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General bound of overfitting for MLP

regression models.

Rynkiewicz, J.

Abstract

Multilayer perceptrons (MLP) with one hidden layer have been
used for a long time to deal with non-linear regression. However, in
some task, MLP’s are too powerful models and a small mean square
error (MSE) may be more due to overfitting than to actual modelling.
If the noise of the regression model is Gaussian, the overfitting of
the model is totally determined by the behavior of the likelihood ra-
tio test statistic (LRTS), however in numerous cases the assumption
of normality of the noise is arbitrary if not false. In this paper, we
present an universal bound for the overfitting of such model under
weak assumptions, this bound is valid without Gaussian or identifia-
bility assumptions. The main application of this bound is to give a
hint about determining the true architecture of the MLP model when
the number of data goes to infinite. As an illustration, we use this
theoretical result to propose and compare effective criteria to find the
true architecture of an MLP.

1 Introduction

Feed-forward neural networks are well known and popular tools to deal with
non-linear regression models. We can describe MLP models as a parametric
family of regression functions. White [8] reviews statistical properties of
MLP estimation in detail. However he leaves an important question pending
i.e. the asymptotic behavior of the estimator when the MLP in use has
redundant hidden units. If we assume that the noise is Gaussian it is well
known that the Least square Estimator (LSE) and the maximum likelihood
estimator (MLE) are equivalent and Amari et al. [1] give several examples of
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the behavior of MLE in case of redundant hidden units. Moreover, if n is the
number of observations, Fukumizu [2] shows that, for unbounded parameters
and Gaussian noise, LRTS can have an order lower bounded by O(log(n))
instead of the classical convergence property to a χ2 law. In the same spirit,
Hagiwara and Fukumizu [3] investigate relation between LRTS divergence
and weight size in a simple neural networks regression problem. Hence, if
parameters of MLP models are not bounded, these papers show that, for
Gaussian noise, the overfitting is strong, even if the number of data is large.
Note that this is no more the case if the parameters of the MLP are supposed
to be a priori bounded.

But, even if Gaussian assumption for the noise is standard, it may be not
suitable for some models. This assumption is false, for example, when the
range of observations is known to be bounded, since Gaussian variables can
be arbitrary large in absolute value, even if the probability of such events is
small. Hence, we need a theory which gives evaluation of the overfitting of
MLP regression without knowing the density of the noise and which works
even if the model is not identifiable.

In this paper, we prove an inequality bounding the MSE difference be-
tween the true model and an over-determined model. This inequality shows
that, under suitable assumptions, the asymptotic overfitting of the MSE is
upper bounded by the maximum of the square of a Gaussian process. More-
over, this bound shows that suitably penalized MSE criteria allow to select
asymptotically the true model. The paper is organized as follows: In section
2 we state the model, section 3 presents our main inequality and in section 4
we apply this inequality to select the optimal architecture of the MLP model.
Finally, in section 5, a little experiment gives us some insight to apply this
theoretical results in real life problems.

2 The model

Let x = (x(1), · · · , x(d))T ∈ Rd be the vector of inputs and
wi := (wi1, · · · , wid)

T ∈ Rd be a parameter vector for the hidden unit i. The
MLP function with k hidden units can be written :

fθ(x) = β +

k
∑

i=1

aiφ
(

wT
i x+ bi

)

,
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with θ = (β, a1, · · · , ak, b1, · · · , bk, w11, · · · , w1d, · · · , wk1, · · · , wkd) the pa-
rameter vector of the model and φ a bounded transfer function, usually a
sigmöıdal function. Note that we consider only real functions, extension to
vectorial functions is straightforward but not discussed in this paper. Let
Θk ⊂ Rk×(d+2)+1 be a compact (i.e. closed and bounded) set of possible
parameters, we consider regression model S = {fθ(y, x), θ ∈ Θk} with

Y = fθ(X) + ε (1)

X is a random input variable and ε is the noise of the model. Let n be a
strictly positive integer, we assume that the observed data (x1, y1) , · · · , (xn, yn)
come from a true model (Xi, Yi)i∈N,i>0 of which the true regression function

is fθ0 , for an θ0 (possibly not unique) in the interior of Θk.

