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practical applications.

Reducing the level of the targets corresponding to training samples for a machine classifier using the
outputs of an auxiliary classifier is interesting because it allows to save expressive power unnecessarily
dedicated to increase the output level of well-classified samples. In this paper we propose an iterative
form of this selective reduction of target levels with a simple linear reduction schedule. Extensive
simulations show that the proposed method has not only a performance better than or equal to
conventional training or using static versions of the reduction, but also with respect to support vector
machines (SVM). This potential advantage is accompanied by a smaller size and a design effort not
much higher than the corresponding SVM, thus making the proposed method very attractive for

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Conventional search procedures for training neural classifiers
equally use all the examples to minimize a sample estimate of the
selected cost function; however, the real problem is to define
appropriate classification borders [38], which is not exactly
equivalent to any of these procedures, but that is the key to
obtain good generalization [39]. Thus, the possibility of having
some examples more relevant for a good training (for a good
definition of borders) must be accepted, and these examples have
to receive a higher weight in the cost function estimate to be
minimized. The subsequent problems are to determine what are
these samples and how to emphasize them, a process which is
named sample selection or, better, sample editing. Consequently,
to design effective sample editing methods is a key subject in
order to construct high performance neural classifiers.

There are many methods of sample editing, but just two main
families. The first comes from the pioneer proposal of Hart [16],
who considered that erroneous samples are important (although
assuming that they are near the border). In this way, his
condensed nearest neighbor algorithm eliminates correctly
classified samples in k-nearest neighbor (k-NN) classifiers. This
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idea has been followed by many other researchers: In [5], several
selection and repetition schemes based on error measures are
proposed and evaluated; the decision-based neural networks
(DBNN) of Kung and Taur [19] only consider erroneous samples
along training; in [40], the highest erroneous samples are
included after a preliminary training to improve its results;
Munro proposes to repeat training for erroneous samples until
convergence [26]; and [37] constitutes an additional example of
this class of approaches. Even the basic formulation of boosting
schemes seems to be based on the margin error of all the samples
[11,12,35].

On the other hand, [36] postulates that the proximity to the
border (or to a reasonable approximation of it) is the essential
aspect to select relevant samples, proposing a method to build a
piecewise linear border by identifying the closest opposite pairs of
each class sample clusters in the examples set and training local
linear discriminants with them; Lyhyaoui et al. [21] presents more
identification schemes of this type, but the result is used to define
the centers of radial basis transformations whose output weights
are conventionally trained, offering structures and performances
similar to those of support vector machines (SVM). The authors of
[39] adopt also this point of view, as well as in [6,7,29].

The maximum margin cost which SVMs use is a sort of
predefined combination of both manners of weighting the
samples [9,25], as the boosting emphasis really is, as demon-
strated in [13]. There are even discussions on the relative
importance of both kind of samples, such as [10] ([30] is also
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interesting); unfortunately, there are no clear conclusions about
what problem characteristics indicate the importance of each
class. Papers [13,14] present a form for boosting in which the
consideration of both classes of possibly relevant samples is
decided by a design selectable parameter. More sample editing
methods are referenced in [32].

Our proposal, which we call selective reduction of target levels
(SRTL), consists on applying a procedure which can be considered
as a sample editing method: reducing the absolute value of the
target for each sample according to some “indication” of its
proximity to the border. By reducing the target value we mean
that no training is done when the classifier output is further than
this value; so, on the one hand, in the case of clearly well-
classified samples we do not try to force the classifier parameters
to give an unnecessary high output, allowing them more freedom
to take care of the samples that are lying near the border. On the
other hand, in the case of clearly wrong classified samples, that
could hardly be recovered—and probably this will not be
adequate—the corresponding absolute error value is reduced,
with the same effect as above. Thus, we propose to pay attention
mainly to samples that are not far from the decision borders, but
without completely excluding the influence of the other samples
when the decisions about them are not clear enough. This kind of
editing seems to be a good election: on the one hand, it permits an
easy implementation; on the other hand, it allows a fine
determination of the classification borders, and, simultaneously,
to use other information (that corresponding to clearly correctly
or wrongly classified samples) in a smoother form.

