~2 2
Qab,o \/acd)gaab)g - (ach'craab)2

|

X




o (Caaab)n _l Bsb,a’
(27) &b, 267, ,

6cd,00~53byg- - 6ab,a’ (acdco aab)

x ®

~ 52 2
Qab,o \/Ofcd)gaab)g - (acdccraab)2

(B.13)

Analogously we compute the second term in Eq.
(B.12) and obtain the final form

<(x)n®ab®cd>a
(Cotap)n _1 ﬁgb,a
(277)641117,0 2 6‘3!7,0
“ P Bcd,a’dibﬁg - Bab,a(acdca'aab)
dab»“ \/dgd,odib,a’ - (aCdCUaab)2
(Ocracd)n _1 Bzd,o
(2m)Gcd,o 202,
% & Bab,a’éidp- - Bed,o (aabcoacd)

~ ~2 ~2
Qcd,o \/acd,oaab,o - (aCdCUaU«b)z

+ (B0 )n(OatOcd)o- (B.14)
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