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This paper presents a new mapping to construct the self-organizing map on the curved seamless

surface. This mapping is developed for the planar triangle surface derived from the conformal self-

organizing map [C.-Y. Liou, Y.-T. Kuo, Conformal self-organizing map for a genus-zero manifold, Visual

Comput. 21(5) (2005) 340–353]. It shows how to construct a seamless surface for the genus-zero

manifold. The constructed surface is both seamless and continuous. The mapping between the model

surface and the sphere surface is one-to-one and onto. This kind of surface can facilitate many

applications of the self-organizing map. We show experiments in surface reconstructions and texture

mappings.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

The goal of surface reconstruction is to obtain a continuous
surface that can represent a cloud of pattern points [16]. These
cloud patterns are usually obtained from 3D laser scanners and
medical scanners. These patterns may also be collected by various
vision techniques, such as correlated viewpoints, voxel carving,
stereo range images. The conformal self-organizing map (CSM)
[15,8,9] has been developed for modeling a continuous surface for
the cloud patterns. It is a kind of self-organizing map with
conformal contents [10,11]. The CSM is formed by a collection of
connected simplices including points and edges. Since these
triangles are flat, the surface constructed by these flat triangles is
not a smoothly curved one. The flat triangle surface in 3D [8] may
have ambiguous mapping for those sphere points which project
on the triangle edges. To resolve the problem of ambiguous
mapping and derive a smooth surface, we present a method to
construct a curved seamless surface (CSS) with unique mapping
correspondence.

The CSS is ideal for texture mapping because it contains the
property of conformal mapping that preserves the local shapes of
textures. The major advantage of the CSS over the NURBS1 is that
the CSS has the property of conformal mapping. The global
conformal mapping (GCM) also derives conformal structures for
general closed meshes [4] and isometric mapping [3]. It is
fundamentally different from the CSS in two ways: first, the
GCM is not designed for continuous surface reconstruction and
ll rights reserved.

).

ine and it is a widely used

curves and surfaces.
second, the GCM is not designed for smooth curved surfaces. We
show experiments on the CSS and GCM in Section 4.

The rest of this paper is organized as follows. In the next
section, we briefly introduce the CSM. In Section 3, we present the
CSS that is further derived from a learned CSM surface. In Section
4, we show experiments on 3D point clouds. We discuss many
issues on the CSS in the last section.
2. Review CSM

The CSM [10,8] attempts to accomplish conformal transforma-
tion between forms. This mapping is angle preserving. Different
from other methods, the CSM is based on the self-organizing map
(SOM) and has the potential to learn higher dimensional data. We
will focus on the 3D objects of genus-zero surfaces in this paper.
Since a sphere has the same genus-zero manifold, we use a sphere
as the network space of neurons. A sphere can be approximated
by icosahedrons at different resolutions [7]; hence the number of
neurons varies. Each face of an icosahedron is an equilateral
triangle. The basic type of icosahedron has 12 vertices, 30 edges,
and 20 equivalent equilateral triangular faces. It is varied by
combining more icosahedrons into a single body. We use the term
f (frequency) to denote its multiplicity, R to denote the number of
faces, and N to denote the number of vertices. The formula of the
icosahedron is

R ¼ 20f 2,

N ¼
R

2
þ 2. (1)

In the CSM, the sampled 3D patterns are the training patterns
and the mesh is configured by neurons. These neurons are the
vertices of the mesh. Each neuron has two vectors, one is the
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Fig. 2. Conformal mapping between the two triangles Dr
n and Dr

w. Each triangle in

3D is translated to the complex plane. Then their conformal mappings to a unit

disk can be computed by the Schwarz–Christoffel method [12] to build the point

correspondence.
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weight vector, wi, in the pattern space and the other is the
position vector, ni, in the network space. The weight vectors
contain the locations of the mesh vertices in the pattern space.
The position vectors contain the locations of the neurons on the
sphere surface. Fig. 1 shows the relationship of these two vectors.
In the CSM, wi is evolved to match its corresponding pattern
and ni is fixed to preserve the sphere topology. Let X denotes
the set that contains all point patterns of a 3D object,
X ¼ fðxl; yl; zlÞ

