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Abstract

For two-class problems we propose two feature selection criteria based
on kernel discriminant analysis (KDA). The first one is the objective func-
tion of kernel discriminant analysis called the KDA criterion. We show
that the KDA criterion is monotonic for the deletion of features, which
ensures stable feature selection. The second one is the recognition rate ob-
tained by a KDA classifier, called the KDA-based recognition rate, which
is defined in the one-dimensional space obtained by KDA. Namely, a con-
ditional probability of a datum for a given class is calculated and the
datum is classified into the class with the maximum conditional prob-
ability. To ensure stable feature selection, we evaluate the KDA-based
recognition rate by cross-validation. By computer experiments we com-
pare the two criteria for two-class problems and the recognition rate of
the support vector Machine (SVM) evaluated by cross-validation, called
the SVM-based recognition rate. The selection performance of the KDA
criterion and the KDA-based recognition rate is comparable and is better
than that by the SVM-based recognition rate.

Keywords: Feature Selection, Kernel Discriminant Analysis, Support Vector
Machines.

1 Introduction

Feature selection is to select from the original set of features, namely, input
variables, the minimum subset of features that realizes the maximum general-
ization ability [1, 2]. To realize this, during the process of feature selection, the
generalization ability of a subset of features needs to be estimated. This type of
feature selection is called a wrapper method [3]. But since it is time-consuming
to directly estimate the generalization ability, some selection criterion, which
is considered to well reflect the generalization ability, is used. This method is
called a filter method and various selection criteria have been developed [4, 5].

The forward or backward selection method using a selection criterion is
widely used. In backward selection, we start from all the features and delete
one feature at a time, which deteriorates the selection criterion the least. We
delete features until the selection criterion reaches a specified value. In forward
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selection, we start from an empty set of features and add one feature at a time,
which improves the selection criterion the most. We iterate this procedure until
the selection criterion reaches a specified value. Because forward or backward
selection is slow, we may add or delete more than one feature at a time based
on feature ranking, or we may combine backward and forward selection.

Because these selection methods are local optimization techniques, global
optimality of feature selection is not guaranteed. Usually, backward selection
is slower but is more stable in selecting optimal features than forward selection
[6]. If a selection criterion is monotonic for deletion or addition of a feature, we
can terminate feature selection when the selection criterion violates a predefined
value [7] or we can use optimization techniques such as the branch-and-bound
technique. An exception ratio defined based on the overlap of class regions
approximated by hyperboxes [7] is proved to be monotonic for the deletion of
features. But the exception ratio defined in the feature space is not monotonic
[8].

By the introduction of support vector machines (SVMs), various selection
methods suitable for support vector machines have been developed. The selec-
tion criterion for filter methods used in the literature is, except for some cases
[8, 9, 10], the margin [2, 11, 12, 13, 14]. In addition, in most cases, a linear sup-
port vector machine is used. The idea of feature selection is as follows: If some
elements of the coefficient vector of the hyperplane are zero, the deletion of the
associated input variables does not change the optimal hyperplane for the re-
maining variables. But if we delete variables associated with nonzero elements,
the optimal solution changes. Thus the magnitude of the margin decreases. In
[15], selection of features in support vector machines with polynomial kernels is
discussed, but this is for deletion of feature space variables, not input variables.
In [8], the objective function of kernel discriminant analysis called the KDA cri-
terion, namely the ratio of the between-class scatter and within-class scatter, is
proved to be monotonic for the deletion of features, and feature selection based
on the KDA criterion was shown to be robust for benchmark data sets.

As a wrapper method, in [16, 17], block deletion of features in backward
feature selection is proposed using the generalization ability by cross-validation
as the selection criterion.

In addition to filter and wrapper methods, the embedded methods combine
training and feature selection; because training of support vector machines re-
sults in solving a quadratic optimization problem, feature selection can be done
by modifying the objective function [18, 19, 20, 21].

In this paper, for two-class problems, in addition to the KDA criterion in [8],
which is one of the filter methods, we propose using the recognition rate of the
KDA classifier evaluated by cross-validation, called the KDA-based recognition
rate. In the KDA classifier, a conditional probability of a datum for a given
class is calculated and the datum is classified into the class with the maximum
conditional probability. Here, the conditional probability is calculated assuming
that the data of each class obey a normal distribution.

The feature selection is done by backward selection. We start from all the
features. We temporarily delete one feature, calculate the selection criterion,
and delete the feature that improves the selection criterion the most. This
process is iterated until the stopping condition is satisfied.

By computer experiments we evaluate the two feature selection criteria as
well as the SVM-based recognition rate evaluated by cross-validation, from the



standpoints of the number of deleted features that do not deteriorate the gen-
eralization ability and the validity of the stopping conditions of the selection
criteria.

