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Abstract

The use of data represented by intervals can be caused by imprecision in the input information, incompleteness in patterns,

discretization procedures, prior knowledge insertion or speed-up learning. All the existing support vector machine (SVM) approaches

working on interval data use local kernels based on a certain distance between intervals, either by combining the interval distance with a

kernel or by explicitly defining an interval kernel. This article introduces a new procedure for the linearly separable case, derived from

convex optimization theory, inserting information directly into the standard SVM in the form of intervals, without taking any particular

distance into consideration.

r 2008 Elsevier B.V. All rights reserved.

Keywords: Interval analysis; Kernel machines; Convex optimization; Classification
1. Introduction

Support vector machines—SVMs—are learning machines
which implement the structural risk minimization inductive
principle to obtain good generalization on a limited number
of learning patterns. This theory was originally developed by
V. Vapnik on the basis of a separable binary classification
problem with signed outputs �1 [27].

Our aim in this work is to enable SVMs to deal with
information in the form of intervals. These intervals can be
incorporated for several reasons. For example, an SVM is a
powerful paradigm which is not especially well addressed
for dealing with large databases due to the quadratic
program being solved. The training task can be scaled up
by using the interval data concept [1]: large databases are
e front matter r 2008 Elsevier B.V. All rights reserved.
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aggregated into smaller data sizes in the form of intervals
by using the k-means algorithm, the neural gas algorithm
[16] or by another clustering procedure. Incomplete
information patterns must sometimes be dealt with by
machine learning algorithms before they can be completed,
in the case of prognosis for instance. In this case, intervals
can represent the incomplete information. In fact, in many
practical applications, information is imprecise and in-
complete since it is derived from uncertain measurements
or linguistic assessments, which can be represented by
interval data. Discretization is yet another procedure
transforming a continuous attribute into a discrete
attribute that can be handled in the form of intervals.
Many real-life world applications can be found in the
literature, from reliable computing [14] to embedded
systems [22] and economics [21].
Interval arithmetic was first developed in [17] to compute

interval data as a way of handling uncertainties and many
developments have followed [9,20,13]. The main drawback
concerning the space of the intervals is that it is not a
Euclidian space, and hence a norm cannot be defined.
Nevertheless, it is still possible to define a distance and this
fact has been used in the first approaches using SVMs on
interval data. Thus, it has been proved that SVMs can
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handle interval regression analysis [11,12], whose objective
is to design a regression model for the data where
coefficients are intervals, of which possibilistic regression
analysis [25] is the simplest version. For classification
problems, the most used approach [3,28] is to work on
interval data by combining an RBF kernel function with a
distance defined on the space of intervals, for example the
Hausdorff distance. Monotony of the Gaussian function
allows the relative distance between intervals to be
maintained. This approach has also been considered on
other non-Euclidian qualitative spaces such as the orders of
magnitude space [23]. Another possibility is to define a
particular nonlinear function which enables us with
intervals on a pre-defined feature space [6,24].

All the approaches in the precedent cases use local
kernels, i.e. they work primarily in a neighbourhood,
based on a distance between intervals, sometimes combin-
ing the interval distance with a kernel, sometimes by
explicitly defining the interval kernel. Nevertheless, it
is possible to use another two solutions: (i) to move
the problem towards a probabilistic approach [19], in an
attempt to deal with interval discriminant analysis, as does
interval regression analysis, or (ii) to directly incorporate
an interval approach into the SVM. Both new approaches
would allow us to deal with the uncertainty associated
with the imprecision of data, and the interval nature of the
problem. We are concerned with the latter approach in this
article.

Starting with a brief introduction of SVM learning in
Section 2, a first direct formulation for interval SVM,
called I-SVM, is derived in Section 3 by using the approach
in [5] on how to introduce prior knowledge in the form of
multiple polyhedral sets into a reformulation of a linear
SVM classifier, for the case of intervals. The size of the
obtained QP problem, i.e. the number of parameters and
constraints for both primal and dual formulation, is very
large. For this reason, a new approach is developed in
Section 4 which drastically reduces the I-SVM size.
Furthermore, it is demonstrated that this new procedure
can be interpreted as based on interval arithmetic. An
illustrative example is provided. The complexity of the
approach is analysed and compared with other similar
approaches in Section 5. Experimentation with the
proposed machine on two real examples from [5] is
detailed. Finally, Section 6 presents conclusions and
potential lines of research.