2.1 Estimation of MLP regression model

The main goal of non-linear regression is to give an estimation of the true
parameter θ0 based on observations ((x1, y1), · · · , (xn, yn)). This can be done
by minimizing the Mean Square Error (MSE) function:

En(θ) :=
1

n

n
∑

t=1

(yt − fθ(xt))
2 (2)

with respect to parameter vector θ ∈ Θk. The parameter vectors θ̂n real-
izing the minimum will be called Least Square Estimator (LSE). Note that
parameters realizing the true distribution function may belong to a non-null
dimension sub-manifold if the number of hidden units is overestimated. Sup-
pose, for example, we have a multilayer perceptron with two hidden units
and the true function fθ0 is given by a perceptron with only one hidden unit,
say fθ0 = a0 tanh(w0x), with x ∈ R. Then, any parameter θ in the set:

{θ |w2 = w1 = w0, b2 = b1 = 0, a1 + a2 = a0}
realizes the function fθ0 . Hence, classical statistical theory for studying the
LSE can not be applied because it requires the identification of the parame-
ters (up to a permutation).

In the next section, we will compare MSE of over-determined models
against MSE of the true model :

1

n

n
∑

t=1

(yt − fθ(xt))
2 − 1

n

n
∑

t=1

(yt − fθ0(xt))
2 = En(θ)− En(θ

0). (3)
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3 A general bound for the MSE

For an square integrable function g(X, Y ) the L2 norm is:

‖g(X, Y )‖2 :=
√

∫

g2(x, y)dP (x, y). (4)

Now, for λ > 0, let us define the generalized derivative function :

dλθ (X, Y ) =

e−λ(Y−fθ(X))2−e
−λ(Y−f

θ0
(X))2

e
−λ(Y −f

θ0
(X))2

‖ e−λ(Y−fθ(X))2−e
−λ(Y−f

θ0
(X))2

e
−λ(Y −f

θ0
(X))2

‖2
=

e−λ((Y−fθ(X))2−(Y−fθ0 (X))2) − 1

‖e−λ((Y−fθ(X))2−(Y−fθ0(X))2) − 1‖2
(5)

and let us define
(

dλθ
)

− (x, y) = min
{

0, dλθ (x, y)
}

. Note that the generalized
derivative function converges toward the derivative function if θ converges
toward θ0.

For now, let us assume that dλθ is well defined, this point will be discuss
later. We can state the following inequality:

Inequality :
for λ > 0,

sup
θ∈Θk

n ·
(

En(θ
0)−En(θ)

)

≤ 1

2λ
sup
θ∈Θk

∑n

i=1 d
λ
θ (xi, yi)

∑n

i=1

(

dλθ
)2

− (xi, yi)
(6)

Proof :
We have

n · (En(θ
0)− En(θ)) =

1
λ

∑n

i=1 log

(

1 + ‖ e−λ(Y−fθ(X))2−e
−λ(Y−f

θ0
(X))2

e
−λ(Y −f

θ0
(X))2

‖2dλθ (xi, yi)

)

≤ sup
0≤p≤‖ e−λ(Y −fθ(X))2

−e
−λ(Y −f

θ0
(X))2

e
−λ(Y −f

θ0
(X))2

‖2
1
λ

∑n

i=1 log
(

1 + pdλθ (xi, yi)
)

≤ supp≥0
1
λ

(

p
∑n

i=1 d
λ
θ (xi, yi)− p2

2

∑n

i=1

(

dλθ
)2

− (xi, yi)
)

.