T; l ¼ 1; . . . ; Pg. Let the collection of all equilateral
triangles of the icosahedron inside a unit sphere be
SD ¼ fDr

n; r ¼ 1; . . . ;Rg, illustrated in Fig. 1(b). Let the collection
of all vertices, denoting neurons, be N ¼ fni; i ¼ 1; . . . ;Ng, where ni

is a 3D column vector in the network space and denotes the
position of the ith mesh vertex on the unit sphere surface. Each
triangle is a mesh hole that can be represented by its three
vertices, that is, Dr

n � ½n
r
i ;n

r
j ;n

r
k�. The parameterization domain is

the mesh SD which is suitable for the genus-zero manifold.
The CSM constructs a mapping from SD to MD [8], where MD is

formed by the weight vectors, wi, for approximating the sample
points X of a 3D object. MD is composed of a collection of flat
triangles, MD

¼ fDr
w; r ¼ 1; . . . ;Rg. Each equilateral triangle Dr

n on
SD in the network space is mapped to its corresponding triangle
Dr

w on MD in the pattern space. Each Dr
w is an irregular triangle

that can be represented by its three vertices, that is,
Dr

w ¼ ½w
r
i ;w

r
j ;w

r
k�, where wr

i is a 3D column weight vector in the
pattern space and denotes the position of the ith mesh vertex in
MD, see Fig. 1(a). The vertex wr

i is mapped to the vertex nr
i . Both Dr

w

and Dr
n are flat triangles.

The major difference between the CSM and SOM is in the
mapping of winning neurons. The SOM maps each point x in the
pattern space to a particular winning neuron. On the other hand,
CSM maps x to a corresponding point r in Dr

n under a conformal
mapping M from Dr

w to Dr
n. This conformal mapping M is

illustrated in Figs. 2 and 3. The learning algorithm is briefly
described below.
Fig. 1. Illustration of the mesh for a 3D object and the network space in the CSM.

(a) The mesh of a 3D object. (b) The neurons’ position vectors. The curved domes

are shown with blue arcs.
CSM Learning Algorithm. Input: Input pattern X, sphere mesh SD

and its vertices N.

Output: Model mesh MD.
1.
 Initialization. Initialize the CSM network. The neurons’ weight
vectors are initialized as the same uniform vertices N on a
sphere, wiðt ¼ 0Þ ¼ ni. Set learning constants. Let t denotes the
learning time. We start the algorithm from t ¼ 0.
2.
 Sampling. Randomly select an input point x 2 X with equal
probability.
3.
 Similarity matching. Determine the winning or best-matching
neuron by using

kwc � xk ¼ min
i
kwiðtÞ � xk; wiðtÞ 2WðtÞ, (2)

where wc is the weight vector of the winning neuron for the
corresponding input x in time t. WðtÞ is the set of all weight
vectors. Then the projected simplex s ¼ Dr

w is determined by
checking all simplices connecting wc . Finally, the reference
vector r ¼MðxÞ is calculated by projection and conformal
mapping. The function M first projects pattern x onto the
simplex, s, and then maps it to the network space using
conformal mapping (Eqs. (4), (5)). Fig. 3 illustrates the
transformation of input x into the reference vector r.
4.
 Updating. Update all weight vectors according to the following
equation:

dwi ¼ athðdðMðxÞ;niÞÞðx�wiðtÞÞ

¼ athðdðr;niÞÞðx�wiðtÞÞ,

wiðt þ 1Þ ¼ wiðtÞ þ dwi, (3)

where at 2 ½0;1Þ is the learning rate at time t, and h is the
neighborhood function which decreases monotonously with
the distance metric d in the network space. This step is
to improve the similarity of the weight vectors toward the
pattern x.
5.
 Continuation. Continue with Step 2 until a satisfactory result is
obtained.

In Step 4 of the learning algorithm, the function M requires the
use of conformal mapping to map simplex s in the input space to s0



ARTICLE IN PRESS

Fig. 3. The procedure for mapping input pattern x to the reference vector r in the network space.