2. SVM Learning

The SVM is an implementation of a more general
regularization principle known as the large margin
principle [2]. Let

Z ¼ fðx1; y1Þ; . . . ; ðxp; ypÞg ¼ fz1; . . . ; zpg 2 ðX�YÞp (1)

be a training set, where X is the input space and Y ¼
fy1; y2g ¼ fþ1;�1g the output space. Let f : X!F � Rd

be a feature mapping, with f ¼ ðf1; . . . ;fdÞ, for the usual
‘kernel trick’. F is named feature space with a dot product
denoted by h�; �iF. Let x9fðxÞ 2F be the representation of
x 2 X. A binary linear classifier,

f wðxÞ ¼ hfðxÞ;wiF þ b ¼ hx;wiF þ b (2)

is sought in the space F, with f w : X!F! R, b 2 R,
and where outputs are obtained by thresholding the
classifier, hwðxÞ ¼ signðf wðxÞÞ. Henceforth h�; �iF is denoted
as h�; �i.
Let us first consider the linearly separable case, which is

the use of a linear kernel from a kernel machine
perspective. Let b and a be the minimum and the maximum
values for classes labelled as fþ1;�1g, respectively, i.e.

b ¼ min
zi2Zþ
hxi;wi; a ¼ max

zi2Z�
hxi;wi,

where Zþ and Z� are respectively the patterns belonging
to the classes labelled as fy1; y2g ¼ fþ1;�1g. Hence,
according to [10] and by taking into account that the
margin is ðb� aÞ=kwk, the classifier w with the largest
geometrical margin on a given training sample Z can be
written as

wSVM9 arg max
w2F

1

kwk
�min

zi2Z
yihxi;wi. (3)

There are several practical methods of dealing with this
problem [7], one of which is to minimize the norm kwk in
(3) while b� a ¼ 2. This canonical form of the optimal
separation introduces the bias term by defining b ¼ bþ 1
and a ¼ b� 1 which determine the location of the
separating hyperplane relative to the origin. Hence, the
problem is translated into the optimization problem

min
w2F

1
2
kwk2

s.t. yiðhxi;wi � bÞX1; zi 2Z. (4)

The solution can be expressed in the form

wSVM ¼
X

i

aiyixi; f wSVM
ðxÞ ¼

X
i

ai yi kðxi;xÞ þ b, (5)

where kðx;x0Þ ¼ hfðxÞ;fðx0Þi ¼ hx; x0i is the kernel func-
tion, and where only those few ai associated with the so-
called support vectors are not zero. The bias b is usually
calculated as the halfway point between hyperplanes [8].

3. Interval-SVM: a convex optimization approach

We are attempting to directly incorporate an interval
approach into the SVMs by inserting information into the
standard SVM in the form of intervals, so we call Interval-
SVM as I-SVM. Henceforth, the problem statement will be
constrained to Rm. The training set Z composed of only
exact points (1), is added with the following set of intervals
in Rm:

T ¼ fðIpþ1; ypþ1Þ; . . . ; ðIn; ynÞg 2 ðI
m �YÞr, (6)

where I i ¼ ðI i1; . . . ; I imÞ with I ij ¼ ½x
L
ij ;x

U
ij � and xL

ijpxU
ij , is

an element in the space of the m-dimensional closed
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1A note about the notation. When QP problems are settled, we

distinguish a set of vectorial constraints or a vector of constraints from a

set of one-dimensional constraints by boldfacing the vectors of zeros, 0 or

ones, 1. We also use boldfaced letters for matrices and sub-matrix

components involved in QP problems. In particular, we denote the

n-dimensional identity matrix by In.
2Minor computing errors are unavoidable when numerical solutions for

the QP problem are calculated, therefore it is more robust to deal with a

constraint which is the mean of all the equality constraints, as is usually

performed, for instance, when the bias is calculated for the standard

biclass SVM.
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intervals Im for i ¼ pþ 1; . . . ; n, n ¼ pþ r and j ¼ 1; . . . ;m.