In Sections 2 and 3, we summarize SVMs and KDA and in Section 4, we
discuss two selection criteria and their monotonicity. In Section 5, we explain
backward feature selection used and in Section 6 we demonstrate the validity of
the proposed methods by computer experiments.

2 Support Vector Machines

In this section we summarize two-class support vector machines [1, 22, 23].
Let m-dimensional inputs xi (i = 1, . . . ,M) belong to Class 1 or 2 and

the associated labels be yi = 1 for Class 1 and −1 for Class 2. To enhance
separability, the input space is mapped into the high-dimensional dot-product
space called the feature space. Let the l-dimensional mapping function be g(x).
If the dot product in the feature space is expressed by H(x,x′) = gT (x)g(x),
H(x,x′) is called the kernel function, and we do not need to explicitly treat the
feature space. In the following we use polynomial kernels with degree d:

H(x,x′) = (xT x′ + 1)d, (1)

and RBF kernels with positive parameter γ:

H(x,x′) = exp(−γ||x − x′||2). (2)

Let the decision function in the feature space be

D(x) = wT g(x) + b, (3)

where w is an l-dimensional vector in the feature space, b is a scalar, and

yiD(xi) ≥ 1− ξi for i = 1, . . . ,M. (4)

Here ξi are nonnegative slack variables.
The distance between the separating hyperplane D(x) = 0 and the training

datum, with ξi = 0, nearest to the hyperplane is called the margin. The hy-
perplane D(x) = 0 with the maximum margin is called the optimal separating
hyperplane.

To determine the optimal separating hyperplane, we minimize

1
2
‖w‖2 + C

M∑
i =1

ξi (5)

subject to the constraints

yi (wT g(xi) + b) ≥ 1− ξi for i = 1, . . . ,M, (6)

where C is the margin parameter that determines the tradeoff between the
maximization of the margin and minimization of the classification error.



If the dimension of the feature space is very large, we convert the original
problem into the dual problem. Introducing the nonnegative Lagrange multi-
pliers, we obtain the following dual problem. Maximize

Q(α) =
M∑

i =1

αi − 1
2

M∑
i,j=1

αi αj yi yj H(xi, xj) (7)

subject to the constraints

M∑
i =1

yi αi = 0, C ≥ αi ≥ 0 for i = 1, . . . ,M, (8)

where αi(i = 1, . . . ,M) are dual variables associated with xi.

3 Kernel Discriminant Analysis

In this section we summarize kernel discriminant analysis, which finds the com-
ponent that maximally separates two classes in the feature space [1, 24, 25, 26].

Here we redefine the training data to make the definition of KDA simpler.
Let the sets of m-dimensional data belong to Class i (i = 1, 2) be {xi

1, . . . ,x
i
Mi

},
where Mi is the number of data belonging to Class i, and data x be mapped
into the l-dimensional feature space by the mapping function g(x). Now we find
the l-dimensional vector w, in which the two classes are separated maximally
in the direction of w in the feature space.

The projection of g(x) on w is wT g(x)/‖w‖. In the following we assume
that ‖w‖ = 1. We find such w that maximizes the difference of the centers, and
minimizes the variances, of the projected data.

The square difference of the centers of the projected data, d2, is

d2 = (wT (c1 − c2))2 = wT (c1 − c2) (c1 − c2)T w, (9)

where ci are the centers of class i data:

ci =
1
Mi

Mi∑
j=1

g(xi
j) for i = 1, 2. (10)

We define
QB = (c1 − c2) (c1 − c2)T (11)

and call QB the between-class scatter matrix.
The variances of the projected data, s2i , are

s2i = wT Qi w for i = 1, 2, (12)

where

Qi =
1
Mi

(g(xi
1), . . . ,g(x

i
Mi

)) (IMi − 1Mi)




gT (xi
1)

...
gT (xi

Mi
)


 for i = 1, 2. (13)



Here, IMi is the Mi ×Mi unit matrix and 1Mi is the Mi ×Mi matrix with all
elements being 1/Mi. We define

QW = Q1 +Q2 (14)

and call QW the within-class scatter matrix.
Now, we want to maximize

J(w) =
d2

s21 + s22
=

wT QB w
wT QW w

, (15)

but since w, QB, and QW are defined in the feature space, we need to use kernel
tricks. Assume that a set of M ′ vectors {g(y1), . . . ,g(yM ′ )} spans the space
generated by {g(x1

1), . . . ,g(x
1
M1

),g(x2
1), . . . ,g(x

2
M2

)}, where {y1, . . . ,yM ′} ⊂
{x1

1, . . . ,x
1
M1
,x2

1, . . . ,x
2
M2

} and M ′ ≤M1 +M2.
We use the Cholesky factorization of the kernel matrix H in selecting inde-

pendent vectors [1]. Let H be positive definite. Then H is decomposed by the
Cholesky factorization into

H = LLT , (16)

where L is the regular lower triangular matrix and each element Lij is given by

Lop =
Hop −

p−1∑
n = 1

LpnLon

Lpp
for o = 1, . . . ,M, p = 1, . . . , o− 1, (17)

Laa =

√√√√Haa −
a−1∑
n =1

L2
an for a = 1, . . . ,M. (18)

Here, Hij = H(xi,xj).
Then during the Cholesky factorization, if the diagonal element is smaller

than the prescribed value η (> 0):

Haa −
a−1∑
n = 1

L2
an ≤ η, (19)

we delete the associated row and column and continue decomposing the ma-
trix. The training data that are not deleted in the Cholesky factorization are
independent.

