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Abstract

We study an efficient dynamic blind source separation algorithm of
convolutive sound mixtures based on updating statistical information
in the frequency domain, and minimizing the support of time domain
demixing filters by a weighted least square method. The permutation
and scaling indeterminacies of separation, and concatenations of signals
in adjacent time frames are resolved with optimization of l1× l∞ norm
on cross-correlation coefficients at multiple time lags. The algorithm is
a direct method without iterations, and is adaptive to the environment.
Computations on recorded and synthetic mixtures of speech and music
signals show excellent performance.
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1 Introduction

Blind source separation (BSS) methods aim to extract the original source sig-
nals from their mixtures based on the statistical independence of the source
signals without knowledge of the mixing environment. The approach has
been very successful for instantaneous mixtures. However, realistic sound
signals are often mixed through a media channel, so the received sound
mixtures are linear convolutions of the unknown sources and the channel
transmission functions. In simple terms, the observed signals are unknown
weighted sums of the signals and its delays. Separating convolutive mixtures
is a challenging problem especially in realistic settings.

In this paper, we study a dynamic BSS method using both frequency and
time domain information of sound signals in addition to the independence
assumption on source signals. First, the convolutive mixture in the time
domain is decomposed into instantaneous mixtures in the frequency domain
by the fast Fourier transform (FFT). At each frequency, the joint approx-
imate diagonalization of eigen-matrices (JADE) method is applied. The
JADE method collects second and fourth order statistics from segments of
sound signals to form a set of matrices for joint orthogonal diagonalization,
which leads to an estimate of de-mixing matrix and independent sources.
However, there remain extra degrees of freedom: permutation and scaling of
estimated sources at each frequency. A proper choice of these parameters is
critical for the separation quality. Moreover, the large number of samples of
the statistical approach can cause delays in processing. These issues are to
be addressed by utilizing dynamical information of signals in an optimiza-
tion framework. We propose to dynamically update statistics with newly
received signal frames, then use such statistics to determine permutation in
the frequency domain by optimizing an l1 × l∞ norm of channel to channel
cross-correlation coefficients with multiple time lags. Though cross channel
correlation functions and related similarity measure were proposed previ-
ously to fix permutation [13], they allow cancellations and may not measure
similarity as accurately and reliably as the norm (metric) we introduced
here. The freedom in scaling is fixed by minimizing the support of the esti-
mated de-mixing matrix elements in the time domain. An efficient weighted
least square method is formulated to achieve this purpose directly in con-
trast to iterative method in [17]. The resulting dynamic BSS algorithm is
both direct and adapted to the acoustic environment. Encouraging results
on satisfactory separation of recorded sound mixtures are reported.

The paper is organized as follows. In section 2, a review is presented
on frequency domain approach, cumulants and joint diagonalization prob-
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lems, and indeterminacies. Then the proposed dynamic method is presented,
where objective functions of optimization, statistics update and efficient
computations are addressed. Numerical results are shown and analyzed to
demonstrate the capability of the algorithm to separate speech and music
mixtures in both real room and synthetic environments. Conclusions are in
section 3.

2 Convolutive Mixture and BSS

Let a real discrete time signal be s(k) = [s1(k), s2(k), · · · , sn(k)], k a discrete
time index, such that the components si(k) (i = 1, 2, · · · , n), are zero-mean
and mutually independent random processes. For simplicity, the processing
will divide s into partially overlapping frames of length T each. The in-
dependent components are transmitted and mixed to give the observations
xi(k):

xi(k) =
n
∑

j=1

P−1
∑

p=0

aij(p) sj(k − p), i = 1, 2, · · · , n; (2.1)

where aij(p) denote mixing filter coefficients, the p-th element of the P -
point impulse response from source i to receiver j. The mixture in (2.1)
is convolutive, and an additive Gaussian noise may be added. The sound
signals we are interested in are speech and music, both are non-Gaussian
[1]. We shall consider the case of equal number of receivers and sources,
especially n = 2.