With respect to the “indication” of the proximity of each
sample to the border, its purpose is to have an approximate idea of
how far is the sample from the border, because a calculation of the
corresponding distance would be computationally demanding;
even more, since the theoretical border for the problem is not
known and we have only approximate versions of it, it would be
an approximation itself. A simple possibility is to use just a
classifier output, because making it equal to zero gives us an
approximate border if the class targets are symmetrical. Even
more, it is well known that for square error criteria [18,31,33] and
other more general cost functions [1,8,22,28], the classifier output
is an estimate of the “a posteriori” probabilities—of its difference
in binary cases if we use targets {—1, +1}—better and better when
the training sample is more and more representative and the
expressive power of the classification machine increases. Ob-
viously, such estimates are very reasonable indicators to reduce
the target values.

The rest of the paper is organized as follows. In the next
section, we introduce concrete formulations of our target
reduction approach for binary problems and two kinds of SRTL
strategies: static, or based on the output of an external guide for
each sample, and iterative, or based on values that are initialized
using statistics of all the sample outputs of an external guide and
modified epoch by epoch according to an appropriate algorithm.
We must remark that the algorithms we propose are computa-
tionally efficient and clearly increase the performance measures,
but their basic ideas can be applied by means of many other
formulations; as expected, the results are similar, and an
improved performance is obtained if the particular heuristic
scheme is reasonable from an intuitive point of view. In Section 3
we present and evaluate experimental results for several bench-
mark problems. Finally, we expose our conclusions in Section 4.

2. Proposed target reduction algorithms

Let us consider the case of a binary classification problem with
classes Cy and C; and assume we are given a set of N labelled data

(training set) (x®,tx™)N,, with x® e R? being the i-th input
pattern and t(x?) its associated hard target: t(x®) = —1 if xX® € Cg
and t(x?) = 1 otherwise, with the same target for all patterns in
the same class.

In general, the higher the magnitude provided by the classifier
output, the further the sample is expected to be from the
boundary. However, it is not usual that all samples are far from
the boundary. Therefore, to find a better definition of the decision
boundary, it seems reasonable to demand a different target to
each sample, in proportion with its distance to the boundary.

The target reduction algorithms we propose reduce the
hard targets of the training samples according to an “indication”
of the statistical proximity of every sample to the boundary.
These algorithms start from an auxiliary classifier whose
output provides an estimate of the proximity of each training
sample to the boundary, and use this estimate to reduce the
desired target in that sample. This way, statistical uncertainty in
each training sample drives the learning process, which can be
focused on the examples that are harder to learn at each training
epoch.

In the following subsections, we propose two different target
reduction strategies, according to the method used to determine
the reduced targets: static, when the reduced targets are constant
during training, and iterative, when they are continuously reduced
as training proceeds.

2.1. Static strategy

For any training sample X, its reduced target t;(x) has the form:

sgn[ts(X)] = sgn[t(X)] (1a)
[ts(X)] = log(X)| (1b)

where sgn is the sign function, and og(x) is the output of
an auxiliary classifier, or guide, with 0g4(X): R [-1,1].
Once the reduced target values are calculated for the training
samples, the final classifier is trained with the hard targets, but
considering a zero cost when the output is better than the soft
target, i.e.,

C(t(x), 0x))  if Jo(X)|<|ts(x)|and sgn[o(X)] = sgn[t(X)]

Cs(t(x), 0(x)) = { 0 in other case

(2)

where o(x) is the output of the classifier which is being trained. In
our experiments, we use square error costs. Table 1 illustrates the
algorithm steps for the static strategy.

Egs. (1a) and (1b) represent an immediate extension of a
previous approach [24], in which the guide was a k-NN classifier

Table 1
Algorithm steps for the static target reduction strategy.