Using the independent vectors, w is expressed as

w = (g(y1), . . . ,g(yM ′ ))α, (20)

where α = (α1, . . . , αM ′)T and α1, . . . , αM ′ are scalars. Substituting (20) into
(15), we obtain

J(α) =
αT KB α

αT KW α
, (21)

where

KB = (kB1 − kB2) (kB1 − kB2)
T , (22)



kBi =




1
Mi

Mi∑
j=1

H(y1,xi
j)

· · ·
1
Mi

Mi∑
j=1

H(yM ′ ,xi
j)




for i = 1, 2, (23)

KW = KW1 +KW2 , (24)

KWi =
1
Mi




H(y1,xi
1) · · ·H(y1,xi

Mi
)

· · ·
H(yM ′ ,xi

1) · · ·H(yM ′ ,xi
Mi

)


 (IMi − 1Mi)

×



H(y1,xi
1) · · ·H(y1,xi

Mi
)

· · ·
H(yM ′ ,xi

1) · · ·H(yM ′ ,xi
Mi

)




T

for i = 1, 2. (25)

Taking the partial derivative of (21) with respect to w and equating the
resulting equation to zero, we obtain the following generalized eigenvalue prob-
lem:

KB α = λKW α, (26)

where λ is a generalized eigenvalue.
Substituting

KW α = kB1 − kB2 (27)

into the left-hand side of (26), we obtain

(αT KW α)KW α. (28)

Thus, by letting λ = αT KW α, (27) is a solution of (26).
Since KW1 and KW2 are positive semi-definite, KW is positive semi-definite.

If KW is positive definite, α is given by

α = K−1
W (kB1 − kB2). (29)

Even if we choose independent vectors y1, . . . ,yM ′ , for non-linear kernels,
KW may be positive semi-definite, i.e., singular. One way to overcome singu-
larity is to add positive values to the diagonal elements [24]:

α = (KW + εI)−1 (kB1 − kB2), (30)

where ε is a small positive parameter.
Now, from (20) the projection of g(x) on w, wT g(x), is calculated as follows:

wT g(x) = gT (x)w
= gT (x)(g(y1), . . . ,g(yM ′ ))α

= (H(y1,x), . . . , H(yM ′ ,x))α. (31)

We define pr(x) = wT g(x) and call the one-dimensional space KDA space.



4 Selection Criteria and Their Monotonicity

4.1 KDA Criterion

The first selection criterion is the value of (15) for optimum w. We call this
KDA criterion. The KDA criterion with linear kernels, i.e., the LDA criterion
is often used for a feature selection criterion but its monotonicity for deletion
of features is not known.

We can easily prove that the KDA criterion is monotonic for the deletion of
features [8]. Let xi be the m-dimensional vector, in which the ith element of x
is replaced with 0 and other elements are the same with those of x. Then the
resulting feature space Si = {g(xi) |xi ∈ Rm} is the subspace of S = {g(x) |x ∈
Rm}, where the feature space variables in Si that include the ith element of xi

are zero for polynomial and RBF kernels.
Let the coefficient vectors obtained by KDA in S and Si be wopt and wi

opt,
respectively. Then

J(wopt) ≥ J(wi
opt) (32)

is satisfied. This is proved as follows. Assume that the above relation does not
hold. Namely, J(wopt) < J(wi

opt) is satisfied. Then wopt is not optimal in S
since wi

opt ∈ S.
Monotonicity of the selection criterion is very important because we can ter-

minate the selection procedure by setting a threshold, or we can use optimization
techniques such as branch and bound for feature selection.

4.2 KDA-Based Recognition Rates

The second selection criterion is the recognition rate calculated by the KDA
classifier. In the KDA classifier, we calculate conditional probabilities in the
KDA space. Let ω be a random variable that takes ω1 or ω2 and ωi denote class
i (i = 1, 2). The probability that x belongs to class i, p(x|ωi), is calculated
assuming that the class i data obey the normal distribution:

p(x|ωi) =
1√
2πσi

exp(−(pr(x)− wT ci)2/σ2
i ) for i = 1, 2, (33)

where ci is the center of class i in the feature space and using (31) wT ci and σi

are given, respectively, by

wT ci =
1
Mi

Mi∑
j=1

(H(y1,xj), . . . , H(yM ′ ,xj))α, (34)

σi =
1
Mi

Mi∑
j=1

(pr(xj)− wT ci)2. (35)

Then x is classified into class

argi max
i=1,2

p(x |ωi). (36)

Using (36) we calculate the recognition rate of the training data set or the valida-
tion data set in cross-validation. Unfortunately, monotonicity of the KDA-based



recognition rate for the deletion of features is not guaranteed. Thus, to increase
stability of the selection criterion we evaluate the KDA-based recognition rate
by cross-validation.