An efficient way to decompose the nonlocal equation (2.1) into local ones
is by a T-point discrete Fourier transform (DFT) [2], Xj(ω, t) =

∑T−1
τ=0 xj(t+

τ) e−2π Jωτ , where J =
√
−1, ω is a frequency index, ω = 0, 1/T, · · · , (T −

1)/T , t the frame index. Suppose T > P , and extend aij(p) to all p ∈
[0, T − 1] by zero padding. Let Hij(ω) denote the matrix function obtained
by T-point DFT of aij(p) in p, Sj(ω, t) the T-point DFT of sj(k) in the t-th
frame. If P ≪ T , then to a good approximation [17]:

X(ω, t) ≈ H(ω)S(ω, t), (2.2)

where X = [X1, · · · ,Xn]
Tr, S = [s1, · · · , sn]Tr, Tr is short for transpose.

The components of S remains independent of each other, the problem is
converted to a blind separation of instantaneous mixture in (2.2). Note
that P is on the order of 40 to 50 typically, while T is 256 or 512, so the
assumption P ≪ T is reasonable.
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2.1 Instantaneous Mixture and JADE

Let us briefly review an efficient and accurate method, so called joint approx-
imate diagonalization eigen-matrices (JADE) [6] for BSS of instanteneous
mixture. There are many other approaches in the literature [4], e.g. info-
max method [1] which is iterative and based on maximizing some informa-
tion theoretical function. JADE is essentially a direct method for reducing
covariance. We shall think of S as a random function of t, and suppress ω de-
pendence. First assume that by proper scaling E[|Sj(t)|2] = 1, j = 1, · · · , n.
It follows from independence of sources that (′ conjugate transpose):

E[S(t)S(t)
′

] = In, RX ≡ E[X(t)X(t)
′

] = HH
′

, (2.3)

the latter identity is a factorization of the Hermitian covariance matrix of
the mixture. However, there is non-uniqueness in the ordering and phases
of columns of H. Suppose that (1) the mixing matrix H is full rank; (2) the
Sj(t)’s are independent at any t; (3) the process S(t) is stationary. Let W
be a matrix such that In = WRXW

′
= WHH ′W ′, W is called a whitening

matrix. Then WH is an orthogonal matrix, denoted by U . Multiplying W
from the left onto (2.2), one finds that:

Z(t) ≡ WX(t) = US(t). (2.4)

The 4th order statistics are needed to determine U . The 4th-order cumulant
of four mean zero random variables is:

Cum[a, b, c, d] = E(abcd)−E(ab)E(cd)−E(ac)E(bd)−E(ad)E(bc), (2.5)

which is zero if a, b, c, d split into two mutually independent groups. For
source vector S, Cum[Si, Sj, Sk, Sl] = kurti δijkl, kurti = Cum[Si, Si, Si, Si]
is the kurtosis. If kurti 6= 0, the i-th source is called kurtic. Kurtosis is zero
for a mean zero Gaussian random variable. The last assumption of JADE
is that (4) there is at most one non-kurtic source.

Define cumulant matrix set QZ(M) from Z in (2.4) as the linear span of
the Hermitian matrices Q = (qij) satisfying (∗ complex conjugate):

qij =
n
∑

k,l=1

Cum(Zi, Z
∗
j , Zk, Z

∗
l )mlk, 1 ≤ i, j ≤ n, (2.6)

where matrix M = (mij) = ele
′

k, el being the unit vector with zero com-
ponents except the l-th component equal to one. Equations (2.4) and (2.6)
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imply that (up is the p-th column of U):

Q =
n
∑

p=1

(kurtp u
′

pMup)upu
′

p, ∀ M, (2.7)

or Q = UDU
′
, D = diag(kurt1u

′

1Mu1, · · · , kurtnu
′

nMun). Hence, U is the
joint diagonalizer of the matrix set QZ(M). Once U is so determined, the
mixing matrix H = W−1U . It can be shown [6] using identity (2.7) that the
joint diagonalizer of QZ(M) is equal to U up to permutation and phase, or
up to a matrix multiplier P where P has exactly one unit modulus entry in
each row and column. Such a joint diagonalizer is called essentially equal to
U .