Step 1: Obtain the outputs of the auxiliary classifier for the N samples of
the training set

Step 2: Initialize the weights of the neural classifier

Step 3: Use the hard targets {t(x®)}Y, and the outputs obtained in Step 1
to get the reduced targets {t;(x?)}¥, according to (1a) and (1b)

Step 4: Use the current weights to obtain the outputs of the neural
classifier for the N samples of the training set, {o(x“'))}fi]

Step 5: Consider the outputs in Steps 3-4 to create the edited training set,
composed of:
- the wrongly classified samples, i.e., samples such that
sgn[o(X)] #sgn[t(x)]
- and the correctly classified samples satisfying |o(X)| < |ts(X)|

Step 6: Use the edited training set in Step 5 to update the weights of the
neural classifier

Step 7: Repeat Steps 4-6 until the desired accuracy is obtained
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(k odd) and
k1 — kol
[0g(X)| = m (3)

where {k;},i=0,1 are the number of training samples corre-
sponding to class C;,i = 0,1, respectively, among the k = k; + kg
nearest to X. Obviously, this particular form does not need any
auxiliary training, but it pays the well-known drawbacks of high
memory and search requirements in operation; additionally, and
besides needing to select k by cross-validation (CV), the discrete
character of (3) can be a limitation to the effectiveness of the
method; so, we consider here the option of using a neural network
as the guide.

2.2. Iterative strategy

It is obvious that, when using the static strategy, high values of
|og(x)| mean high absolute values of the corresponding target in
the (final) classifier being trained. This means that a part of the
expressive power of the classifier is spent in trying to reach these
targets, although it would be enough to get lower values with the
appropriate sign for a correct classification. Thus, it could be
adequate to have a maximum value for the target magnitude,
Tmax- However, there is a difficulty: at the beginning of the
training process, high (absolute) target values are important for a
fast convergence and, even more, to drive the machine weights in
a direction leading to a correct definition of the border. Therefore,
low values of Tpax can be risky, while high values are not efficient
in the sense we have described. So, it is reasonable to consider the
possibility of reducing the magnitude of the targets as training
proceeds on the final classifier, starting at Tmax(1) = Tmax. We
propose how to select Trax in the next paragraph.

On the other side, when |o4(X)| is near to zero, there is a clear
risk of allowing an erroneous classification of the sample, because
the importance of the corresponding error in the overall cost is
reduced. Thus, a minimum absolute value for the targets, Ty, iS
established. We have verified that it is adequate to establish T,
and initial Tmax with the help of an auxiliary classifier, by means of

e Sorting in ascending order the absolute output values
corresponding to wrongly classified training samples, and
assigning to T, the value of its 10th percentile.

e Sorting in descending order the absolute output values
corresponding to correctly classified training samples, assign-
ing to Trax the value of its 10th percentile, and setting Tax(1)
to Tmax.

We have also checked that the final classification results are not
very sensitive to the selected percentiles.

Izl

N

Tmax( 1 ) " n= 1 Tmax( 1 )

min min

The algorithm consists on reducing linearly the maximum
value of the magnitude of the reduced targets, Trax(n) in the n-th
training epoch, along a (preselected) maximum number of
training epochs, nNmax, from initial Tpax(1) = Tmax to final
Tmax(NMmax) = Tmin, and interpolating the reduced target absolute
value when the absolute value of the guide output is between
Tmax(1) and Ty, according to a linear scheduling

Tmax(n) - Tmin
Tmax(l) - Tmin

where og(x) are the (given and fixed) outputs of the auxiliary
classifier.

The sign of the reduced target is that of the original target, and
we remark that

[ts(X,n)| = (log(X)| — Trin) + Tmin (4)

-if 10g(X)| > Tmax(1),  [ts(X, n)| = Trmax(n) (5a)
-if |Og(x)| <Tmin= |tS(X, Tl)\ = Tmin (Sb)

The proposed scheduling to get the reduced targets is graphically
illustrated in Fig. 1. Training of the final classifier is carried out in
the same manner that in the static scheme, i.e., using the cost
given by (2). The steps for the iterative target softening strategy
are illustrated in Table 2.

We have also checked that the final classification performance
is not sensitive to the scheduling given by (4); in fact, exponential
scheduling gives very similar results.

Table 2
Algorithm steps for the iterative target reduction strategy.