5 Backward Feature Selection

We select features using backward feature selection. In the backward feature
selection, first we calculate the value of the selection criterion using all the
features. Then starting from the initial set of features we temporarily delete
each feature, calculate the value of the selection criterion, and delete the feature
with the largest value of the selection criterion from the set. We iterate feature
deletion so long as the value of the selection criterion is larger than the prescribed
threshold.

To determine the threshold we normalize the selection criterion by that eval-
uated using all the features. Since the KDA criterion is nonincreasing for the
deletion of features, we set the threshold smaller than 1. It is difficult to set a
proper value but in the following study based on some preliminary experiment
we set 0.5.

For the KDA-based recognition rate, we set the threshold to be 1 and stop
deletion if the normalized selection criterion is smaller than 1. This means that
if the recognition rate evaluated by cross-validation is smaller than that using
all the features, we stop deleting features. This is to avoid deteriorating the
generalization ability by deleting too many features.

Let the initial number of features be m and F k and F k
j denote the set of k

features and the set of k features with the j element temporarily deleted from
the set, respectively. And let the selection criterion for F k

j be T (F k
j ). Then the

normalized selection criterion c(F k
j ) is

c(F k
j ) =

T (F k
j )

T (Fm)
. (37)

The procedure of backward feature selection is as follows:

1. Using the m features, evaluate the selection criterion Tm. Set the initial
set of features as Fm = {1, . . . ,m}. Set k = m and go to Step 2.

2. Delete the ith (i = 1, . . . , k) feature temporarily from F k and calculate
the normalized selection criterion c(F k

i ). For the KDA criterion, if

c(F k
j ) > δKDA for j = argmax

i∈F k
c(F k

i ), (38)

where δKDA is the threshold for the KDA criterion and for the KDA-based
recognition rate, if

c(F k
j ) > δRec for j = argmax

i∈F k
c(F k

i ), (39)

where δRec is the threshold for the KDA-based recognition rate, go to Step
3. Otherwise stop feature selection.



Table 1: Two-class benchmark data sets.

Data Inputs Train. Test Sets
B. cancer 9 200 77 100
Diabetes 8 468 300 100
German 20 700 300 100
Heart 13 170 100 100
Image 18 1300 1010 20
Ringnorm 20 400 7000 100
F. solar 9 666 400 100
Thyroid 5 140 75 100
Titanic 3 150 2051 100
Twonorm 20 400 7000 100
Waveform 21 400 4600 100

3. Permanently delete j from F k:

F k−1 = F k − {j} (40)

and go to Step 2.

After feature selection, set F k includes the features selected by backward
feature selection. Instead of deleting one feature at a time, to speed up feature
selection we may delete more than one feature as discussed in [16]. But here we
use the conventional backward feature selection strategy since our main purpose
is to demonstrate the usefulness of the selection criteria.

6 Performance Evaluation

6.1 Data Sets and Evaluation Conditions

We evaluated performance of the selection criteria using the two-class problems
[24]1 listed in 1. The table shows the numbers of input variables, training data,
test data, and data sets for the problems. Except for the image problem, each
problem has 100 training data sets and their associated test data sets. We
selected these problems because each problem consists of multiple training data
sets and their associated test data sets and thus we could analyze the statistical
difference of the proposed selection methods.

As a classifier to evaluate the performance of the proposed feature selec-
tion methods, we used the SVM. Therefore to determine parameters for feature
selection, we determined the kernel and its parameter value by fivefold cross-
validation for the SVM using the first five training data sets. Namely, in cross-
validation for each training data set, we divided the data set randomly into
five subsets, trained the SVM using the four subsets and evaluate the recog-
nition rate for the remaining subset, i.e., for the validation subset, repeated
training and evaluation of the SVM changing the subsets, and calculated the

1http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm



total recognition rate for the validation subsets. By cross-validation we se-
lected the kernel, its parameter, and the margin parameter from among poly-
nomial kernels with d = [2, 3, 4], RBF kernels with γ = [0.1, 1, 10], and from
C = [1, 10, 50, 100, 500, 1000, 2000, 3000, 5000, 8000, 10000, 50000, 100000].