The lower bound of any interval I is given by xL9
ðxL

j Þj9ðx
L
1 ; . . . ;x

L
mÞ, and its upper bound, xU9ðxU

j Þj9

ðxU
1 ; . . . ; x

U
mÞ. Hence xLpxU and for the sake of simplicity,

it is denoted as I ¼ ½xL;xU�. Furthermore, inputs in the
form of points can be considered as intervals where the
lower and upper bounds are the same, fxig ¼ ½xi;xi�,
thereby obtaining as the general training set,

ZT9Z [T

¼ fðI1; y1Þ; . . . ; ðIp; ypÞ; ðIpþ1; ypþ1Þ; . . . ; ðIn; ynÞg

¼ fz1; . . . ; zp; zpþ1; . . . ; zng 2 ðI
m �YÞn. (7)

The interval discriminant learning problem can now be
defined as the search for a binary linear classifier in the
form of (2) with f w : I

m !F! R, b 2 R, and where
outputs are obtained by thresholding the classifier,
hwðxÞ ¼ signðf wðxÞÞ.

3.1. I-SVM: primal formulation by convex optimization

In [5] it is shown how prior knowledge in the form of
multiple polyhedral sets can be introduced into a reformu-
lation of a linear SVM classifier. All the points lying in a
polyhedral set can be determined by a general set of linear
inequalities,

B ¼ fxjBxpdg � Rm (8)

with B 2 Rs�m and d 2 Rs.
By using the Farkas theorem [15], it can be derived from

Proposition 2.1 in [5] that, given a weight vector w, a
nonempty polyhedron B lies in the half-space fxjw0 � xX1g
(alternatively, fxj � w0 � xp� 1g) if and only if there exists
a vector u such that B0 � uþ w ¼ 0 (alternatively, B0 � u�

w ¼ 0), d 0 � uþ 1p0 and uX0, where B0 indicates the
transpose of B.

For the case of an interval I ¼ xL; xU
� �

� Rm, it can be
described in the form of (8), I ¼ fxjBxpdg � Rm, which
gives

B ¼

1 0 � � � 0 0

�1 0 � � � 0 0

..

. . .
. ..

.

0 0 � � � 0 1

0 0 � � � 0 �1

0
BBBBBBBB@

1
CCCCCCCCA
2 R2m�m,

d ¼

xU
1

�xL
1

..

.

xU
m

�xL
m

0
BBBBBBBBB@

1
CCCCCCCCCA
2 R2m. (9)

Without any loss of generality, let us assume that the
bias b is initially not considered in the optimization
problems. Hence, by applying the result in [5], the primal
QP problem can be formulated as (note that the B matrix is
the same for any interval),1

min
w2Rm;fuigni¼12R

2m

1
2
kwk2

B0 � ui þ yi � w ¼ 0; i ¼ 1; . . . ; n;

s.t. ðdi
Þ
0
� ui þ 1p0; i ¼ 1; . . . ; n:

ui
X0; i ¼ 1; . . . ; n:

(10)

By applying expressions for B and di in (9) for the case of
intervals and by naming ui ¼ ðui

11; u
i
12; . . . ; u

i
m1; u

i
m2Þ
0
2 R2m,

it can be demonstrated by linear algebra that the QP
problem becomes

min
w2Rm;fuigni¼12R

2m

1
2
kwk2

yi � w ¼ ðu
i
j2Þj � ðu

i
j1Þj ; i ¼ 1; . . . ; n;

s.t. yi � w
0 � xL

i X1þ ðui
j1Þ
0
j � ðDxiÞ; i ¼ 1; . . . ; n;

ui
X0; i ¼ 1; . . . ; n;

(11)

where Dxi ¼ xU
i � xL

i ¼ xU
i1 � xL

i1; . . . ; x
U
im � xL

im

� �
2 Rm.

By taking into consideration the nmþ nþ 2nm ¼

nð3mþ 1Þ restrictions to be accomplished, it can be seen
that the obtained QP problem is over-parameterized with
ð2nþ 1Þm parameters being optimized. Hence, by assuming
that a solution exist for the problem, weight vector w can
be obtained in n forms, by using any of the n first sets of m

constraints in (11), w ¼ yi � ððu
i
j2Þj � ðu

i
j1ÞjÞ. It should be

borne in mind that all the constraints considered in this
first set are equality constraints, and that no constraint is
stronger than another.
By replacing yi � w in the second constraint in (11) for the

value in the first constraint, and defining w ¼ 1=n
P

iyiðu
i
2 �

ui
1Þ for robustness, with ui

s ¼ ðu
i
jsÞj, for s ¼ 1; 2, a similar

primal QP problem2 is obtained,

min
fui

1
;ui

2
gni¼12R

m

1
2n2

P
i

yiðu
i
2 � ui

1Þ

����
����
2

ðui
2Þ
0
� xL

i � ðu
i
1Þ
0
� xU

i X1; i ¼ 1; . . . ; n;

s.t. ui
1; u

i
2X0; i ¼ 1; . . . ; n:

(12)

In this form, 2nm parameters must be optimized on nð2mþ

1Þ constraints, i.e. the number of parameters and con-
straints in (12) are much smaller than those in (11).
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3Using the first set of conditions, equivalent results are obtained.
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3.2. I-SVM QP dual formulation by convex optimization

The dual of QP primal formulations can be obtained, as
usual, by using Lagrangian formulation based on multi-
pliers and the KKT (Karush–Kuhn–Tucker) conditions.
By using the simplest expression obtained (12) when
convex optimization approach was employed as the primal
QP problem, the Lagrangian function to be maximized as a
dual formulation becomes

Lðfui
1; u

i
2g

n
i¼1Þ ¼

1

2n2

Xn

i¼1

yiðu
i
2 � ui

1Þ

�����
�����
2

�
Xn

i¼1

ai � ððu
i
2Þ
0
� xL

i � ðu
i
1Þ
0
� xU

i � 1Þ

�
Xn

i¼1

m0i � u
i
1

�
Xn

i¼1

n0i � u
i
2 (13)

with aiX0 and mi; ni 2 Rm such that mi; niX0.
The KKT conditions, qL=qui

1 ¼ 0 and qL=qui
2 ¼ 0, for

i ¼ 1; . . . ; n, result in the following expressions:

1

n2
yi

Xn

j¼1

yjðu
j
2 � u

j
1Þ ¼ ai � x

U
i � mi,

1

n2
yi

Xn

j¼1

yjðu
j
2 � u

j
1Þ ¼ ai � x

L
i þ ni. (14)

The Lagrangian function in (13) can be expressed as

Lðfui
1; u

i
2g

n
i¼1Þ ¼

1

2n2

Xn

i¼1

yiðu
i
2 � ui

1Þ

�����
�����
2

�
Xn

i¼1

ui
2 � ðai � x

L þ niÞ

þ
Xn

i¼1

ui
1 � ðai � x

U � miÞ

þ
Xn

i¼1

ai (15)

and substituting KKT conditions into this expression,
enables the Lagrangian function in (13) to be expressed as

Lðfui
1; u

i
2g

n
i¼1Þ ¼ �

1

2n2

Xn

i¼1

yiðu
i
2 � ui

1Þ

�����
�����
2

þ
Xn

i¼1

ai. (16)

Finally, two sets of expressions derived from KKT
conditions can be employed to calculate the weight vector
w ¼ 1=N

P
iyiðu

i
2 � ui

1Þ. Without any loss of generality, let
us use the second set in (14). The dual QP problem
becomes,3

min
a2Rn;n2Rnm

1
2 ða
0; n0Þ �QL �

a

n

� �
� ð10; 00Þ �

a

n

� �
s.t. aiX0; i ¼ 1; . . . ; n;

niX0; i ¼ 1; . . . ; n;

(17)

where

(18)

provided that q0L ¼ ðy1 � x
L
1 ; . . . ; yn � x

L
n Þ, a0 ¼ ða1; . . . ; anÞ

and n0 ¼ ðn01; . . . ; n
0
nÞ.

The weight vector w solution can be written as

w ¼ qL � aþ
Xn

i¼1

yi � ni (19)

and bias b is obtained a posteriori as usual.

4. I-SVM: towards an interval analysis approach

The objective in this article is to reduce the oversized QP
problem obtained from the result in [5] for the case of
intervals to one more amenable QP problem leading to a
direct interval-like SVM formulation. Let us now introduce
the formulation for the interval discriminant learning
problem.

4.1. Interval SVM problem

Let I1 ¼ ½xL
1 ;x

U
1 � ¼ ðI

1
1; . . . ; I

1
mÞ 2 Im and I2 ¼ ½xL

2 ; x
U
2 � ¼

ðI21; . . . ; I
2
mÞ 2 Im be two intervals, where I

j
i ¼ ½x

L
ji ;x

U
ji � for

j ¼ 1; 2 and i ¼ 1; . . . ;m. The following operations are
defined:
	
 Sum: I1 þ I2 ¼ ½xL
1 þ xL

2 ; x
U
1 þ xU

2 � 2 I
m;
	
 Difference: I1 � I2 ¼ ½xL
1 � xU

2 ; x
U
1 � xL

2 � 2 Im;
	
 Product by a scalar: lI1 ¼ ½minflxL
1 ; lxU

1 g;maxflxL
1 ;

lxU
1 g� 2 Im;
	
 Product: I1 � I2 ¼ ½minA;maxA� 2 I1 where

A ¼
Xm

i¼1

xL
1ix

L
2i;
Xm

i¼1

xL
1ix

U
2i ;
Xm

i¼1

xU
1ix

L
2i;
Xm

i¼1

xU
1ix

U
2i

( )
; (20)
	
 Minimum: minI1 ¼ xL 2 Rm;

	
 Inequality: I1 
 I23xL

1XxU
2 , and I1 
 q3xL

1Xq

where q 2 Rm.