Fig. 4. The conformal mapping from an arbitrary triangle to a unit disk and then to
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in the network space, see Figs. 2 and 3. The conformal mapping
from simplex s to equilateral simplex s0 can be approximated by
means of the Schwarz–Christoffel mapping [12], see Fig. 4.

In Fig. 4, the mapping function from the v-plane to the z-plane
is given by

z ¼ f 1ðvÞ ¼ a1 þ B1

Z v 1
2

Y3

1�
vi

z

� ��bi

dz. (4)

0 z i¼1 an equilateral triangle and vice versa.
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The mapping function from the v-plane to the z0-plane is given by

z0 ¼ f 2ðvÞ ¼ a2 þ B2

Z v

0

1

z2

Y3

i¼1

1�
vi

z

� ��gi

dz. (5)

Since bi and gi are known, a;B and vi have to be solved in the
above equations. Therefore, the mapping from simplex s to
simplex s0 is z0 ¼ f 2ðf

�1
1 ðzÞÞ, where z is any point on s, and z0

is its corresponding point on s0. Then, the reference vector r is
computed using r ¼ nc þ projðz0Þ. Function projðz0Þ projects z0 in the
complex plane onto the network space. Note that r may be
normalized with the same magnitude as that of ni, jrj ¼ jnij ¼ 1 in
certain cases.
3. CSS parameterization

By using the CSM [8], we can derive the MD and obtain the
mapping between each triangle Dr

n and its corresponding triangle
Dr

w. Let the portion of the sphere surface right above the flat

triangle, Dr
n, be Dr

n

_

, see Fig. 1(b). The triangular dome Dr
n

_

can be

obtained by cutting the three arc curves, {nr
i n

r
j

_

, nr
j nr

k

_

, nr
i nr

k

_

}, on the

sphere surface right above the three edges, {nr
i n

r
j , nr

j nr
k, nr

i nr
k}, of the

triangle Dr
n. Each arc point is the intersection of the sphere surface

and the line that passes through the sphere center, c ¼ ð0;0;0ÞT,

and an edge point. The arc nr
i n

r
j

_

, edge nr
i n

r
j , and center c are in the

same plane. Dr
n

_

is the geodesic dome of Dr
n and has a triangular

tent shape. The sphere surface, S, is the collection of every Dr
n

_

,

S ¼ fDr
n

_

; r ¼ 1; . . . ;Rg. Since the dome Dr
n

_

is beautiful, we want to

borrow and fit (deform) the dome to construct a model surface for
the cloud X.

The basic idea to map a sphere surface S to a seamless surface

M is to deform each curved triangle Dr
n

_

on the sphere to a curved

Dr
w

_

triangle on the model surface. Imagine that the surface of the

sphere is like an elastic balloon. We deform, stretches or squeezes,
every little pieces of the balloon so that this balloon has a new
shape as that of a 3D object. In practice, we define this
deformation mapping in a pointwise manner. This means that

every point on Dr
n

_

has a corresponding point on Dr
w

_

. Suppose there

is a point p on the curved triangle Dr
n

_

of the sphere. The procedure

of this mapping is stated as follows:
1.
 Map p from Dr
n

_

to p0 on Dr
n. In other words, point p on the

sphere is mapped to p0 on the flat triangle derived by the CSM
in the network space.
2.
 Conformally map p0 from Dr
n to q0 on Dr

w. In other words, the
point p0 on the spherical mesh, SD, is mapped to point q0 on the
model mesh, MD. _
3.
Fig. 5. Illustration of the relations between the points q0 and q. (a) Mapped point q

on bDr

w , (b) magnified plot and (c) profile.
Finally map q0 to point q on Dr
w. The point q is the

corresponding point on the CSS of point p.

Because this mapping is pointwise, a collection of vertices
Nnew of a sphere is prepared for each point p. Then, this procedure
iterates on all p 2 Nnew until each corresponding point q is
determined. The details of this mapping are presented in the
following algorithm.

CSS Algorithm. Input: Vertices of a new dense mesh Nnew, sphere
mesh SD, model mesh MD.