Step 1: Obtain the outputs of the auxiliary classifier for the N samples of the
training set
Use the outputs in Step 1 to compute parameters T, and Trmax according
to the procedure explained in Section 2.2
Initialize the following parameters:
- the training epoch number, parameter n: n < 1
- the maximum number of training epochs, parameter nmax
- the weights of the neural classifier
Compute parameter Tmax(n), corresponding to the maximum magnitude
of the reduced targets in the n-th training epoch
For the first training epoch, use Tmax(1) < Tmax
Use the results of Step 1, Step 2, and Step 4 to compute the reduced
targets in the n-th training epoch, {t;(x®)}Y ,, according to (4), (5a), and
(5b)
Use the current weights to obtain the outputs of the neural classifier for
the N samples of the training set, {o(x(“)},”: 1
Consider the outputs in Steps 5-6 to create the edited training set,
composed of:
- the wrongly classified samples, i.e., samples such that
sgnfo(X)] #sgn[t(X)],
- and the correctly classified samples satisfying |o(X)| < |ts(X)|
Use the edited training set in Step 7 to update the weights of the neural
classifier
Step 9: Increase the training epoch number, n <~ n+ 1
Step 10: Repeat Steps 4-9 while n<nmax and the desired accuracy is not obtained

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

0 Toin Thax(D) 1 ol 0 Toin

C
It
Tmax(l)
; N=Ninter
T. .
mn N=Nmax
Tmux(l) 1 |0g| 0 Tmin Tmax(]) 1 |0g|

Fig. 1. Graphical representation of the schedule to determine the magnitude of the reduced target in the iterative SRTL strategy. (a) First training epoch (n = 1). (b) The
curve used in an intermediate epoch (n = ny,,) in solid line, and the previous ones in dotted lines. (c) Situation in the last epoch (n = nmax).
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3. Experiments

In this section, we will evaluate classification accuracy,
machine sizes, training effort, and operation computational load
of the proposed schemes by comparing them with those of other
machines when applied to a series of well-known benchmark
problems. Before presenting the corresponding results, we
provide the experiments details.

3.1. Experiment description

3.1.1. Designs under analysis
We will compare the proposed schemes:

e static guided by k-NN;
e static guided by neural network (NN);
e ijterative.

among them and also versus the following machines: k-NN and
conventionally trained NN (in order to get an idea of the
improvements offered by using the target level reduction), DBNN
(to have a similar training method as a reference), and SVM (to
include a high performance machine which uses an implicit
sample editing strategy).

We will adopt the radial basis function neural network
(RBFNN) architecture with Gaussian elements for the conven-
tional NN, DBNN, and proposed designs because the are well-
known universal approximators [27] and they show good general
characteristics. We use also Gaussian kernels for SVM. With
respect to DBNN, we apply the hidden node DBNN structure [19]
with both subnetworks being a linear combination of Gaussian
RBF. And, finally, the Euclidean distance is used for the k-NN
designs.

3.1.2. Datasets

We consider 11 binary classification problems. Nine of them
are from the UCI Machine Learning Repository [3]: Abalone (aba in
the paper), a multiclass problem converted into a binary problem
according to [34], Wisconsin Breast Cancer (bre), SPECTF Heart
images (hea), Image Segmentation (ima), lonosphere (ion), Pima
Indians Diabetes (pim), Sonar (son), Spambase (spa), and Wave-
form Data Generator (wav). The two other problems are synthetic:
Ripley (rpl), presented in [32] and Twonorm (2no), introduced
in [4].

All the datasets are preprocessed by normalizing each attribute
to zero (sampled) mean and unit (sampled) standard deviation.

We use the predefined training and test sets when available.
This is not the case for bre, pim, spa, and 2no; for these datasets,
we use 50 random partitions employing 60% of the data for the
training stage and the remaining 40% for testing the classifiers
performance. To select the design parameters, we will consider CV
with 50 partitions of the training data, 80/20 for datasets with a
predefined test partition and 66/33 for the remaining four cases.

Finally, for the RBF based schemes, performances are estimated
by averaging 50 runs with different initializations.

3.1.3. Training

For both conventionally trained and guided NN, the Gaussian
centers are initialized by means of an Euclidean distance k-means
algorithm [20,23], and the output weights with random values
coming from a zero mean Gaussian distribution with variance
equal to 0.01.

The values of the variances of the Gaussian RBF are obtained
from the corresponding k-means sample variances multiplied by a
scale factor g which we select by CV, as we describe later.