Since for any real number u, log(1 + u) ≤ u − 1
2
u2
−. Finally, replacing p by

the optimal value, we found

n · (En(θ
0)−En(θ)) ≤ 1

2λ

∑n
i=1 d

λ
θ (xi,yi)

∑n
i=1(dλθ )

2

−

(xi,yi)

�
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This inequality allows to prove the tightness of n ·(En(θ
0)− En(θ)) under

simple assumptions. It is used in the next section to prove consistency of an
estimator of the number of hidden units using penalized MSE criterion.

4 Estimation of the number of hidden units.

Let k0 be the minimal number of hidden units needed to realize the true
regression function fθ0 . In this section, the set Θ of possible parameters will
be set to

Θ = ∪K
k=1Θk,

where K is a, possibly huge, fixed constant: The maximum number of hidden
units for MLP models. We define the minimum-penalized MSE estimator of
k0, as the minimizer k̂ of

Tn(k) = min
θ∈Θ

(En(θ) + an(k)) (7)

Let us assume the following assumptions:

(A1) an(.) is increasing, n · (an(k1)− an(k2)) tends to infinity as n tends to
infinity, for any k1 > k2 and an(k) tends to 0 as n tends to infinity for
any k.

(A2) It exists λ > 0 so that
{

dλθ , θ ∈ Θ
}

is a Donsker class (see van der
Vaart [7]) and appendix.

We now have:
Theorem :
Under (A1) and (A2), k̂ converges in probability to the true number of

hidden units k0.

Proof :
By applying the inequality,

P (k̂ > k0) ≤∑K

k=k0+1 P (Tn(k) ≥ Tn(k
0)) =

∑K

k=k0+1 P
(

n
(

supθ∈Θk0
En(θ)− supθ∈Θk

En(θ)
)

≥ n (an(k)− an(k
0))
)

≤
∑K

k=k0+1 P

(

1
λ
supθ∈Θk

∑n
i=1 d

λ
θ (xi,yi)

∑n
i=1(dλθ )

2

−

(xi,yi)
≥ n (an(k)− an(k

0))

)
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Now, under (A2)

supθ∈Θk

1

n

(

n
∑

i=1

dλθ (xi, yi)

)2

= OP (1)

where, Op(1) means bounded in probability. Moreover, under (A2) the set
{

(

dλθ (xi, yi)
)2
}

is Glivenko-Cantelli (the set admits an uniform law of large

numbers). Hence

inf
θ∈Θk

1

n

n
∑

i=1

(

dλθ (xi, yi)
)2

−
n→∞−→ inf

θ∈Θk

‖
(

dλθ (X, Y )
)

− ‖22

But infθ∈Θk
‖
(

dλθ (X, Y )
)

− ‖2 > 0, since the random variable dλθ (X, Y ) is cen-

tered and ‖dλθ (X, Y )‖2 = 1. Then, we get :

1

λ
sup
θ∈Θk

∑n

i=1 d
λ
θ (xi, yi)

∑n

i=1

(

dλθ
)2

− (xi, yi)
= OP (1)

and P (k̂ > k0) tends to 0 as n tends to infinity. Finally,

P (k̂ < k0) ≤
k0−1
∑

k=1

P

(

sup
θ∈Θk

En(θ)− En(θ
0)

n
≥ an(k)− an(k

0)

n

)

and supθ∈Θk

En(θ)−En(θ0)
n

converges in probability to

sup
θ∈Θk

E
(

En(θ)− En(θ
0)
)

< 0

since k < k0, so k̂
P−→ k0

�

The assumption (A1) is fairly standard for model selection, in the Gaus-
sian case (A1) will be fulfilled by the BIC criterion. The assumption (A2)
is more difficult to check. First we note:

(

e−λ((Y−fθ(X))2−(Y−fθ0 (X))2) − 1
)2

=

e−2λ((Y−fθ(X))2−(Y−fθ0(X))2) − 2e−λ((Y−fθ(X))2−(Y−fθ0 (X))2) + 1
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So, dλθ is well defined if E
[

e−2λ((Y−fθ(X))2−(Y−fθ0 (X))2)
]