The QP problem to be dealt with from an interval
arithmetic perspective is,

min
w2Rm

1
2 kwk

2

yi � w
0 � I i 
 1; zi 2ZT;

(21)
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which can be considered as a generalization of the standard
definition in (4). A solution function from Im to I1 is
considered instead of a real function,

f wðIÞ9½f
L
wðIÞ; f

U
w ðIÞ� ¼ w0 � I (22)

provided that I ¼ ½xL
i ; x

U
i � and w is a vector, with

min
x2I

w0 � x ¼ f L
wðIÞ.

max
x2I

w0 � x ¼ f U
w ðIÞ, (23)

which leads to a new QP formulation,

min
w2Rm

1
2
kwk2

yi � ½f
L
i ; f

U
i � 
 1; zi 2ZT

(24)

with w0 � I i ¼ fw
0 � x jx 2 I ig ¼ ½f

L
i ; f

U
i �.

In fact, the standard primal QP problem for SVM can be
recovered from the I-SVM extension if all the information
is exact, i.e. no interval exists. In this case xL

i ¼ xU
i ¼ xi,

and hence f L
i ¼ f U

i ¼ minxi2I i
w0 � I i ¼ w0 � xi.

Let b and a be the minimum and the maximum absolute
values for each class, i.e.

b ¼ min
zi2Zþ

f L
i ¼ min

zi2Zþ
yif

L
i ,

a ¼ max
zi2Z�

f U
i ¼ min

zi2Z�
yif

U
i .

The QP problem (21) or (24) corresponds to finding the
classifier w with the largest geometrical margin ðb� aÞ=kwk
on a given training sample ZT of intervals,

wI�SVM9 arg max
w2Rm

1

kwk
� min

zi2ZT
min
x2I i

yi � w
0 � x

� �
. (25)

A bias can be added as the value halfway between values
a and b [10,7] to solution (22).
4.2. I-SVM: reduced primal formulation

The size of the QP problem (12), i.e. the number of
parameters and constraints, could be reduced because it is
still very large. An approach from interval arithmetics will
be developed which drastically reduces this size. Let us
consider the QP problem (24) defined in the form,

min
wþ ;w�2Rm

1
2
kwþ � w�k2

yi � ½f
L
i ; f

U
i � 
 1; zi 2ZT;

wþ;w�X0;

(26)

where w ¼ wþ � w� is the solution.
Due to the positiveness of the terms wþ and w�, and

observing that

f L
i ¼

Xm

j¼1

ðwþj Þ
0
� xL

ij �
Xm

j¼1

ðw�j Þ
0
� xU

ij ,
f U
i ¼

Xm

j¼1

ðwþj Þ
0
� xU

ij �
Xm

j¼1

ðw�j Þ
0
� xL

ij , (27)

the QP problem (26) can be translated into

min
wþ ;w�2Rm

1
2
kwþ � w�k2

yi � ððw
þÞ
0
� xL

i � ðw
�Þ
0
� xU

i ÞX1; yi ¼ 1;

s.t. yi � ððw
þÞ
0
� xU

i � ðw
�Þ
0
� xL

i ÞX1; yi ¼ �1;

wþ;w�X0;

(28)

which is representing a reduced form of the QP problem
(12) by assuming that every parameter associated with
positive- or negative-labelled patterns has the same value:

ui
1 ¼ w�ui

2 ¼ wþ; yi ¼ 1,

ui
1 ¼ wþui

2 ¼ w�; yi ¼ �1. (29)