The algorithm of finding the joint diagonalizer is a generalization of
Jacobi method or Givens rotation method [9]. As the cumulant matri-
ces are estimated in practice, exact joint diagonalizer may not exist, in-
stead, an approximate joint diagonalizer, an orthogonal matrix V , is sought
to maximize the quantity: C(V,B) =

∑n2

r=1 |diag(V ′Br V )|2, where B =
{B1, B2, · · · , Bn2} is a set of basis (or eigen) matrices of QZ(M), |diag(A)|2
is the sum of squares of diagonals of a matrix A. Maximizing C(V,B) is
same as minimizing off diagonal entries, which can be achieved in a finite
number of steps of Givens rotations. The costs of joint diagonalization is
roughly n2 times that of diagonalizing a single Hermitian matrix.

Though stationarity is assumed for the theoretical analysis above, JADE
turns out to be quite robust even when stationarity is not exactly satisfied
for signals such as speech or music.

2.2 Dynamic Method of Separating Convolutive Mixture

For each frequency ω, equation (2.2) is a BSS problem of instantaneous
mixtures. The speech or music signals in reality are stationary over short
time scales and nonstationary over longer time scales, which depend on the
production details. For speech signals, human voice is stationary for a few
10 ms, and becomes non-stationary for a time scale above 100 ms due to
envelope modulations [8, 13]. The short time stationarity permits FFT to
generate meaningful spectra in equation (2.2) within each frame. For a
sampling frequency of 16,000 Hertz, each frame of 512 points lasts 32 ms.
The mixing matrix H may depend on t over longer time scales, denoted by
H = H(ω, t), unless the acoustic environment does not change as in most
synthetic mixing. A demixing method with potential real time application
should be able to capture the dynamic variation of mixing.
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Our approach consists of four steps. Step I is to find an initialization
for H(ω, t). After receiving the initial nT frames of mixtures, compute their
FFT and obtain X(ω, t), t = 1, 2, · · · , nT , to collect nT samples at each
discrete frequency. For each ω, perform JADE, and estimate the mixing
matrix denoted by H0(ω). To ensure a good statistical estimate, nT is on
the order of 80 to 100, and may be properly reduced later.

Step I gives separated components of signals over all frequencies. How-
ever, such JADE output has inderterminacies in amplitude, order and phase.
This benign problem for instantaneous mixtures becomes a major issue when
one needs to assemble the separated individual components. For example,
the permutation mismatches across frequencies can degrade the quality of
separation seriously.

Step II is to use nonstationarity of signals to sort out a consistent
order of separated signals in the frequency domain. Such a method for
batch processing was proposed in [13]. A separation method requiring
the entire length of the signal is called batch processing. The sorting al-
gorithm of [13] proceeds as follows. (1) Estimate the envelope variation
by a moving average over a number of frames (beyond stationarity time
scale) for each separated frequency component. The envelope is denoted
by Env(ω, t, i), where i is the index of separated components. (2) Com-
pute a similarity measure equal to the sum of correlations of the envelopes
of the separated components at each frequency. The similarity measure
is sim(ω) =

∑

i 6=j ρ(Env(ω, t, i),Env(ω, t, j)), where ρ(·, ·) is the normal-
ized correlation coefficients (see (2.9)) involving time average over the en-

tire signal length to approximate the ensemble average so the t dependence
drops out. (3) Let ω1 be the one with lowest similarity value where sep-
aration is the best. The ω1 serves as a reference point for sorting. (4)
At other frequencies ωk (k = 2, 3, · · ·), find a permutation σ to maxi-
mize

∑n
i=1 ρ(Env(ωk, t, σ(i)),

∑k−1
j=1 Envs(ωj, t, i)), among all permutations

of 1, 2, · · · , n. Here Envs denotes the sorted envelopes in previous frequen-
cies. (5) Permute the order of separated components at the k-th frequency
bin according to σ in step (4), and define Envs(ωk, t, i). Repeat (4) and (5)
until k = T .