Output: Curved seamless surface M, M ¼ fDr
w

_

, r ¼ 1; . . . ;Rg.
1.
 For each triangle Dr
n, Dr

n 2 SD, find the center cr
n of the triangle

Dr
n and its conformal mapping point, cr

w, in Dr
w. cr

n can be
determined by this equation:

cr
n ¼

nr
i þ nr

j þ nr
k

3
, (6)

and the conformal mapped point cr
w is computed by Eqs. (4)

and (5).

2.
 Split Dr

w, Dr
w 2 MD, into three subtriangles, f½cr

w;w
r
i ;w

r
j �,

½cr
w;w

r
j ;w

r
k�, ½c

r
w, wr

i , wr
k�g, by using the three line sections,

fcr
wwr

i , cr
wwr

j , cr
wwr

kg, and the three edges, fwr
i w

r
j , wr

j wr
k, wr

i wr
kg.
3.
 Calculate the unit normal vector of the triangle plane Dr
w (Fig. 5):

bnr
w ¼

ðwr
j �wr

i Þ � ðw
r
k �wr

i Þ

jðwr
j �wr

i Þ � ðw
r
k �wr

i Þj
. (7)
4.
 Let the triangle next to Dr
w in MD that shares the edge wr

i wr
j is

Dr1

w , that shares the edge wr
j w

r
k is Dr2

w , that shares the edge
wr

i w
r
k is Dr3

w . Calculate the unit normal vectors of the three
adjacent triangles, Dr1

w , Dr2

w , Dr3

w , by using the same equation in
the above step. Let the obtained normal vectors be bnr1

w , bnr2

w ,
and bnr3

w , respectively (Fig. 5).
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5.
Fig.
(a) S
Calculate the unit normal vectors of the edges, wr
i w

r
j , wr

j wr
k,

and wr
i w

r
k:

ber1

w ¼
bnr

w þ bnr1

w

jbnr
w þ bnr1

w j
; ber2

w ¼
bnr

w þ bnr2

w

jbnr
w þ bnr2

w j
,

and ber3

w ¼
bnr

w þ bnr3

w

jbnr
w þ bnr3

w j
. (8)

Note that ber1

w ? wr
i w

r
j , ber2

w ? wr
j w

r
k, and ber3

w ? wr
i wr

k (Fig. 5).

_

6.
 Select a point p on Dr
n, p 2Nnew where Nnew is given as the input

of this algorithm. Find its projection, p0, on the flat triangle Dr
n:

p0 � pc \ Dr
n. (9)

Here c ¼ ð0;0;0ÞT is the center of the unit sphere and p0 is the
intersection point of the line pc and Dr

n, as shown in Fig. 6(a).
Let p0 ¼ ðx0; y0; z0Þ and p ¼ ðxp; yp; zpÞ. Eq. (9) is solved by the
following four simultaneous equations:

0 ¼

x0 y0 z0 1

xDi yDi zDi 1

xDj yDj zDj 1

xDk yDk zDk 1

������������

������������
,

x0 ¼ xc þ ðxp � xcÞt;

y0 ¼ yc þ ðyp � ycÞt;

z0 ¼ zc þ ðzp � zcÞt:
6. Illustration of the relations among the points p, p0 , q0 and the sphere center c.

phere surface and (b) conformal mapping.

2

with
t can be determined by

t ¼

1 1 1 1

xDi xDj xDk xp

yDi yDj yDk yp

zDi zDj zDk zp

�����������

�����������
1 1 1 0

xDi xDj xDk xp � xc

yDi yDj yDk yp � yc

zDi zDj zDk zp � zc

�����������

�����������

.