Due to assumption (29), we can infer that not all possible
original solutions for (12) will be maintained in our
formulation (28), but the new formulation is built on a
good assumption for several reasons.
Firstly, it should be explained that the procedure

introduced for the linearly separable case will allow to
insert information directly into the standard SVM in the
form of intervals, without taking any particular distance
into consideration, because both terms defining w (wþ and
w�) are positive and constant.
Secondly, this formulation is much simpler than those

previously obtained in (11) and (12), since 2m parameters
are optimized on an nþ 2m constrained optimization
problem. For the dual case, this reduced training task
effort is similar to that used for standard SVM on punctual
data, so intuitively a good performance in terms of
accuracy should be expected.
Finally, experimentation with the proposed machine on

the previous two real examples used in [5] will allow us to
observe that similar or better accuracy is obtained with the
simplified approach than with the original full optimization
approach.
4.3. I-SVM QP dual by interval analysis

Starting from the original primal formulation (28), the
Lagrangian function to be maximized as dual formulation
is

Lðwþ;w�Þ ¼
1

2
kwþ � w�k2

�
X
Zþ

gi � ððw
þÞ
0
� xL

i � ðw
�Þ
0
� xU

i � 1Þ

�
X
Z�

bi � ððw
�Þ
0
� xL

i � ðw
þÞ
0
� xU

i � 1Þ

�
Xm

j¼1

mj � w
þ
j �

Xm

j¼1

nj � w
�
j (30)
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with gi;biX0, mj ; njX0. For notational simplicity, it is
assumed that the first training patterns are positive
instances, Zþ � Z, and the latter are negative instances,
Z� �Z.

By imposing KKT conditions, qL=qwþ ¼ 0 and
qL=qw� ¼ 0, we obtain

wþ � w� ¼
X
Zþ

gix
L
i �

X
Z�

bix
U
i þ m9winf þ m,

wþ � w� ¼
X
Zþ

gix
U
i �

X
Z�

bix
L
i � n9wsup � n. (31)

The Lagrangian function in (30) can be expressed as

Lðwþ;w�Þ ¼
1

2
kwþ � w�k2

þ ðwþÞ0 � �
X
Zþ

gix
L
i þ

X
Z�

bix
U
i � m

 !

þ ðw�Þ0 � �
X
Zþ

gix
U
i �

X
Z�

bix
L
i � n

 !

þ
X
Zþ

gi þ
X
Z�

bi (32)

and the substitution of KKT conditions into this expres-
sion, enables the Lagrangian function in (30) to be
expressed as

Lðwþ;w�Þ ¼ �
1

2
kwþ � w�k2 þ

X
Zþ

gi þ
X
Z�

bi. (33)

Finally, either of the two expressions derived from the
KKT conditions (31) can be employed to calculate the
weight vector w ¼ wþ � w�. Without any loss of generality
we can use the former expression. Weights ai9gi for
positive labels and ai9bi for negative labels are also
defined. Hence, the dual QP problem becomes:

min
ai ;mj

1
2
ða0;m0Þ �Q �

a

m

 !
� ð10; 00Þ �

a

m

 !

s.t. aiX0; i ¼ 1; . . . ; n;

mjX0; j ¼ 1; . . . ;m;

(34)

where

(35)

provided that q ¼ ðq1; q2Þ ¼ ððyi � x
L
i ÞZþ ; ðyi � x

U
i ÞZ�Þ.
Weight vector w solution can be written as

w ¼ q � aþ m (36)

and bias b is obtained as usual.

Remark 1. Weight vector w ¼ wþ � w� is calculated from
the first KKT condition in (31). When using the second
condition, the expressions obtained are similar if we
exchange all over xL

i with xU
i and m with n throughout

the function to be minimized.

Remark 2. For the standard training data case, xL
i ¼ xU

i ,
KKT conditions lead to m ¼ �n, with m; nX0, and hence
m ¼ n ¼ 0. Therefore, Q reduces to the standard Gram
matrix, terms with m disappear from the cost function to be
minimized, and constraints on m also disappears. In this
way, the dual QP problem (34) is the usual dual QP
problem associated with a standard SVM.

Remark 3. The dual QP problem obtained from convex
optimization theory can be reduced to that obtained from
interval analysis by observing that,X

i

yi aix
L
i þ ni

� �
¼
X
Zþ

yiðaix
L
i þ niÞ þ

X
Z�

yiðaix
U
i � miÞ

¼
X
Zþ

yiaix
L
i þ

X
Zþ

yini þ
X
Z�

yiaix
U
i �

X
Z�

yimi

¼
X
Zþ

yiaix
L
i þ

X
Z�

yiaix
U
i þ

X
Zþ

ni þ
X
Z�

mi, (37)

hence it can be defined that

m ¼
X
Zþ

ni þ
X
Z�

miX0 (38)

and the dual QP problem (34) is recovered.