We shall modify the above sorting method in three aspects. The first is
to use segments of signal instead of the entire signal to compute statistics
(correlations) to minimize delay in processing. The second is to use correla-
tion coefficients of separated signals at un-equal times or multiple time lags

in step (2) to better characterize the degree of separation. Moreover, we no-
tice that the similarity measure of [13] as seen above is a sum of correlation
coefficients of potentially both signs, and so can be nearly zero due to can-
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cellations even though each term in the sum is not small in absolute value.
We introduce an l1 × l∞ norm below to characterize more accurately chan-
nel similarity by taking sum of absolute values of correlation coefficients and
maximum of time lags. The third is to simplify the maximization problem
on σ to avoid comparing correlations with summed envelopes at all previ-
ous frequencies. We also do not use envelopes of signals inside correlation
functions. The reason is that the smoothing nature of envelope operation
reduces the amount of oscillations in the signals and may yield correlation
values less accurate for capturing the degree of independence. Specifically,
let ŝi(ω, t) = ai(ω, t) e

jφi(ω,t) be the i-th separated signal at frequency ω,
where ai(ω, t) = |ŝi(ω, t)|, φi the phase functions, t the frame index. The
correlation function of two time dependent signals over M frames is:

cov(a(ω, t), b(ω′, t)) = M−1
M
∑

t=1

a(ω, t)b∗(ω′, t)−M−2
M
∑

t=1

a(ω, t)
M
∑

t=1

b∗(ω′, t),

(2.8)
and the (normalized) correlation coefficient is:

ρ(a(ω, t), b(ω′, t)) =
cov(a(ω, t), b(ω′, t))

√

cov(a(ω, t), a(ω, t)) cov(b(ω′, t), b(ω′, t))
. (2.9)

From speech production viewpoint, frequency components of a speech signal
do not change drastically in time, instead are similarly affected by the motion
of the speaker’s vocal chords. The correlation coefficient is a natural tool for
estimating coherence of frequency components of a speech signal. A similar
argument may be applied to music signals as they are produced from cavities
of instruments.

Now with M = nT in (2.8), define

C(ω) =
∑

i 6=j

max
k∈{−K0,...,K0}

|ρ(|ŝi(ω, t)|, |ŝj(ω, t− k)|)|, for ω ∈ [ωL, ωU ]

(2.10)
with some positive integer K0. Find ω1 between ωL and ωU to minimize
C(ω). With ω1 as reference, at any other ω, find the permutation σ to
maximize:

σ = argmax
n
∑

i=1

max
k∈{−K0,...,K0}

|ρ(|ŝi(ω1, t)|, |ŝσ(i)(ω, t− k)|)|. (2.11)

Notice that the objective functions in (2.10)-(2.11) are exactly the l1 × l∞

norms over the indices i(j) and k. Multiple time lag index k is to accomodate
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the translational invariance of sound quality to the ear. Maximizing over k
helps to capture the correlation of the channels, and sum of i (j) reflects the
total coherence of a vector signal.

Step III fixes the scaling and phase indeterminacies in ŝ(ω, t). Each row

of the de-mixing matrix H−1
0 (ω) may be multiplied by a complex number

λi(ω) (i = 1, 2 · · · , n) before inverse FFT (ifft) to reconstruct demixing ma-
trix h(0)(τ) in the time domain. The idea is to minimize the support of
each row of the inverse FFT by a weighted least square method. In other
words, we shall select λi’s so that the entries of ifft(H−1

0 )(τ) ≡ h(0)(τ) are
real and nearly zero if τ ≥ Q for some Q < T , Q as small as possible, T
being the length of FFT. Smaller Q improves the local approximation, or
accuracy of equation (2.2). To be more specific, using H−1

0,i (ω) to denote the

i-th row vector of H−1
0 (ω), we can explicitly write the equation to shorten

the support of inverse FFT:

ifft(λi(ω)H
−1
0,i (ω))(τ) = 0 (2.12)

in terms of the real and imaginary parts of λi(ω) for ω = 0, 1/T, ..., (T−1)/T .
Those real and imaginary parts are the variables and the equations are linear.
Now, we let τ run from q to T − 1. If we want small support, q should be
small, then there are more equations than unkowns. So we multiply a weight
to each equation and minimize in the least square sense. Equation (2.12)
for larger τ is multiplied by a larger weight in the hope that the value of the
left hand side of (2.12) will be closer to zero during the least square process.
If we choose the weighting function to be the exponential function βτ for
some β > 1, then the above process can be mathematically written as