When applicable, we train centers and weights of RBF by a
square error based gradient algorithm with learning rates also
selected by CV; as above said, variances are just selected, but not
trained because centers move slightly. The number of training
epochs is limited to 500, which is enough to converge according to
the results of preliminary experiments; and we apply the early
stopping method [2,15] to obtain the final design.

With respect to DBNN, each class is represented by a different
subnet of Gaussian nodes. The procedure to initialize parameters
of each subnet (centers, variances, and output weights) is the
same than that used for conventional RBFNN, but considering
samples from each class separately. We train centers and output
weights of each subnet when classification is wrong, limiting the
number of training epochs to 500 and applying the early stopping
method to obtain the final design.

3.14. Selection of design parameters

For all the RBF based designs, including DBNN, we select by CV
(checking that the best results are inside the corresponding
intervals):

e The number of hidden neurons, H, as percentages
{0.2,0.5,1,1.5,2,2.5,5,10,20,30,40,50, 60, 70, 80} of the num-
ber of samples for each dataset (in a progressive manner).

o The scaling factor of the elements variance, g, among
{0.5,1,1.5,2,2.5,3}.

We also use CV to select the training steps of the gradient
algorithms among (1,5,10,50} x 107>,

Parameter k of the k-NN classifiers is selected by CV among
initial value k=1 and final value 10% of the corresponding
number of training samples, with unity steps.

With respect to SVM schemes, we apply a five-fold CV and
explore first the following combinations:

e Regularization parameter C: 11
[1072,10%4.

e Gaussian width ¢: 11 equispaced values in [27°v/d,2°Vd],
where d is the input data dimension.

equispaced values in

Choosing the pair of parameters (C, ¢) with the maximum average
accuracy and refining the exploration considering 11 values
around every preselected value. The final best values of these
parameters are used to construct the SVM with the whole training
set.

The guide for each reduced target level scheme is the NN
having the same value of H or the optimal k-NN (except for ion, in
which we use 2-NN as the guide and not optimal 1-NN, in order to
avoid identical conventional and static guided schemes), that are
reasonable selections.

3.2. Simulation results

3.2.1. Classification accuracy

Table 3 presents the results of the experiments in terms of
percentage of correct classifications for the test set, averaged over
50 runs for k-NN, the RBF schemes (DBNN, conventional, static,
and iterative SRTL) and SVM (in the four problems with no pre-
defined test partition). Standard deviation of the test classifica-
tion rate is shown in brackets. Boldface numbers indicate the
(qualitative) best result and those that are comparable.

These results show that:

(a) DBNN offers not more than episodic advantages (for hea, ion,
and son) with respect to conventionally trained RBFNN. The
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Table 3

Values of (averaged) test classification rates (standard deviation) for the 11 problems.

DBNN k-NN SVM Conventional k-NN guided RBFNN guided Iterative SRTL
RBFNN static SRTL static SRTL
aba 78.0 79.0 79.9 80.0 79.7 80.1 80.7
(1.0) (0.4) (0.3) (0.3) (0.4) (0.2)
bre 95.9 95.1 96.6 96.5 96.7 96.7 96.7
(1.1) (1.0) (0.8) (0.6) (0.7) (0.7) (0.6)
hea 81.3 57.5 83.3 76.8 75.2 754 83.8
(4.2) (1.7) (2.7) (3.4) (4.1) (1.4)
ima 96.2 96.4 97.4 97.1 96.9 96.9 97.4
(0.6) (0.4) (0.5) (0.5) (0.5) (0.3)
ion 94.8 93.0 96.8 90.0 92.3 88.8 96.9
(2.7) (0.9) (2.6) (6.6) (7.1) (1.2)
pim 76.1 74.4 77.3 77.5 774 771 78.6
(2.6) (1.7) (1.8) (1.9) (2.0) (2.0) (1.5)
rpl 88.4 90.8 88.0 90.6 90.6 90.8 90.7
(1.8) (0.2) (0.4) (0.8) (0.6) (0.3)
son 83.3 91.0 88.5 79.9 81.9 86.0 89.9
(4.3) (3.6) (2.3) (3.5) (3.2) (1.6)
spa 92,5 87.0 92.8 93.0 92.8 92.9 93.0
(0.8) (0.7) (0.5) (0.6) (0.7) (0.7) (0.4)
2no 97.6 97.8 97.8 97.7 97.7 97.8 97.8
(0.3) (0.2) (0.3) (0.2) (0.2) (0.2) (0.2)
wav 91.6 90.4 91.8 91.9 91.7 92.0 92.0
(0.6) (0.4) (0.3) (0.3) (0.2) (0.3)
Table 4
Sizes of the machines corresponding to the results in Table 3.
DBNN k-NN SVM Conventional k-NN guided RBFNN guided Iterative SRTL
RBFNN static SRTL static SRTL
aba 40 31 1189 100 40 40 40
bre 14 15 53 84 112 84 56
hea 32 3 40 20 32 12 32
ima 1036 3 1064 1036 1036 1036 888
ion 46 3 133 8 46 46 46
pim 8 21 252 92 8 92 8
rpl 10 17 221 100 40 100 10
son 40 1 76 58 40 40 48
spa 736 7 1092 1288 1104 1288 552
2no 14 233 2337 592 30 30 30
wav 960 m 994 960 960 960 960