An example of use is illustrated in Fig. 1. The two top
graphics show the result of a trained I-SVM using the
interval information; whereas the two lower graphics are
trained considering only points, without interval informa-
tion, with a standard SVM. I-SVM recovers standard SVM
when interval information is not critical (left-hand side);
however it uses the overall interval information (parameter
m in (36) is nonzero) when it is necessary (right-hand side).
This modification has been obtained by moving the lower
support vector to the left.
4.4. Soft I-SVM

The QP formulation in (28) ensures that multi-dimen-
sional interval restrictions lie on the correct side of the
separating hyperplane, as can be appreciated in the top two
graphics of Fig. 1. In order to allow some imprecisions in
the knowledge sets, some slack variables xi, i ¼ 1; . . . ; n, zj,
j ¼ 1; . . . ;m are added in a similar way to the soft
formulation of standard SVM. Hence, the soft I-SVM



ARTICLE IN PRESS

Fig. 1. The two top graphics illustrate trained SVM using the interval information (I-SVM), whereas the two lower graphics are trained with a standard

SVM. I-SVM recovers standard SVM when interval information is not critical (left-hand side) and it uses the interval information (parameter m is nonzero)

when it is necessary (right-hand side).
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becomes the primal QP problem,

min
wþ ;w�2Rm

1
2
kwþ � w�k2 þ C

Pn
i¼1

xi þD
Pm
j¼1

ðzj1 þ zj2Þ

yi � ððw
þÞ
0
� xL

i � ðw
�Þ
0
� xU

i ÞX1� xi; yi ¼ 1;

s.t. yi � ððw
þÞ
0
� xU

i � ðw
�Þ
0
� xL

i ÞX1� xi; yi ¼ �1;

wþ þ z1; w� þ z2X0

(39)

with zk ¼ ðzjkÞj , k ¼ f1; 2g, C;DX0 and w ¼ wþ � w� as
the solution.

Using the Lagrangian function, similar to (30), the dual
formulation can be obtained,

min
a;m

1
2
ðaÞ0; m0 �Q �

a

m

 !
� ð10; 0Þ0 �

a

m

 !

s.t. CXaiX0; i ¼ 1; . . . ; n;

DXmjX0; j ¼ 1; . . . ;m

(40)

with Q as defined in (35). The weight vector w solution can
be written as

w ¼ q � aþ m (41)

and bias b is obtained as usual.
5. Complexity analysis and numerical testing

In order to analyse the complexity of the different
approaches for completeness, an I-SVM can also be
defined by translating any interval to its punctual vertices
and using a standard SVM on these vertices. In this case,
the resulting QP problem can be formulated as,

min
w2Rm

1
2
kwk2

yi � w
0 � x

j
iX1; i ¼ 1; . . . ; n; j ¼ 1; . . . ; 2m;

(42)

where x
j
i is any of the 2m vertices of the interval I i 2ZT.

Hence, in this case, the formulation considers m parameters
to be optimized, however n2m constraints must be
accomplished by the optimization problem.
Summarized in Table 1. The results about the complexity

of the different approaches are it can be agreed that the
interval analysis approach (28) or (34) leads to the more
balanced QP problem, which holds a low number of
parameters to be optimized on a little-constrained optimi-
zation problem.
Numerical testing for accuracy comparison was carried

out on two datasets from the UCI Repository [18], the
Wisconsin Prognostic Breast Cancer dataset WPBC and
the Promoter Recognition dataset, with the intention of
comparing our results with those reported in [5] using the
original full optimization approach.
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Table 2

Comparison of I-SVM leave-one-out total error with classification

algorithms reported in [5]

Method # errors (out of 106)

KBANN 4

KSVM, I-SVM 5

BP 8

SVM1 9

O’Neil 12

NN 13

ID3 19

Table 1

The complexity comparison between QP problems associated to the

different approaches for the I-SVM

Approach Parameters Constraints m, n

Primal

Convex (Eq. (11)) ð2nþ 1Þm ð3mþ 1Þn 804 1300

Convex (Eq. (12)) 2nm ð2mþ 1Þn 800 900

Interval (Eq. (28)) 2m nþ 2m 8 108

Standard (Eq. (42)) m n2m 4 1600

Dual

Convex (Eq. (17)) ðmþ 1Þn ðmþ 1Þn 500 500

Interval (Eq. (34)) nþm nþm 104 104

Standard n2m n2m 1600 1600

An illustrative example considers an m ¼ 4 dimension problem with n ¼

100 training patterns.
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For the WPBC dataset, a 60-month cutoff for the
prediction of the recurrence or nonrecurrence of the disease
was considered. The prior knowledge consisted of two
prognosis rules used by doctors depending on the tumor
size ðTÞ and the lymph node status ðLÞ:

ðLX5Þ ^ ðTX4Þ¼)ðRÞECUR,

ðL ¼ 0Þ ^ ðTp1:9Þ¼)ðNÞONRECUR.