[λi(0), ..., λi((T − 1)/T )] = argmin
T−1
∑

τ=q

|βτ ifft(λi(ω)H
−1
0,i (ω))(τ)|2 (2.13)

where H−1
0,i (ω) is the i-th row vector of H−1

0 (ω).
A few comments are in order. First, since the mixing matrix H0(ω) is the

FFT of a real matrix, we impose that H0(ω) = H0(1−ω)∗. So, supposing T
is even, we only need to apply JADE to obtain H0(ω) for ω = 0, 1/T, ..., 1/2;
H0(0) and H0(1/2) will automatically be real. When fixing the freedom of
scaling in each ω, we choose λ(0) and λ(1/2) real, and λ(ω) = λ(1−ω)∗ for
other ω. Second, to fix the overall scaling and render the solution nontrivial,
we set λ(0) = 1. Third, the weighted least square problem (2.13) can be
solved by a direct method or matrix inversion (chapter 6 in [9]).

Note that when n = 2, among the 2(T − q) equations from (2.12) with
τ = q, ..., T − 1, there are T − 1 variables including λi(1/2), the real and
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imaginary parts of λi(ω) for ω = 1/T, ..., 1/2−1/T . So, we can make roughly

half of h
(0)
i (τ) ≈ 0, the best one can achieve in general. Separated signals,

denoted by s̃(0)(t), are then produced, for t ∈ [0, nT ], t the frame index.
The last step IV is to update h(0)(τ) when δnT ≪ nT many new frames

of mixtures arrive. The steps I to III are repeated using frames from δnT +1
to δnT + nT , to generate a new time domain demixing matrix h(1)(τ), τ ∈
[0, T − 1], and separated signal s̃(1)(τ), τ ∈ [T (nT −∆nT ) + 1, T (nT + δnT )]
with T the size of one frame. We use τ here instead of t because in the
most part of the paper, t is the frame index. Now, s̃(1)(τ) and s(0)(τ) share
a common interval of size T∆nT . On this common interval, s̃(1)(τ) and
s(0)(τ) will be the same if we are doing a perfect job and if the ordering
of s̃(1) is consistent with that of s(0). In order to determine the ordering

of s̃(1)(τ), we compute ρ
(

s̃
(0)
i (τ), s

(1)
j (τ − k)

)

on this common interval with

different k and i, j = 1, ..., n. Then we determine the permutation σ of the
components of s̃(1)(t) by minimization:

σ = argmax
n
∑

i=1

max
k∈{−K1,...,K1}

∣

∣

∣ρ
(

s
(0)
i (τ), s̃

(1)
σ(i)(τ − k)

)
∣

∣

∣ (2.14)

with some constant K1. After doing the necessary permutation of s̃(1), the
separated signals are then extended to the extra frames δnT +nT by concate-
nating the newly separated δnT many frames of s̃(1) with those of s̃(0). The

continuity of concatenation is maintained by requiring that maxτ |h(k)ii (τ)|’s
(i = 1, 2, · · · , n) are invariant in k, where k = 1, 2, · · ·, labels the updated
filter matrix in time. The procedure repeats with the next arrival of mixture
data, and is a direct method incorporating dynamic information.

Because sorting order depends only on the relative values of channel correla-
tions, we observed in practice that the maxk∈{−K.,...,K.} in equations (2.10),

(2.11), (2.14) may be replaced by
∑K.

k=−K.
, with a different choice of K.

value. The maxk∈{−K.,...,K.} is a more accurate characterization however.

2.3 Adaptive Estimation and Cost Reductions

Cumulants and moments are symmetric functions in their arguments [15].
For example when n = 2, there are 16 joint fourth order cumulants from
(2.5), however, only six of them need to be computed, the others follow from
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symmetry. Specifically, among the 16 cumulants:

Q(1) = Cum(y1, y
∗
1 , y

∗
1 , y1), Q(2) = Cum(y1, y

∗
1 , y

∗
1, y2)

Q(3) = Cum(y1, y
∗
1 , y

∗
2 , y1), Q(4) = Cum(y1, y

∗
1 , y

∗
2, y2)

Q(5) = Cum(y1, y
∗
2 , y

∗
1 , y1), Q(6) = Cum(y1, y

∗
2 , y

∗
1, y2)