< ∞, but

(Y − fθ(X))2 − (Y − fθ0(X))2 =
(Y − fθ0(X) + fθ0(X)− fθ(X))2 − (Y − fθ0(X))2 =
2ε(fθ0(X)− fθ(X)) + (fθ0(X)− fθ(X))2

where ε = Y − fθ0(X) is the noise of the model. Since an MLP function is
bounded, dλθ is well defined if λ > 0 exists such that eλ|ε| < ∞ i.e. ε admits
exponential moments. Finally, using the same techniques of reparameteriza-
tion as in Rynkiewicz [6], assumption (A2) can be shown to be true for MLP
models with sigmöıdal transfer functions, if the set of possible parameters Θ
is compact.

5 A little experiment

The theoretical penalization terms of the previous section can be chosen
among a wide range of functions (see condition A1). In the sequel, a little
experiment is conducted to assess the right rate of penalization to guess the
“true” architecture of a model.

Consider a simulated model:

Zt = Fθ0(Xt, Yt) + εt, t = 1, · · · , n,

with ((X1, Y1), · · · , (Xn, Yn)) i.i.d., (Xt, Yt) ∼ N (0R2, 3 · I2),
(ε1, · · · , εn) i.i.d., εt ∼ U [−1, 1], the uniform law in [−1; 1] and

Fθ0(x, y) = tanh(6 · x− 2 · y) + 2 · tanh(8− x+ 3 · y)
−3 · tanh(2− 6 · x− 2 · y) + 1.5.

(8)

Here, the true model is an MLP with 2 inputs, 3 hidden units and one output.
In order to avoid too long time of computation, the number of hidden units
is assumed to be between 1 and 10. We estimate the true architecture of the
MLP according to (7).

First, let us write the log-likelihood of the data as if the density of the
noise would be Gaussian :

lθ









x1

y1
z1



 , · · · ,





xn

yn
zn







 = −n
2
· log(2πσ2)

−∑n

t=1
1

2σ2 (zt − Fθ(xt, yt))
2 +

∑n

t=1 g(xt, yt)

(9)
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Here, we assume that the variance of the noise σ2 is a known constant and
that the density of the explicative variables (X, Y ) is a function g(., .) inde-
pendent of the parameter vector θ. Two classical criteria are:

AIC :
∑n

t=1
1
σ2 (zt − Fθ(xt, yt))

2 + 2 ·D + Cte

BIC :
∑n

t=1
1
σ2 (zt − Fθ(xt, yt))

2 +D · log(n) + Cte
(10)

where D is the size of the parameter vector (the dimension of the model or
the number of weights of the MLP) and Cte a constant independent of the
parameter θ.

The optimization of the log-likelihood is done with respect to the param-
eter θ, so maximimizing this quantity is equivalent to minimizing :

En(θ) =
1

n
·

n
∑

t=1

(zt − Fθ(xt, yt))
2 (11)

Hence, an AIC like minimum-penalized MSE criterion would be:

1

n

n
∑

t=1

(zt − Fθ(xt, yt))
2 +

2σ2D

n

and, a BIC like minimum-penalized MSE criterion would be:

1

n

n
∑

t=1

(zt − Fθ(xt, yt))
2 +

σ2D log(n)

n

Note, that these criteria involve the knowledge of the variance of the noise
σ2. In a first experiment we will use the true variance of the noise, then this
problem will be addressed in the following sections.

In the following sections, the optimization of MLP is done with the Broy-
denFletcherGoldfarbShanno (BFGS) method. In order to avoid bad local
minima, 10 random initializations of the weights are done for each estima-
tion.