Size is k for k-NN and number of nodes (RBF, kernels) for the other schemes.

same is true for static SRTL designs, that provide advantage for
ion (k-NN guided form) and son, these advantages even being
less relevant; but, on the other hand, a reduction of quality
with respect to the conventional RBFNN is not as frequent as
for DBNN.

(b) On the contrary, the performance improvement of the
iterative SRTL machines is very clear for aba, hea, ion, pim,
and son; and they are never worse than the other analyzed
machines but for son (a problem in which k-NN provides the
best result). We also remark that the performance of the
iterative SRTL schemes with respect to all the rest is clearly
better for problems aba, hea, and pim, and it is also better than
the SVM performance for rpl and son.

So, we can conclude that using the iterative SRTL approach may
lead to performance advantages even with respect to SVM.

3.2.2. Machines sizes

Table 4 presents the complexity (k for k-NN, number of nodes
for the rest) of the machines corresponding to the results we have
presented in Table 3. They can be considered as “implementation
costs”.

These numbers indicate that the iterative SRTL approach leads
to designs with a lower (or equal) complexity than those of
conventional RBFNN and static SRTL schemes, the only exceptions
being problems hea and son (with respect to static SRTL schemes),
two of the cases for which the iterative approach offers a clearly
better performance. DBNN have also low sizes, but, as previously
seen, their performance is poor.

As expected, the number of units of the RBF based designs are,
in general, much lower than the number of kernels of SVM. With
respect to k-NN sizes, we must remark that they do not indicate
the full complexity of operation effort, because an additional
search is needed.
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3.2.3. Computational loads

In Table 5, we list the training and operation computational
loads corresponding to the machines of Tables 3 and 4. These
loads are measured in seconds that a workstation with a 1 GHz
UltraSPARC 11l processor, 4 GB of RAM and two hard disks of 36 GB
each, programming the algorithms in Matlab 6.5.0 and using the
ISIS-SVM  implementation (http://www.ece.umn.edu/groups/
ece8591/software/svm.html) requires for designing or operating
each machine. SRTL values include those of the corresponding
guide schemes.

With respect to operation (classification) times, it can be seen,
as expected, a direct proportion between computation time and
machine sizes, except for k-NN methods, that present an
increment which is very important, even considering that we

Table 5

3025

have not used any efficient search algorithm to implement them.
So, again, the iterative SRTL methods offer a general advantage,
while the advantage of DBNN is compensated by their inferior
performance.

Considering training times, we can conclude that, excluding
k-NN, DBNN, and static SRTL machines guided by k-NN require
the lower effort, followed by the iterative SRTL schemes, the
static SRTL structures built by RBFNN, and SVM. This is reason-
able, because DBNN only learn from wrongly classified
samples and a k-NN is a fast guide, while SRTL algorithms
do not learn in many steps, that increase along training; see
Fig. 2.

SVM require, in general, more training effort than RBF based
schemes, except for hea, ion, pim, and son, problems for which

CPU times (in seconds) to train (first row) the different machines and to classify (second row) using them, for the 11 benchmark problems.