Q(7) = Cum(y1, y
∗
2 , y

∗
2 , y1), Q(8) = Cum(y1, y

∗
2 , y

∗
2, y2)

Q(9) = Cum(y2, y
∗
1 , y

∗
1 , y1), Q(10) = Cum(y2, y

∗
1 , y

∗
1, y2)

Q(11) = Cum(y2, y
∗
1 , y

∗
2 , y1), Q(12) = Cum(y2, y

∗
1 , y

∗
2, y2)

Q(13) = Cum(y2, y
∗
2 , y

∗
1 , y1), Q(14) = Cum(y2, y

∗
2 , y

∗
1, y2)

Q(15) = Cum(y2, y
∗
2 , y

∗
2 , y1), Q(16) = Cum(y2, y

∗
2 , y

∗
2, y2)

we have the relations: Q(2) = Q(3)∗ = Q(5)∗ = Q(9), Q(4) = Q(6) =
Q(11) = Q(13), Q(7) = Q(10)∗, Q(8) = Q(15) = Q(12)∗ = Q(14)∗, where ∗
is complex conjugate. For N samples, we only need to compute the following
six 1×N vectors

Y1 = (y11y
1
1, ..., y

N
1 yN1 ), Y2 = (y11y

1
2, ..., y

N
1 yN2 ),

Y3 = (y12y
1
2, ..., y

N
2 yN2 ), Y4 = (y11y

1∗
1 , ..., yN1 yN∗

1 ),
Y5 = (y11y

1∗
2 , ..., yN1 yN∗

2 ), Y6 = (y12y
1∗
2 , ..., yN2 yN∗

2 ),

then all the 4th order and 2nd order statistical quantities can be recon-
structed. For example,

Q(1) =
1

N
Y4·Y Tr

4 − 1

N2
(2 sum(Y4) sum(Y4) + sum(Y1) (sum(Y1)

∗)) (2.15)

where sum(Yi) is the summation of the N components of Yi.
As formula (2.5) suggests, cumulants are updated through moments

when δnT early samples are replaced by the same number of new samples.
As δnT is much less than the total number of terms nT in the empirical
estimator of expectation, the adjustment costs 2δnT flops for each second
moments and 6δnT flops for each joint fourth order moment. The con-
tributions of the early samples are subtracted from the second and fourth
moments, then the contributions of the new samples are added. The cu-
mulant update approach is similar to cumulant tracking method of moving
targets ([12] and references therein).

Due to dynamical cumulants update, the prewhitening step at each fre-
quency is performed after cumulants are computed from X(ω). This is dif-
ferent from JADE [6] where the prewhitening occurs before computing the
commulants. This way, it is more convenient to make use of the previous
cumulant information and updated X(ω). Afterward, we use the multilin-
earity of the cummulants to transform them back to the commulants of the
prewhitened X(ω), before joint diagonalization.
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It is desirable to decrease nT to lower the number of samples for cu-
mulants estimation. However, this tends to increase the variance in the
estimated cumulants, and render estimation less stable in time. Numeri-
cal experiments indicated that with nT as low as 40, the separation using
overlapping frames is still reliable with reasonable quality.

It is known [8] that the identity of a speaker is carried by pitch (per-
ception of the fundamental frequency in speech production) which varies in
the low frequency range of a few hundred Hertz. We found that instead of
searching among all frequencies for the reference frequency ω1 in step II, it is
often sufficient to search in the low frequency range. The smaller searching
range alleviates the workload in sorting and permutation correcting. This
is similar to a feature oriented method, see [16, 18, 3] among others.

2.4 Experimental Results

The proposed algorithm with adaptivity and cost reduction considerations
was implemented in Matlab. The original code of JADE by J.-F. Cardoso
is obtained from a open source (http://web.media.mit.edu/∼paris/ ) main-
tained by P. Smaragdis. Separation results with both dynamic and batch
processing of three different types of mixtures are reported here:

(1) real room recorded data;

(2) synthetic mixture of speech and music;

(3) synthetic mixture of speech and speech noise.

They will be called case (1), (2) and (3) in the following discussion.
The values of the parameters used in the three cases are listed in Table 1.