5.1 Model selection with σ2 known

We will compare 4 criteria, from the least penalized (AIC like) to the most
penalized (Very Strong Penalization), the following penalized criteria are
assessed:
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• AIC like: 1
n

∑n

t=1 (zt − Fθ(xt, yt))
2 + 2σ2D

n

• BIC like: 1
n

∑n

t=1 (zt − Fθ(xt, yt))
2 + σ2D log(n)

n

• SP (Strong Penalization): 1
n

∑n

t=1 (zt − Fθ(xt, yt))
2 + σ2D

√
n

n

• VSP (Very Strong Penalization): 1
n

∑n

t=1 (zt − Fθ(xt, yt))
2 + σ2Dn3/4

n

We simulate n = 100, n = 500 and n = 1000 data according to the true
model (8), for each n the experiment is repeated 100 times.

The following architectures are chosen by the penalized criteria :

• n=100

nb h. units 1 2 3 4 5 6 7 8 9 10
AIC like models sel. 0 0 47 35 10 2 3 3 0 0
BIC like models sel. 0 0 100 0 0 0 0 0 0 0

SP models sel. 0 0 100 0 0 0 0 0 0 0
VSP models sel. 0 74 26 0 0 0 0 0 0 0

• n=500

nb h. units 1 2 3 4 5 6 7 8 9 10
AIC like models sel. 0 0 3 14 17 14 13 15 10 13
BIC like models sel. 0 0 100 0 0 0 0 0 0 0

SP models sel. 0 0 100 0 0 0 0 0 0 0
VSP models sel. 0 1 99 0 0 0 0 0 0 0

• n=1000

nb h. units 1 2 3 4 5 6 7 8 9 10
AIC like models sel. 0 0 0 0 0 0 0 7 24 69
BIC like models sel. 0 0 100 0 0 0 0 0 0 0

SP models sel. 0 0 100 0 0 0 0 0 0 0
VSP models sel. 0 0 100 0 0 0 0 0 0 0

The BIC like criterion and the Strong Penalization chose always the true
architecture whatever the number of data. According to the theory, AIC like
criterion is not consistent (see condition A1) and the chosen architecture is
always too large. The Very Strong penalization chose a too small architecture

9



when the number of data is small (n = 100), however it is a consistent
criterion, so its behavior is correct for larger number of data (n = 500 and
n = 1000). This good results assume that the true variance of the noise is
known, but for regression models this is never the case. A first idea may be
to replace the unknown variance by the estimated one, the is done in the
next section.

5.2 Model selection using estimated variance σ̂2.

The estimated variance σ̂2 is the mean square error of the model:

σ̂2 := En(θ̂) =
1

n

n
∑

t=1

(zt − Fθ̂(xt, yt))
2

computed for the least square estimator θ̂. Hence, the comparison is done
with the penalized criteria :

• AIC like: 1
n

∑n

t=1 (zt − Fθ(xt, yt))
2 + 2σ̂2D

n

• BIC like: 1
n

∑n

t=1 (zt − Fθ(xt, yt))
2 + σ̂2D log(n)

n

• SP (Strong Penalization): 1
n

∑n

t=1 (zt − Fθ(xt, yt))
2 + σ̂2D

√
n

n

• VSP (Very Strong Penalization): 1
n

∑n

t=1 (zt − Fθ(xt, yt))
2 + σ̂2Dn3/4

n

The following architectures are chosen by the penalized criteria:

• n=100

nb h. units 1 2 3 4 5 6 7 8 9 10
AIC like models sel. 0 0 0 0 0 1 0 4 27 68
BIC like models sel. 0 0 22 6 3 1 3 5 15 45

SP models sel. 0 0 85 3 1 0 0 0 1 10
VSP models sel. 0 0 100 0 0 0 0 0 0 0

• n=500

nb h. units 1 2 3 4 5 6 7 8 9 10
AIC like models sel. 0 0 0 4 4 6 9 23 19 35
BIC like models sel. 0 0 100 0 0 0 0 0 0 0

SP models sel. 0 0 100 0 0 0 0 0 0 0
VSP models sel. 0 0 100 0 0 0 0 0 0 0
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• n=1000

nb h. units 1 2 3 4 5 6 7 8 9 10
AIC like models sel. 0 0 0 0 3 7 12 16 29 33
BIC like models sel. 0 0 100 0 0 0 0 0 0 0