Note that c ¼ ðxc ; yc ; zcÞ
T
¼ ð0;0;0ÞT, Dr

n � ½n
r
i ;n

r
j ;n

r
k�,

ðxDi ; y
D
i ; z

D
i Þ

T
¼ nr

i , ðx
D
j ; y

D
j ; z

D
j Þ

T
¼ nr

j , and ðxDk ; y
D
k ; z

D
k Þ

T
¼ nr

k, see
Fig. 6(a).
7.
 For the point p0, calculate its conformal mapping point q0

in Dr
w,

q0 ¼M
Dr

w

Dr
n
ðp0Þ, (10)

where M
Dr

w

Dr
n

is the conformal mapping [8] from the flat
triangle Dr

n to the flat triangle Dr
w, see Fig. 6(b). q0 may fall

in any one of the three subtriangles. Suppose q0 is in the
subtriangle ½cr

w;w
r
i ;w

r
j �.
8.
 Calculate the projection point bq0 of q0 on the line section wr
i wr

j .

This means that wr
i w

r
j ? bq0q0. Calculate the intersection point

aq0 of the line bq0q0 and one of the other two edges of the
subtriangle ½cr

w;w
r
i ;w

r
j �. The locations of aq0 and bq0 are shown

in Fig. 5.

9.
 Calculate the unit direction bnq0 at the point q0:

bnq0 ¼
n
!

q0

j n
!

q0 j
; n
!

q0 ¼
jq0 � aq0 j

jbq0 � aq0 j
ðber1

w � bnr
wÞ þ bnr

w. (11)

Note that q0, aq0 , bq0 , and bnq0 are in the same plane. The two
vectors ber1

w and bnr
w in Fig. 5 which pass the points bq0 and aq0

separately are also in this plane.

10.
 In this step we plan to determine a point q 2 M, for the dome

Dr
w

_

that corresponds to p. q is obtained from the dome height
jp� p0j and the unit direction bnq0 . q can be obtained by

q ¼ q0 þ jp� p0jbnq0 . (12)

The whole construction is shown in Figs. 5 and 6.

11.
 Repeat Step 6 and select another point, p 2 Nnew, until all

points in Nnew are processed.
We operate this algorithm on all R triangles. We may map any
number of surface points for each triangle dome. This mapping is

bijection which maps from the triangular sphere surface Dr
n

_

to the

triangular geodesic model surface Dr
w

_

. The surface border of Dr
w

_

along the three boundary arc curves, fwr
i w

r
j

_

;wr
j w

r
k

_

;wr
i wr

k

_

g, is

perfectly seamless and continuous but may not be smooth. To
our knowledge, this is the only seamless arc connecting two

triangular domes.2 In all experiments, the surface point p on Dr
n

_

is

a vertex of a new denser mesh Nnew, where Nnew4N. Nnew may be
an icosahedron with more vertices. Nnew may have dense vertices
in an area with fine texture.
Note that the widely used smooth surface such as B-spline and NURBS work

quadrilateral patches rather than triangular patches.
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4. Implementation and results

The goal of the CSS construction is to accomplish a surface of a
real object than a triangular mesh. To verify it, we prepare two
sets of sampled points of a same object. One has fewer points,
denoted as Xfew, and the other has more points, denoted as Xmore.
Let CSM compute the conformal mapping using the fewer one. We
then apply the CSS to improve it and obtain the model surface M.
The performance is evaluated by the mean square error. The error
is named as mismatch error, Emis. It is

Emis ¼
1

#ðXmoreÞ

X
x2Xmore

distðx;MÞ2. (13)

The distance from point x to surface M, distðx;MÞ, is the projection
distance from x to M.

In certain case, such as the bunny model has long ex-
trusive parts, the ears, it may be difficult for the CSM to learn
those concave ear shapes. An edge swap with multi-resolution
learning [16] and a growing neural mesh [6] may be used to
overcome this difficulty. Since they change the regular mesh
connection, we will not use them in the CSM. We solve this
difficult learning by giving the priority to those extrusive parts
during the CSM learning. This priority can resolve those parts and
keep the regular connection.

There are two models used in experiments including the
Stanford bunny [14] and the Igea head [2]. The mesh size of these
models is listed in Table 1.

In the CSM learning phase, we set the number of training
epoch be epoch ¼ 80. In each epoch, 8000 random sample
patterns are used in the learning. The parameters for the
neighborhood variance are set as s0 ¼ 0:4 and t1 ¼ 20.
The parameters for the learning rate are set as a0 ¼ 0:01 and
t2 ¼ 60. The training parameters, {epoch, s0, t1, a0, t2}, are
defined in [8].