Then we selected the value of ε, which is used to avoid matrix singularity
in KDA and the threshold value of Cholesky factorization, η, from among ε =
[10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2] and η = [10−8, 10−7, 10−6, 10−5, 10−4,
10−3, 10−2] so that the KDA criterion [27] or the KDA-based recognition rate
is maximized as follows:

1. Calculate the KDA criterion or the KDA-based recognition rate for all the
combinations of the values of ε and η for the first five training data sets.

2. Select the values of ε and η that correspond to the maximum value of the
KDA criterion or the KDA-based recognition rate.

According to our preliminary experiment, since the KDA-based recognition rate
evaluated using the training data was not robust for feature selection, we cal-
culated the recognition rate by fivefold cross-validation. The values of ε and η
were fixed during feature selection.

Since each problem consists of 100 or 20 data sets, we combined the first five
training data sets into one and selected features by backward feature selection
for the two selection criteria with δKDA = 0.5 and δRec = 1.0. Since the KDA
criterion is monotonic for the deletion of variables, δKDA needs to be smaller
than 1. The selection threshold of δRec = 1.0 means that if the recognition rate
is smaller than that using all the features we stop feature selection.

As a reference selection criterion we used the SVM-based recognition rate
evaluated by cross-validation. The feature selection procedure is the same with
that of the KDA-based recognition rate. The only difference is that the recog-
nition rate is evaluated training the SVM instead of training the KDA-based
classifier.

After feature selection we evaluated performance of the selected features by
the recognition rate of the test data using the SVM. To evaluate the recognition
rate of the test data for the selected features, we fixed the kernel and the ker-
nel parameter with those determined using all the features and determined the
margin parameter C by cross-validation using the first five training data sets.
According to the order of deleted features, we deleted one feature at a time from
the set of features, determined the margin parameter C for the selected feature
set by cross-validation, and calculated the mean and the standard deviation for
the test data sets. Then we statistically analyzed the means and standard devi-
ations for the initial feature set and the selected feature set with the significance
level of 0.05.

Table 2 lists the parameter values obtained by the above procedure. In the
table, for example, γ0.1 means the RBF kernels with γ = 0.1 and d3 means the
polynomial kernels with degree 3. For the KDA criterion, ε = 10−8 was selected
for all the problems. Thus, we do not list the values of ε in the table.

6.2 Experimental Results

Figure 1 shows the recognition rates of the thyroid data set when features were
deleted using the KDA criterion. The horizontal axis shows the deleted features



Table 2: Parameter setting.

Data Kernel KDA Criterion KDA Classifier
η ε η

B. cancer γ0.1 10−8 10−4 10−2

Diabetes d3 10−8 10−8 10−7

German γ0.1 10−8 10−7 10−6

Heart γ0.1 10−8 10−8 10−2

Image γ10 10−8 10−8 10−5

Ringnorm γ10 10−4 10−3 10−8

F. solar d2 10−3 10−2 10−3

Thyroid γ10 10−8 10−6 10−2

Titanic d3 10−3 10−8 10−8

Twonorm d3 10−8 10−5 10−2

Waveform γ10 10−3 10−2 10−8

at each selection step and the vertical axis shows the recognition rates of the
training data set in the right and test data sets in the left for each selection
step. The vertical axis also shows the value of the selection criterion with the
initial value normalized to 1.

As seen from the figure, the selection criterion is monotonic for the deletion
of features. Since δKDA = 0.5, three features: 4th, 3rd, and 1st features were
deleted and 2nd and 5th features were left.
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Figure 1: Feature deletion for the thyroid data set by KDA criterion.

Table 3 shows the feature selection results using the KDA criterion. In
the table, the “Deleted” column lists the features deleted. The “C” column
lists the value of C selected by fivefold cross-validation. Using the determined
value of C the SVM was trained and the recognition rates were evaluated. The
“Train.” and “Test” columns list the average recognition rates with the standard
deviations for the training and test data sets, respectively. The “KDA” column
lists the values of the selection criterion.

In the table, the results for each classification problem consist of two or three



lines. The average recognition rate of the test data in the first line is in Roman.
If the average recognition rate of the test data for the second or third line is
statistically the same with, better than, or inferior to that of the first line, i.e.,
that without deleting features, the average recognition rate is shown in Roman,
boldface, or in parentheses, respectively. If the recognition rate is in Roman
or boldface, it also means that the average recognition rates during the feature
deletion process are all statistically equal to or better than that with all the
features.

First we explain the three-line results using the waveform problem. Accord-
ing to the KDA criterion, features, 3, 16, 6, 15, 19, and 8 were deleted and
the average recognition rate was 88.41± 0.39, which was statistically inferior to
90.00± 0.44 using all the features. The second line shows the deleted features,
where the average recognition rates were statistically the same with or better
than that using all the features until all the features listed in the second line
were deleted. For the waveform problem, even if feature 3 was deleted, the
average recognition rate was statistically the same with that without deleting
feature 3. But if feature 16, in addition to feature 3 was deleted, the average
recognition rate became inferior.