DBNN k-NN SVM Conventional k-NN guided RBFNN guided Iterative SRTL
RBFNN static SRTL static SRTL
aba 603 0 42019.74 515.6 2223 960 740
0.85 4.92 298.63 1.15 0.85 0.85 0.85
bre 40 0 256.06 108.9 71.6 191.5 1329
0.004 0.166 3.018 0.012 0.015 0.012 0.01
hea 27.7 0 1.24 32.7 11.4 35.1 36.1
0.002 0.03 0.66 0.002 0.002 0.001 0.002
ima 975.9 0 1203.83 1310 1081.3 2334.7 1671.2
0.49 3.54 37.66 0.49 0.49 0.49 0.48
ion 33.2 0 7.95 313 87 54.5 51.3
0.005 0.105 2.82 0.003 0.005 0.005 0.005
pim 94.3 0 76.71 99.6 279 142.3 134.6
0.002 0.188 10.18 0.014 0.002 0.014 0.002
rpl 19.2 0 98.19 449 21.6 66.6 51.6
0.002 0.101 1.81 0.004 0.003 0.004 0.002
son 20.3 0 2.29 28.6 12.8 74.7 55.4
0.003 0.05 0.88 0.004 0.003 0.003 0.003
spa 3073.1 0 16671.8 5698 3708.5 9684.6 7168
0.77 22.73 205.25 0.79 0.78 0.79 0.76
2no 350.4 0 13270.38 923.5 283.6 2351.4 1117.7
0.30 21.2 300.16 1.27 0.32 0.32 0.32
wav 1062.1 0 11946.16 4020.8 1435.2 6712.9 4990.2
2.37 28.8 399.94 2.37 2.37 2.37 2.37
a b
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Fig. 2. Evolution of the percentage of selected training samples along training epochs in the iterative SRTL algorithms for (a) aba and (b) son. Solid lines show the total
percentage of selected samples, sum of wrongly classified samples (dotted) and those of magnitude lower than the reduced target (dashed).
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their size is relatively low and gradient algorithms seem to have a
slow convergence. But we must remark the following facts:

(a) The ISIS-SVM package does not apply any procedure to reduce
the design computational burden; we have checked that the
training load can be significantly reduced by using the SVM"#"
software [17], an implementation of SVM in C language that
includes more efficient optimization algorithms (however, a
part of this advantage can be attributed to the use of C
language); in any case, the corresponding training times
remain higher, in general, than those of the iterative SRTL
approach.

A really fair comparison of design procedures will require to
include the CV to determine the design parameters: k for
k-NN; H, q, and learning rates for RBF based approaches; ¢ and
C for SVM. For a rough estimation, this requires to multiply
the above training times for the number of explored
ensembles of parameters values: 15 (number of H values)
x6 (number of q values) x4 (number of learning rates for the
RBF centers) x4 (number of learning rates for the RBF
weights) = 1440 for the iterative SRTL, 11 (number of C
values) x11 (number of ¢ values) x2 (first and second
explorations) = 242 for SVM. So, given the data in Table 5, it
can be said that effective design efforts are roughly compar-
able. Thus, we can conclude that, given the potential
advantages of the iterative SRTL methods in performance
and size with respect to SVM, the effort which we need to
design them is completely acceptable.

(b

=

4. Conclusions

Selectively reduction of target levels consists on reducing the
level of the target to be reached by the output of a classifier
according to the proximity to the border of the corresponding
sample estimated by the output of an auxiliary classifier. It is an
interesting idea because it limits the application of the expressive
power of the corresponding machine which is applied to lead
outputs to unnecessarily high values.

In this paper, we have proposed an iterative version for
carrying out this SRTL by means of a simple linear reduction
schedule. Using RBFNN as implementation architectures, we have
checked that the corresponding designs outperform (and never
are worse) in several of 11 benchmark problems not only
conventionally trained RBFNN, but also static versions of the
same principle, and even SVM. Additionally, these iterative
designs have smaller sizes and (subsequently) lower operation
computational effort. Although selecting design parameters
requires cross-validation and this increases the design computa-
tional effort, the whole design process is not much more intensive
from the computational load point of view than that of an SVM;
thus, the resulting iterative SRTL methods are attractive from a
practical point of view.

At the present time, we are extending our experiments to other
machines and also to the construction of machine ensembles.
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