4.1. Comparison with the global conformal mesh

The method in [4] shows a way to accomplish the global
conformal parameterization (GCM) for the genus-zero surface.
The proposed CSS can be applied to the GCM meshes. The
GCM devises an iterative procedure to optimize a conformal
energy function to evolve the mesh. The GCM operates two
phases in its procedure. The first phase is to apply the barri-
centric mapping algorithm and the second phase is to apply
the conformal mapping algorithm. The procedure starts with a
given mesh with all acute angles in all of its mesh holes. With
any obtuse angle, the string constant in the energy func-
tion is negative and the constructed harmonic map is not
bijective. Therefore, all mesh holes of this given mesh must
have acute angles. The GCM cannot start with the unorga-
nized cloud patterns X. The GCM requires an explicit given mesh
to start its procedure. Another difficulty is that during the
optimization procedure, certain triangles may be deformed to a
line shape. This introduces a zero denominator in the formula of
Table 1
Model parameters

Igea model Bunny model

Vertices Faces Vertices Faces

Xfew 12,963 25,922 12,963 25,921

Xmore 134,345 268,686 35,947 69,451

CSM 12,962 25,920 12,962 25,920

Nnew 64,002 128,000 64,002 128,000
the string constant. This constant approaches infinity and the
procedure will not work. To avoid such situation, an extra effort is
taken to detect the zero denominator and to prevent it from
happening.

The stretching factors [5] in the GCM are highly non-uniform
near the extrusive parts, such as the ears of the bunny, e.g.
Figs. 8(e,f) and 11(b). When the bunny is conformally mapped to a
sphere, the ears parts are shrunk to tiny regions. The GCM
introduces a maneuver by punching small holes on the surface.
This is because the GCM parametrization is highly dependent on
the topology, the topology can be changed easily without affecting
the geometry too much by punching holes on the surface.
Generally, several faces are manually removed in advance from
the extrusive parts of the surface, for example, the ear tips and the
center of the bottom of the bunny. Since the CSM does not remove
faces from the mesh, we keep the topology of the GCM unchanged
in our experiments.
4.2. Results

Table 2 shows the CSS mismatch errors for the two meshes
obtained by the CSM and GCM methods. For Igea model, both
surfaces can reduce the errors, near 80% reduction. Fig. 7 shows
the surface M of the Igea data derived from the CSM and GCM
meshes. Both surfaces show the significant improvement. For
bunny model, the surface from the GCM has large mismatch error.
This is because the ears, see Figs. 8(e) and (f), are deformed. The
reason is that the ears are shrinking in the GCM parameterization,
an enlarged diagram shown in Fig. 8(f). The dense mesh Nnew, is
incapable of making up the ears.

One of the reason for building the CSS is to facilitate the
texture mapping. One can trace the texture details equally
on the CSS without any ambiguous correspondence. The tex-
ture mapping of a genus-zero manifold is achieved in the
following way. Suppose there are a texture image I, model
surface M, and sphere surface S. First we select a desired view
point of the model M and the north pole of the sphere S based on
that view point. Then apply stereographic projection from image I

to sphere S. Then map the image I from the sphere S to the model
surface M. We use this projection is because it is a conformal
mapping and is very regular near the point of tangency. Fig. 9(a)
shows the result of a wood texture mapped on the bunny model.
In Fig. 9(b), the checkerboard texture is mapped on the surface. A
facial makeup of Chinese operas in Fig. 9(c) is mapped to the CSS
in Fig. 9(d).

Fig. 10 shows two texture mapping cases. Figs. 10(a) and
(b) show the checkerboard texture on the CSS Igea surface in
Fig. 7(c). A facial makeup in Chinese opera in Fig. 10(c) is mapped
on the curved Igea surface, see Fig. 10(d).