In the table, ”nT (dyn.)” is the initial value of nT in dynamic processing
and ”nT (bat.)” is the nT in batch processing. Other than nT , dynamic and
batch process share the same parameters. The frame size is T , ”overlap”
is the overlapping percentage between two successive frames, δnT and ∆nT

are as in step IV, K0 and K1 are from (2.11) and (2.14), β is in (2.13), and
q is the lower limit of τ in (2.12).

Note that the values of ωL and ωU from (2.10) are not listed in the table.
In our computation, we use the following two choices

(A) ωL = 0, ωU = 1/2.

(B) ωL = ωU = 4/T , namely fixing reference frequency ω1 = 4/T .

10
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For the three cases reported in this paper, both choices work and generate

very similar results. As a consequence, we will only plot the results of the
first choice. The first choice is more general while the second is motivated
by the pitch range of speech signal and is computationally more favorable.
However, we do not know precisely the robustness of the latter.

case T overlap nT δnT ∆nT K0 K1 β q nT

(dyn.) (bat.)

(1) 512 0% 100 20 30 4 10 1.04 2 200

(2) 256 50% 100 20 40 15 20 1.04 2 160

(3) 256 50% 100 20 40 10 20 1.04 2 160

Table 1: Parameters used in both dynamic and batch processing.

For a quantitative measure of separation in all three cases, we compute
the maximal correlation coefficient over multiple time lags:

ρ̄(a, b) = max
k∈{−K2,...,K2}

|ρ(a(τ), b(τ + k))| (2.16)

with ρ defined in (2.9). The ρ̄ is computed for the mixtures, the sources and
the separated signals for both batch and dynamic processing. An exception
is the lack of sources in case (1). We choose K2 = 20 in all the computations.
The results are listed in Table 2 which shows that the ρ̄ values of the mixtures
are much larger than those of the dynamically separated signals, which are
on the same order as the ρ̄ values of the batch separated signals. In the
synthetic cases (2) and (3), the ρ̄ values of the batch separated signals are
on the same order of the ρ̄ values of the source signals or 10−2. In cases (2)
and (3), we use the ratio ρ̄(x, s1)/ρ̄(x, s2) to measure the relative closeness
of a signal x to source signals s1 and s2. Table 3 lists these ratios for x
being the separated signals by dynamic and batch methods with A and B
denoting the two ways of setting the reference frequency ω1. The outcomes
are similar no matter x = s̃1 or x = s̃2 (first or second separated signal)
in either dynamic or batch cases and either way of selecting the reference
frequency ω1.

In case (1), the recorded data [13] consists of 2 mixtures of a piece of mu-
sic (source 1) and a digit (one to ten) counting sentence (source 2) recorded
in a normal office size room. The sampling frequency is 16 kHz, and 100
k data points are shown in Fig. 1. The signals last a little over 6 seconds.
The result of dynamic BSS algorithm is shown in Fig 2. As a comparison,
we show in Fig. 3 result of batch processing of steps I to III of the algorithm
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ρ̄(·, ·) of 3 cases mixture dyn. separation bat. separation sources

(1)-A 0.8230 0.0269 0.0160 N/A
(1)-B 0.8230 0.0225 0.0159 N/A

(2)-A 0.6240 0.0503 0.0673 0.0201
(2)-B 0.6240 0.0182 0.0600 0.0201

(3)-A 0.4613 0.0351 0.0378 0.0243
(3)-B 0.4613 0.0267 0.0677 0.0243

Table 2: Values of the correlation coefficient ρ̄(x, y), (x, y) being either the
two mixtures or the two sources or the two separated signals by dynamic and
batch methods. The A and B in the first column denote the two different
ways of selecting the reference frequency ω1.