There are two cases for two-line results: 1) the average recognition rates
during feature deletion are better than that with all the features or 2) deletion
of a feature from all the features results in statistical deterioration of the average
recognition rate. For instance for the breast cancer problem, deletion of features
4, 1, 8, 7, 5, 3, and 2 did not degrade the generalization ability. Whereas for
the ringnorm problem, the deletion of feature 18 resulted in deterioration of the
generalization ability.

From Table 3, except for the image problem, the KDA criterion is mono-
tonic for the deletion of features. Namely, except for the image problem, the
KDA criterion decreased as the features were deleted, but for the image data, it
increased during feature deletion. Except for the ringnorm and twonorm prob-
lems, at least one feature was deleted without deteriorating the recognition rate
of the test data.

Table 4 shows the feature selection results using the KDA-based recognition
rate evaluated by cross-validation. In the table, “Rate” denotes the KDA-
based recognition rate for the validation data set in cross-validation. Comparing
Tables 3 and 4 the performance of the two methods are similar but the KDA-
based recognition rate did not delete features for the titanic problem. For the
waveform problem, the KDA-based recognition rate performed better.

Table 5 shows the feature selection results using the SVM-based recognition
rate. Compared to Tables 3 and 4, performance is very poor. The reason is that
the stopping condition was too conservative. Namely, we could delete features
even though the recognition rate by cross-validation was lower than that using
all the features. For example, for the breast cancer problem, if we ignored
the stopping condition, we could delete eight features without deteriorating the
generalization ability. This is better than the KDA criterion and the KDA-based
recognition rate. If we select features for each of the first five training data sets,
six features were commonly deleted without deteriorating the generalization
ability. Thus the early stopping of feature selection was caused by combining
the first five training data sets. Although the stopping condition of the KDA-
based recognition rate evaluated by cross-validation worked well, that of the
SVM-based criterion did not work. From Table 5 the discrepancy between the



Table 3: Recognition performance for feature selection using the KDA criterion.
Bold face numerals and numerals in parentheses mean that they are statistically
superior and inferior to the associated numerals using all the features, respec-
tively.

Data Deleted C Train. Test KDA
B. cancer None 500 77.57±1.87 72.36±4.67 0.94

4,1,8,7,5,3,2 2000 74.41±2.59 72.57±5.01 0.46
Diabetes None 100 78.95±1.27 76.42±1.79 1.35

4,1,5,3,7 2000 78.12±1.16 76.29±1.92 1.03
4,1,5,3,7,6 3000 76.56±1.15 (75.45)±1.18 0.92

German None 50 77.80±1.03 76.19±2.27 0.94
4,16,17,20,13,5,11,9,12,19,8,18 1000 78.26±1.09 76.62±2.16 0.83
4,16,17,20,13,5,11,9,12,19,8,18,6,15,1,10,14 5000 74.93±1.03 (74.60)±2.26 0.53

Heart None 50 85.96±1.91 83.69±3.41 2.95
4,5,1,10,6,8,9,7,2,11 10000 83.72±2.88 82.72±3.81 1.93

Image None 1000 98.60±0.17 97.13±0.47 18.9
8,6,12,9,10,3,14,16,4,5,7,13 500 98.81±0.19 97.64±0.41 20.9
8,6,12,9,10,3,14,16,4,5,7,13,1,18 50000 97.96±0.26 (96.06)±0.52 9.68

Ringnorm None 10 99.51±0.33 97.67±0.33 27.6
18,20,15,11,5,17,14 10 98.33±0.54 (95.50)±0.39 13.9

F. solar None 10 67.50±1.04 67.61±1.72 0.57
9,7,8,3,6,2,1 100000 67.46±1.09 67.67±1.81 0.44

Thyroid None 10 97.93±0.78 95.80±2.09 26.1
4,3,1 8000 98.87±0.64 95.75±2.16 14.2

Titanic None 100 79.49±3.66 77.47±1.43 0.74
2,1 100000 78.09±3.60 77.57±0.26 0.54

Twonorm None 10 98.09±0.59 97.59±0.12 8.31
12,18,19,7,4,10,2,6,5,16,9 10 91.53±1.39 (90.70)±(0.20) 4.20

Waveform None 1 93.53±1.36 90.00±0.44 22.8
3 1 93.45±1.25 89.99±0.45 20.9
3,16,6,15,19,8 1 91.63±1.43 (88.41)±0.39 12.5

recognition rate for the validation data set and that of the test data set is large
although that for the KDA-based recognition rate is not prominent as seen from
Table 4. Because we evaluated the SVM-based recognition rate combining the
first five training data sets and the SVM is more powerful than the KDA-based
classifier, the SVM-based recognition rate for the validation data set improved
more than that for the test date set. Thus, the validity of the stopping condition
was deteriorated.