SP models sel. 0 0 100 0 0 0 0 0 0 0
VSP models sel. 0 0 100 0 0 0 0 0 0 0

As usual the AIC like criterion misbehaves like in the previous section. But,
for a small number of data (n = 100) the use of an estimation of the variance
of the noise instead of the true one leads to overestimation of the number of
hidden unit for the BIC like criterion and the strong penalization. The ex-
planation is that the variance of the noise is underestimated for large number
of hidden units and so the penalized criterion. This drawback disappears for
larger number of data (n = 500 and n = 1000) because the estimation of the
variance becomes better. Despite that the Very Strong Penalized criterion
seems to guess the true architecture whatever the number of data, to plug
estimated variance instead of the true one seems maybe to be a too naive
approach for small number of data. As the goal of penalized criterion is to
compare models, we could use the logarithm of the mean square error in-
stead of the mean square error itself, hence the lack of the true variance is
no more a problem because this number is simplified in the difference of the
logarithms. This approach is studied in the next section.

5.3 Model selection using logarithm of mean square
error

Choosing between two number of hidden units, k1 and k2 is the result of a
comparison between minθ1∈Θk1

(En(θ1) + an(k1)) on one hand and minθ2∈Θk2
(En(θ) + an(k2))

on the other hand, where an(k) is the penalization term. So, the results of the
comparison may be changed if we consider C ·En(θ) instead of En(θ) when C

is a very big (or very small) constant. But, if we compare minθ1∈Θk1
(log (En(θ1)) + an(k1))

and
minθ2∈Θk2

(log (En(θ2)) + an(k2)) the results of the comparison is the same if
we change En(θ) in C · En(θ).

Moreover, En(θ) may be seen as an approximation of the variance of the
noise σ2, so En(θ) = σ2 · (1− ε(θ)) and

log (En(θ)) ≃ log(σ2)− ε(θ) + o(ε(θ))

11



The term ε(θ) may be seen as the normalized term of overfitting of the
model. Finally we get:

minθ∈Θ (log (En(θ)) + an(k1))−minθ∈Θ (log (En(θ)) + an(k2)) ≃
ε(θ2)− ε(θ1) + an(k2)− an(k1)

and the penalization term plays fully is role of compensation of the “normal-
ized” overfitting.

The results on our little experiment with these new criteria are the fol-
lowing:

• n=100

nb h. units 1 2 3 4 5 6 7 8 9 10
AIC like models sel. 0 0 3 7 4 11 9 13 24 29
BIC like models sel. 0 0 96 4 0 0 0 0 0 0

SP models sel. 0 0 100 0 0 0 0 0 0 0
VSP models sel. 73 27 0 0 0 0 0 0 0 0

• n=500

nb h. units 1 2 3 4 5 6 7 8 9 10
AIC like models sel. 0 0 3 6 8 13 18 10 17 25
BIC like models sel. 0 0 99 1 0 0 0 0 0 0

SP models sel. 0 0 100 0 0 0 0 0 0 0
VSP models sel. 0 69 31 0 0 0 0 0 0 0

• n=1000

nb h. units 1 2 3 4 5 6 7 8 9 10
AIC like models sel. 0 0 1 2 7 13 16 21 19 21
BIC like models sel. 0 0 100 0 0 0 0 0 0 0

SP models sel. 0 0 100 0 0 0 0 0 0 0
VSP models sel. 0 2 98 0 0 0 0 0 0 0

We can see that this method yields very good results, whatever the num-
ber of data, for BIC like criterion and the Strong Penalization without know-
ing the true variance of the noise. Strong Penalization seems even to be a
little better than BIC like criterion.
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6 Conclusion