ρ̄(x, s1)/ρ̄(x, s2) case(2) case(3)

x= dyn. s̃1(A) 4.5899 4.5096
x= dyn. s̃2(A) 0.1086 0.2852

x= dyn. s̃1(B) 5.3083 5.8411
x= dyn. s̃2(B) 0.0494 0.2799

x= bat. s̃1(A) 15.0912 1.4632
x= bat. s̃2(A) 0.0760 0.1665

x= bat. s̃1(B) 6.2227 25.8122
x= bat. s̃2(B) 0.0636 0.1719

Table 3: Ratios of ρ̄(x, s1) and ρ̄(x, s2), x being a separated signal on the
first column by dynamic or batch method, s1 and s2 are source signals. The
ratio measures the relative closeness of x to s1 and s2. If the ratio is larger
(smaller) than one, x is closer to s1 (s2). The A and B in the first column
denote the two different ways of selecting ω1.
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with nT = 200. The batch processing gives a clear separation upon listen-
ing to the separated signals. The dynamic processing is comparable. The
filter coefficients in the time domain hij(τ) at the last update of dynamic
processing are shown in Fig. 4. Due to weighted least square optimization
in step III, they are localized and oscillatory with support length Q close to
half of the FFT size T .

For cases (2) and (3), we show the envelopes of the absolute values of the
mixtures or the separated signals. The signal envelope was computed using
the standard procedure of amplitude demodulation, i.e., lowpass filtering
the rectified signal. The filter was an FIR filter with 400 taps and the
cutoff frequency was 100 Hz. Signal envelopes help to visualize and compare
source and processed signals. We have normalized all the envelopes so that
the maximum height is 1. The values of aij in (2.1), which are used to
synthetically generate the mixtures, are shown in Fig. 5 (see [19, (8)]). Fig. 6
and Fig. 7 show the mixtures and separated signals of case (2). Fig. 8 and
Fig. 9 show the mixtures and separated signals of case (3). In view of these
plots, Table 2 and Table 3, separation is quite satisfactory, which is also
confirmed by hearing the separated signals.

The processing time in MATLAB on a laptop can be a factor of 5 to
8 above the real time signal duration, however, the time is expected to
be closer to real time with the computation is executed by Fortran or C
directly or with additional cost reduction techniques. A breakdown of time
consumption in the algorithm shows that 40% of the processing is spent on
computing cumulants, 30 % on sorting in frequency and time domains, 15%
on fixing scaling functions, 3% on joint diagonalization, the rest on other
operations such as computing lower order statistics, FFT, IFFT etc.

3 Conclusions

A dynamic blind source separation algorithm is proposed to track the time
dependence of signal statistics and to be adaptive to the potentially time
varying environment. Besides an efficient updating of cumulants, the method
made precise the procedure of sorting permutation indeterminacy in the fre-
quency domain by optimizing a metric (the l1 × l∞ norm) on multiple time
lagged channel correlation coefficients. A direct and efficient weighted least
square approach is introduced to compactify the support of demixing fil-
ter to improve the accuracy of frequency domain localization of convolutive
mixtures. Experimental results show robust and satisfactory separation of
real recorded data and synthetic mixtures. An interesting line of future work
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will be concerned with various strategies to reduce computational costs.
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Figure Captions

Fig 1: Case (1), two recorded signals in a real room where a speaker was
counting ten digits with music playing in the background.

Fig 2: Case (1) with choice A, separated digit counting sentence (bottom)
and background music (top) by the proposed dynamic method. Choice B
gives similar results.

Fig 3: Case (1) with choice A, separated digit counting sentence (bottom)
and background music (top) by batch processing using the proposed steps I
to III. Choice B gives similar results.

Fig 4: Case (1) with choice A, the localized and oscillatory filter coefficients
in the time domain at the last frame of dynamic processing. Choice B gives
similar results.

Fig 5: The weights aij used in generating synthetic mixtures of cases (2)
and (3), as proposed in [19].

Fig 6: Case (2), the synthetic mixtures are generated by a female voice and
a piece of instrumental music.

Fig 7: Case (2) with choice A, the envelopes of the separated signals from
mixtures whose envelopes are in Fig. (6). The small amplitude portion of
the music is well recovered. Choice B gives similar results.

Fig 8: Case (3), the synthetic mixtures of a female voice and a speech noise
with signal to noise ratio equal to −3.8206 dB. The x1 plot shows a speech in
a strong noise, the valley structures in the speech signal are filled by noise.

Fig 9: Case (3) with choice A, the envelopes of the separated signals, noise
(top) and speech (bottom). The envelopes of the two mixtures are in Fig. 8.
The strongly noisy x1 in Fig. 8 has been cleaned, the valleys in the envelope
re-appeared. Choice B gives an even better result.
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