When the above rules are applied directly to the 110
given points (64 R, 46 N) of the training set, only 32 points
(14 R, 18 N) are covered and correctly classify 23 (9 R, 14
N) of these 32 points. Hence, only an accuracy of 20% is
obtained when rules are applied as a classifier. In [5] rules
were converted into linear inequalities and used in their
KSVM algorithm without any use of the data, which
resulted in a linear classifier achieving 66:4% accuracy,
more than the 66:2% correctness achieved by standard
SVM using all the data. In our case, rules are converted
into intervals, where the non-described bound (upper or
lower) on the rules is assigned to the maximal or minimal
value of the feature. The values of C and D associated with
the soft I-SVM are obtained by a tuning procedure which
consists of varying these values on a square grid:
f2�6:0; 2�5:9; . . . ; 26:0g � f2�6:0; 2�5:9; . . . ; 26:0g. In this way,
a 70:0% accuracy is obtained without using training
examples and with a simple linear classifier.

The second dataset, the Promoter Recognition dataset, is
from the domain of DNA sequence analysis. This example
includes 106 training points not matching 14 prior rules.
These rules by themselves cannot serve as a classifier, but
they do capture significant information about promoters,
thus the effect of our assumptions on the training set will
be completely tested in this way. These 14 prior rules were
converted into 52 knowledge sets in a lightly different
manner4 that made in [5]. Following the methodology cited
therein, we tested our algorithm using a ‘leave-one-out’
cross validation procedure, the values of C and D
4The reader is referred to Appendix Appendix A for more details.
associated with the soft I-SVM being obtained by a similar
tuning procedure to the precedent experiment.
The number of times that a test element is misclassified

for each compared method reported in [5] and our method
(I-SVM) is counted as an error and reported in Table 2.
Note that our proposed algorithm, I-SVM, has a good
performance behaviour among all the considered algo-
rithms, and it is as accurate as the original full optimization
approach, KSVM.

6. Conclusions

Imprecision in the input information, incompleteness in
the patterns, discretization procedures, prior knowledge
insertion or speed-up learning can motivate arriving
interval represented data. Unlike existing SVM approaches
working on interval data, a new formulation for a linear
SVM classifier is derived from convex optimization theory,
called I-SVM, which directly inserts information in the
form of intervals. The new approach drastically reduces the
complexity of the original convex-based approach, and can
be interpreted as based on interval arithmetic. Numerical
testing has been carried out on two datasets from the UCI
Repository, the Wisconsin Prognostic Breast Cancer
dataset WPBC, with prior knowledge of two prognosis
rules used by doctors, and the Promoter Recognition
dataset, including training points not matching prior rules.
Similar or higher accuracy than precedent works has been
obtained using an I-SVM simple linear classifier. A future
line of research is to address nonlinear classifiers deter-
mined by nonlinear kernels.
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Appendix A. About the promoter recognition dataset

When the experimentation in [5] for the DNA sequence
analysis Promoter Recognition dataset was replicated by
using the rules proposed in [4], some inconsistency between
rules R6, R7 and R8 with R10 were found. Since inconsistent
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Fig. A1. Converting rules in a matrix of inequalities in [4].

Fig. A2. Left: Table 3 from [26]. Right: R11 according to [4].
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rules R6, R7 and R8 with R10 were obviated and knowledge
is derivated following the combination of rules in Fig. A1,
final knowledge sets were reduced from 64 to 52.
Moreover, according to article [26] whose results were

reported for comparison in [5], it can be found that the
third rule for conformation(Fig. A2(left)) is not exactly the
same that of rule R11 in [4] (Fig. A2(right)).
In our experimentation, R11 was modified in the sense of

[26]. The 106 training points from the dataset were
maintained. As a last modification, we used a real-valued
encoding to represent the nucleotides fA;G;C;Tg instead
of binary encoding. Considering these modifications, we
obtained 5 errors out of 106 for our algorithm.
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