MLP regression is widely used and always a very competitive method (see
Osowski et al. [5]), but theoretical justification is lacking for determining
the true architecture and especially the number of hidden units. Indeed, the
classical asymptotic theory fails when the model is not identifiable. In this
paper, we prove an inequality showing that overfitting of MLP is moderate
if the noise admits exponential moments and the parameters of the model
are a priori bounded. This bound justifies the use of penalized criteria in
order to fit the architecture of MLP models in the framework of regression
without knowing the density of the noise. Hence, The user can select the
true number of hidden units thanks to penalized criteria, of the form

En(θ) + an(k)
or
ln(En(θ)) + an(k)

If the penalization term an(k) is well calibrated (C·k
n

< an(k) < C · k),
the true number of hidden units will be automatically selected if n is large
enough. A little experiment suggests that a good choice of penalization
seems to be the middle of the possible range: an(k) =

C·k√
n
. The use of the

logarithm of the mean square error En(θ) is an easy way to avoid to know
the true variance of the noise. A further question could be to know if this
empirical finding for the tuning of the penalization term can be justified
theoretically.

Note that, this paper was only concerned with the identification of the
true model. The point is more to have an idea of the complexity of the
model determining the data than to have a predictive model. However, if
there are enough data, the true model will also be the best predictor. Hence,
the spirit of the studied criterion is then very different from the approach
used in Extreme Learning Machine (ELM) which provides a good predictive
model at extremely fast learning speed. Indeed, in ELM, all the hidden node
parameters are independent from the target functions or the training datasets
so the weights between input and hidden node are no more considered as
parameters. Such method is really not concerned by model identification but
only by predictive power and speed of computing, for example it is possible
to use ELM even if the relation between inputs and ouput is linear. Finally,
If ELM seems to work well in pratice, the theoritical justification of the
superiority of such method is still lacking.
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Another issue may be when the unknow regression function is not repre-
sented by an MLP at all, in such case there is no more over-determination
and the asymptotic behaviour of the model is more underfitting than over-
fitting. The overfitting occures only when we consider finite number of data
and the theory to deal with such problem is the very difficult non-asymptotic
statistical theory as in Massart [4]. As far as we know this theory gives no
hints for choosing the number of hidden units for finite number of data.

Appendix

A Donsker class is a notion from the “empirical processes theory”. This
theory deals with “law of large number” and “asymptotic normality” for set
of functions. Basically, a Donsker class is a set of functions which is “not too
big”.

Let X1, · · · , Xn be a random sample from a probability distribution P .
The empirical distribution is the discrete uniform measure on the observa-
tions. We denote it by Pn = 1

n

∑n

i=1 δXi
, where δx is the probability distri-

bution that is degenerate at x. Given a function f , we write Pnf for the
expectation of f under the empirical measure and Pf for the expectation
under P . Thus

Pnf =
1

n

n
∑

i=1

f(Xi) and Pf =

∫

fdP.

The empirical process evaluated at f is defined as Gnf =
√
n (Pnf − Pf).

Consider a set of functions F endowed with the L2 norm ‖·‖ (see (4)). For
every ε > 0, we define an ε-bracket by
[l, u] = {f ∈ F , l ≤ f ≤ u} such that ‖u− l‖ < ε. The ε-bracketing entropy
is

H[·] (ε,F , ‖·‖) = ln
(

N[·] (ε,F , ‖·‖)
)

,

where N[·] (ε,F , ‖·‖) is the minimum number of ε-brackets necessary to cover
F . N[·] (ε,F , ‖·‖) is also called “covering number”.

The class F of functions is called Donsker if the covering number, which

depends of the diameter ε of the balls, is smaller than order e
1
ε2 when ε goes

to 0. Then, the sequence of processes {Gnf, f ∈ F} converges in distribution
to a tight limit process. Finally, if F =

{

dλθ , θ ∈ Θ
}

is a Donsker class, the
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sequence of processes

(

1√
n

(

n
∑

i=1

dλθ (Xi, Yi)

))

n∈N

converges in distribution to a tight random Gaussien process. We get then
the key property needed for the demonstration of the theorem:

supθ∈Θk

1

n

(

n
∑

i=1

dλθ (xi, yi)

)2

= OP (1)
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