Table 6 lists the number of features selected without deteriorating the recog-
nition rate of the test data and the number of selected features in parenthesis
for three methods. In the table, “KDA” denotes the KDA criterion, “Rec.”
denotes the KDA-based recognition rate, and “ SVM” denotes the SVM-based
recognition rate. In each row, the largest number of deleted features without
deteriorating the generalization ability is shown in boldface. The “Best” row
shows the numbers that the associated selection criterion performed best among
the selection criteria and the “Total” row shows the total number of features



Table 4: Recognition performance for feature selection using the KDA-based
recognition rate with cross-validation.

Data Deleted C Train. Test Rate
B. cancer None 500 77.57±1.87 72.36±4.67 75.90

2,8,4,9,7,1,3 500 76.27±1.97 75.79±4.72 77.40
Diabetes None 100 78.95±1.27 76.42±1.79 79.19

1,4,3 500 79.17±1.14 76.64±1.62 78.76
German None 50 77.80±1.03 76.19±2.27 76.89

16,5,4,12,17,15,18,13,20,10,7,11 100 77.05±1.00 76.74±2.44 77.06
Heart None 50 85.96±1.91 83.69±3.41 84.71

2,6,11,8,5,4,1,10,7 100 84.21±2.13 83.48±3.74 84.82
Image None 1000 98.60±0.17 97.13±0.47 97.75

8,9,6,3,16,10,14,12,5,4,7,11,18 2000 99.10±0.26 97.50±0.48 97.96
Ringnorm None 10 99.51±0.33 97.67±0.33 98.50

14,20 10 99.27±0.39 (97.27)±0.37 98.50
F. solar None 10 67.50±1.04 67.61±1.72 66.42

6,2,7,3,1,8 10 67.46±1.09 67.67±1.81 67.15
6,2,7,3,1,8,4,9 10 57.23±1.16 (57.22)±1.93 100

Thyroid None 10 97.93±0.78 95.80±2.09 97.14
4,3 100 98.79±0.68 95.67±2.12 97.43

Titanic None 100 79.49±3.66 77.47±1.43 79.73
Twonorm None 10 98.09±0.59 97.59±0.12 97.25

20 50 98.08±0.74 (97.16)±(0.19) 97.45
Waveform None 1 93.53±1.36 90.00±0.44 91.20

6,2,1,4,20,21,13 1 92.65±1.29 89.96±0.44 91.45

selected by the associated selection criterion without deteriorating the general-
ization ability. The “Coincidences” row shows the number of coincidences in
which the number of features deleted by the stopping condition of the selection
criterion and the maximum number of deleted features that do not deteriorate
the generalization ability are the same.

From the standpoint of the Best criterion, the KDA criterion is the best
and the KDA-based recognition rate is the second best but their difference is
not so large. And from the total number of deleted features and the number
of coincidences they are the best. Thus, KDA criterion and the KDA-based
recognition rate are the comparably best selection criterion. It is surprising
that the KDA criterion, which does not use the information of the validation
data performed comparably with the KDA-based recognition rate with cross-
validation.

The SVM-based recognition rate with cross-validation performed poorly.
The main reason is that the stopping condition was too conservative.

We measured feature selection time using an Athlon 64×2 4800+ personal
computer running on Linux. Table 7 lists the feature selection time. To make
comparison clear, we measured the deletion time of three variables by KDA
criterion, the KDA-based recognition rate, and the SVM-based recognition rate
with cross-validation for γ = 10 and d = 2. In training the SVM we used the



Table 5: Recognition performance for feature selection using the SVM-based
recognition rate with cross-validation.

Data Deleted C Train. Test Rate
B. cancer None 500 77.57±1.87 72.36±4.67 91.70
Diabetes None 100 78.95±1.27 76.42±1.79 85.51

4 100 78.97±1.18 76.64±1.65 85.74
German None 50 77.80±1.03 76.19±2.27 96.34

20,4,16,5 50 78.02±0.91 76.32±2.21 96.46
Heart None 50 85.96±1.91 83.69±3.41 98.24

10 100 86.37±1.92 83.37±3.08 98.47
Image None 1000 98.60±0.17 97.13±0.47 99.69

5,7,6,18,3,8,9,14,11,4,10,12,16 5000 98.62±0.16 97.38±0.32 99.78
5,7,6,18,3,8,9,14,11,4,10,12,16,15 1000 97.23±0.28 (95.54)±0.48 99.72

Ringnorm None 10 99.51±0.33 97.67±0.33 98.60
F. solar None 10 67.50±1.04 67.61±1.72 67.18

8,9,1 10 67.48±1.07 67.63±1.78 67.24
Thyroid None 10 97.93±0.78 95.80±2.09 100

4,3 100 98.79±0.68 95.67±2.12 100
Titanic None 100 79.49±3.66 77.47±1.43 79.87
Twonorm None 10 98.09±0.59 97.59±0.12 97.25