Fig. 11 shows the texture mapping results derived from the
obtuse triangulation (a) and the acute triangulation (b) by the
GCM. As aforementioned, the GCM could not work correctly for
an obtuse mesh while the CSM can learn from scattered points
(Fig. 11(c)).
Table 2
Mismatch error

Igea model, Emis Bunny model, Emis

CSM 1:4169� 10�5 5:2631� 10�5

GCM 1:4860� 10�5 0:0128

Xfew 8:0370� 10�5 1:089� 10�4
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Fig. 7. The smooth surfaces obtained by the CSS using the meshes derived from the CSM and GCM methods for the Igea model. (a) The CSM mesh skeleton without the CSS.

(b) The GCM mesh skeleton without the CSS. (c) The CSS computed from the CSM mesh. (d) The CSS computed from the GCM mesh.

Fig. 8. The smooth surfaces (b,e) obtained by the CSS using the meshes derived from the CSM (a) and GCM (d) methods. (a) The CSM mesh skeleton without the CSS. (b) The

CSS surface using the mesh derived by the CSM and its spherical parameterization (c). (d) The GCM mesh without the CSS. (e) The CSS surface using the GCM mesh and its

spherical parameterization (f). The enlarged diagram in (f) shows the ears’ part of the bunny model.
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5. Discussion

The CSS algorithm accomplishes the curved surface instead of
the flat triangle surface obtained from the CSM. The CSM [10] was
designed, originally, to trace the system state which changes
continuously and to resolve various severe competitions among
finite neurons in the SOM. The SOM with finite neurons cannot be
used for monitoring the continuous state. The folded mapping in
the SOM can be indicated and resolved by the negative values of
the Jacobian of the mapping function [11]. The CSM can save and
accommodate fine textures in the plane map. The CSM with flat
triangle surface in 3D [8] may have ambiguous resolution along
the triangle edges. So, the 3D surfaces SD and MD are not very
suitable for tracing the continuous state. The surfaces S and M will
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Fig. 9. (a) The wood texture mapping on M. (b) The checkerboard texture

mapping on M. (c) The 2D facial makeup in Chinese opera. (d) The facial texture

mapping on M.

Fig. 10. Texture mapping on the Igea’s head. (a,b) The checkerboard texture

mapping. (c) The 2D facial makeup in Chinese opera. (d) The facial makeup

mapping on the Igea’s head.

Fig. 11. Checkerboard texture mapping. (a) The mapping on the GCM mesh using a

obtuse mesh as the initial input. (b) The mapping on the GCM mesh using an acute

mesh as its initial input. (c) The mapping on the CSS obtained from the CSM mesh.
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do. Note that the CSM [10] in 2D flat plane does not have such
ambiguous problem.

In the CSS, instead of a surface in the form of flat triangles, a
curved seamless parameterization for unorganized data patterns
is accomplished for the model surface. This CSS serves as a kind of
interpolation for the CSM mesh. Since the sphere surface
possesses so many well behaved properties, we expect that the
CSS algorithm can carry the full extent of these beautiful
properties to the model surface, such as differentiation and
integration. Texture mapping is a direct application of the CSS.
The CSS can be additively applied to many triangular meshes
obtained by existing methods. Other potential applications are the
brain-to-brain registration, consistent parameterization [1], facial
expression synthesis, deformable object simulation and comput-
ing geodesic path on a model surface. The parameterization for
higher genus is also under our study.



ARTICLE IN PRESS

Fig. 12. Diagram of one-to-one property. (a) Local coordinate of q0 , (b) profile along

u-axis and (c) profile along v-axis.
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As for mapping distortion, the CSS mapping from a sphere is

quasi-distortion-free. This is because that the mapping from Dr
n

_

to

Dr
w

_

is bijective (Appendix) and the CSM mapping from Dr
n to Dr

w is

conformal. All triangles Dr
w are nearly equilateral triangles [8]. The

stereographic mapping from the texture image to a sphere has a
radial distortion but this distortion is very small near the point of
tangency.

In comparison to other smooth surface representations such as
the B-spline and NURBS [13], the CSS is superior to them. This is
because the CSS possesses a unique conformal mapping to a
sphere while the uv coordinate of the NURBS is not conformal to a
sphere. One interesting question is that whether the NURBS could
be applied to a learned CSM mesh. The answer is no because the
CSM is formed by triangular patches but the NURBS is para-
meterized on quadrilateral patches [15].