2 10 97.71±0.66 (97.25)±(0.13) 97.25
Waveform None 1 93.53±1.36 90.00±0.44 92.30

10,4,2 1 92.79±1.37 (89.56)±0.45 92.55

primal-dual interior-point method combined with the decomposition techniques
[28]. From the table, the feature selection time for the KDA criterion is two
to four times shorter than that of the KDA-based recognition rate. This is be-
cause the KDA-based recognition rate was evaluated by fivefold cross-validation.
Usually, feature selection by the KDA criterion and the KDA-based recognition
rate was much faster than that by the SVM-based recognition rate. But in some
cases, feature selection by the SVM-based recognition rate was faster. The rea-
son may be that the KDA criterion and the KDA-based recognition rate used
the Cholesky factorization and for a large training data set, the decomposition
became slower. For example for the twonorm problem, the matrix size is 2000
combining the first five training data sets.

7 Conclusions

In this paper, we proposed two measures for feature selection: the KDA criterion
which is the objective function of KDA and the KDA-based recognition rate,
which calculate the conditional probability of a datum belonging to a class
assuming that each class data obey the normal distribution.

We show that the KDA criterion is monotonic for the deletion of features.
Thus we can evaluate the KDA criterion using the training data. Backward fea-
ture selection is terminated when the KDA criterion is below the predetermined



Table 6: Comparison of feature selection methods.
Data KDA Rec. SVM
B. cancer 7 (7) 7 (7) 0 (0)
Diabetes 5 (6) 3 (3) 1 (1)
German 12 (17) 12 (12) 4 (4)
Heart 10 (10) 9 (9) 1 (1)
Image 12 (14) 13 (13) 13 (14)
Ringnorm 0 (7) 0 (2) 0 (0)
F. solar 7 (7) 6 (8) 3 (3)
Thyroid 3 (3) 2 (2) 2 (2)
Titanic 2 (2) 0 (0) 0 (0)
Twonorm 0 (11) 0 (1) 0 (1)
Waveform 1 (6) 7 (7) 0 (3)
Best 7 4 1
Total 59 59 17
Coincidences 5 7 3

Table 7: Comparison of feature selection time in seconds.
Data γ10 d2

KDA Rec. SVM KDA Rec. SVM
B. cancer 145 608 7672 20 94 21229
Diabetes 2183 7115 200494 88 289 254509
German 19505 69374 635227 2716 8734 571241
Heart 168 1095 1753 34 94 2769
Image 94594 261559 199106 4266 14539 3766942
Ringnorm 18040 46989 5254 820 2617 186991
F. solar 795 1909 1589827 210 742 1508135
Thyroid 16 52 340 3 10 1192
Titanic 1 5 1336 1 5 1593
Twonorm 18301 49004 3364 1738 2694 9270
Waveform 18402 49112 10564 1027 3269 37829

threshold.
Since the KDA-based recognition rate is not monotonic for the deletion of

features, we evaluate the KDA-based recognition rate by cross-validation. The
backward feature selection process is terminated when the KDA-based recogni-
tion rate is below that using all the features.

Using the two-class benchmark data sets we compared the two criteria. As
a reference feature selection method, we used the SVM-based recognition rate
evaluated by cross-validation. The KDA criterion deleted most for the seven
benchmark data sets out of 11, but the KDA criterion and the KDA-based
recognition rate showed comparable performance in the number of total deleted
features that did not deteriorate the generalization ability and in the validity of
the stopping criteria. But the SVM based recognition rate performed poorly in
the number of deleted features and the feature selection time.

As future work, for a large number of training data we need to accelerate



feature selection for the KDA criterion; a fast matrix inversion method other
than the Cholesky factorization needs to be used.
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[24] S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K.-R. Müller. Fisher
discriminant analysis with kernels. In Y.-H. Hu, J. Larsen, E. Wilson, and
S. Douglas, editors, Neural Networks for Signal Processing IX—Proceedings
of the 1999 IEEE Signal Processing Society Workshop, pages 41–48, 1999.

[25] G. Baudat and F. Anouar. Generalized discriminant analysis using a kernel
approach. Neural Computation, 12(10):2385–2404, 2000.

[26] B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Ma-
chines, Regularization, Optimization, and Beyond. MIT Press, Cambridge,
MA, 2002.



[27] S. Kita, S. Maekawa, S. Ozawa, and S. Abe. Boosting kernel discrimi-
nant analysis with adaptive kernel selection. In Proceedings of Seventh
International Conference on Adaptive and Natural Computing Algorithm,
CD-ROM, 2005.

[28] E. Osuna, R. Freund, and F. Girosi. An improved training algorithm for
support vector machines. In Neural Networks for Signal Processing VII—
Proceedings of the 1997 IEEE Signal Processing Society Workshop, pages
276–285, 1997.