Finally, we assert, without proof, that the mapping of each Dr
n

_

to its corresponding dome, Dr
w

_

, is bijection, Lemma 1. f p : p! p0 is

bijective; Lemma 2. M
Dr

w

Dr
n
: p0 ! q0 is bijective; Lemma 3. f q : q0 !

q is bijective. Appendix provides intuitive sketches for the proof.

This mapping is from the triangular sphere surface Dr
n

_

to the

triangular geodesic model surface Dr
w

_

. We also assert, without

proof, that the mapping of each subtriangular dome, Dri

n

_

, to its

corresponding dome, Dri

w

_

, is smooth.
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Appendix A. Bijective mapping

Instead of a rigorous proof, we provide some intuitive
observations. The CSS is composed of three consecutive mappings,

f p : p! p0; M
Dr

w

Dr
n
: p0 ! q0; f q : q0 ! q.

To show the mapping, q ¼ f q �M
Dr

w

Dr
n
� f pðpÞ, is bijective, we show

all f p, M
Dr

w

Dr
n

and f q are bijective separately.

Lemma 1. f p : p! p0 is bijective.

Proof. According to the definition, p is on a spherical triangle and
p0 is on the corresponding flat triangle Dr

n (Fig. 6):

f p : p0 � pc \ Dr
n.

Since the line pc does not parallel to Dr
n, there exists only one

intersection point. Therefore, f p is one-to-one (injective). Since all
flat triangles Dr

n inscribe the unit sphere, for any point p on the
sphere, the line pc will intersect one Dr

n on a single projected point
p0. Therefore f p is onto (surjective). Because f p is both injective
and surjective, it is bijective. &

Lemma 2. MDr
w

Dr
n
: p0 ! q0 is bijective.

Proof. According to the definition, M
Dr

w

Dr
n

is a conformal mapping
from the triangle Dr

n to its corresponding one Dr
w via an

intermediate complex unit disk D. This mapping is computed by
Schwarz–Christoffel transformation. The Schwarz–Christoffel
transformation is one-to-one and onto. Therefore M

Dr
w

Dr
n

is
bijective. &

Lemma 3. f q : q0 ! q is bijective.
Proof. By definition

f q : q ¼ q0 þ jp� p0jbnq0 .

To prove f q is onto (surjective), we need to derive f q � f�1
q ðqÞ ¼ q.

Since f�1
q : q0 ¼ q� jp� p0jbnq0 , we obtain

f q � f�1
q ðqÞ ¼ f qðq� jp� p0jbnq0 Þ

¼ ðq� jp� p0jbnq0 Þ þ jp� p0jbnq0

¼ q.

Therefore f q is onto (surjective). To prove f q is one-to-one
(injective), we need to prove

if : f qðq
0
1Þ ¼ f qðq

0
2Þ; then : q01 ¼ q02.

Write

f qðq
0
1Þ � f qðq

0
2Þ ¼ ðq

0
1 þ jp1 � p01jbnq0

1
Þ � ðq02 þ jp2 � p02jbnq0

2
Þ

¼ 0.

Assume q01aq02 and q02 ¼ q01 þ uq þ vq. Where uq and vq are
the local coordinates along the wr

i wr
j and bq0aq0 directions. From

Fig. 12(b), one see that if uqa0, then f qðq
0
1Þ � f qðq

0
2Þa0. This is

because q1q01 and q2q02 are both perpendicular to wr
i w

r
j . Therefore,

uq must equal to zero. From Fig. 12(c), if vqa0, then
f qðq

0
1Þ � f qðq

0
2Þa0. This is because q is a linear interpolation of

jq0 � aq0 j=jbq0 � aq0 j, see its definition in Eq. (11). Therefore, vq must
equal to zero. Based on the above observations, we have q02 ¼ q01
(or uq ¼ vq ¼ 0). This shows that f q is a one-to-one (injective)
function. Since f q is both surjective and injective, f q is a bijective
function. &
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