
Sharing and Integration of Cognitive Neuroscience Data: Metric
and Pattern Matching across Heterogeneous ERP Datasets

Haishan Liua, Gwen Frishkoffb, Robert Frankc, and Dejing Doua

aDepartment of Computer & Information Science, University of Oregon, Eugene, OR 97403
bDepartment of Psychology & Neuroscience Institute, Georgia State University, Atlanta, GA
30303
cNeuroInformatics Center, University of Oregon, Eugene, OR 97403

Abstract
In the present paper, we use data mining methods to address two challenges in the sharing and
integration of data from electrophysiological (ERP) studies of human brain function. The first
challenge, ERP metric matching, is to identify correspondences among distinct summary features
(“metrics”) in ERP datasets from different research labs. The second challenge, ERP pattern
matching, is to align the ERP patterns or “components” in these datasets. We address both
challenges within a unified framework. The utility of this framework is illustrated in a series of
experiments using ERP datasets that are designed to simulate heterogeneities from three sources:
(a) different groups of subjects with distinct simulated patterns of brain activity, (b) different
measurement methods, i.e, alternative spatial and temporal metrics, and (c) different patterns,
reflecting the use of alternative pattern analysis techniques. Unlike real ERP data, the simulated
data are derived from known source patterns, providing a gold standard for evaluation of the
proposed matching methods. Using this approach, we demonstrate that the proposed method
outperforms well-known existing methods, because it utilizes cluster-based structure and thus
achieves finer-grained representation of the multidimensional (spatial and temporal) attributes of
ERP data.

Keywords
Schema matching; Cluster comparison; Assignment problem; Hungarian method; Neuroscience;
Electrophysiology

1. Introduction
Over the last few decades, neuroscience has witnessed an explosion of methods for
measurement of human brain function, including high-density (multi-sensor)
electroencephalography (EEG) and event-related potentials (ERP), or so-called “brainwave”
methods. In comparison with other neuroimaging techniques, the ERP method has several
advantages: it is completely noninvasive and — unlike fMRI (which measures blood flow)
— it is an inexpensive, portable, and direct measure of neuronal activity. Moreover, it has
excellent (millisecond) temporal resolution, which is critical for accurate representation of
neural activity. Furthermore, ERP studies have given rise to many complex neural patterns
that can be used to predict human behavior and to detect clinically relevant deviations in
behavior, cognition, and neural function [1, 2]. Dozens of these patterns have been proposed
over the past several decades. Yet there is remarkably little agreement in how these patterns
should be identified and described. Further, tens of thousands of large and information-rich
datasets have been collected and analyzed. Yet there are few (arguably, no) quantitative
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comparisons (“meta-analyses”) of ERP data from different studies. Given the unique
importance of ERP research in human neuroscience, this lack of integration may be the
central obstacle to a robust science of human behavior and brain function.

To address these challenges, we have designed a system called Neural ElectroMagnetic
Ontologies, or NEMO [3, 4, 5, 6]. NEMO includes a suite of computational methods and
workflows that are built around formal ontologies (description logic representations for the
ERP domain) and can be used to facilitate ERP data sharing, analysis, and integration.

In the present paper, we introduce a new component of the NEMO work-flow, which uses
data mining methods to address two key problems — what we term the ERP metric
matching and ERP pattern matching problems. In both cases, our goal is to align variables
across multiple, heterogeneous ERP datasets. This would provide a data-driven alternative to
top-down (knowledge-driven) methods, such as advocating the use of restricted methods for
analysis, or a controlled vocabulary for data annotation. While these top-down approaches
are of considerable value [5, 6], we believe that data-driven approaches may provide a
complementary approach that can can lead to new insights into complex ERP data
structures.

The remainder of Section 1 describes the ERP metric and pattern matching problems and
summarizes our approach to these two problems. Section 2 presents a theoretic framework,
along with a description of our approach to the two matching problems. In Section 3, we
describe two case studies in which we used our approach to align different variables (metrics
and patterns) across simulated ERP data. These data were designed to mimic three sources
of variability that are present in real ERP data. Section 4 presents results from the two case
studies. Section 5 compares the proposed method with existing methods, summarizes some
assumptions and limitations of our study, and suggests some directions for future work.
Finally, Section 6 summarizes the contributions of the present work.

1.1. ERP Metric Matching Problem
ERP patterns are characterized by three features: time course (e.g., early or late), polarity
(positive or negative), and scalp distribution, or topography [4, 7, 8]. For example, the
visual-evoked “P100 pattern” (Fig. 1A) has a peak latency of approximately 100ms (Fig.
1B) and is positive over occipital areas of the scalp (Fig. 1C), reflecting generators in visual
regions of the cerebral cortex.

Researchers use a variety of metrics to describe the three features. These metrics reflect
different ways that temporal and spatial features of ERPs can be operationally defined. For
example, one research group might use a measure of peak latency (time of maximum
amplitude) to summarize the timecourse of the “P100” pattern in a visual object recognition
experiment [9, 10], while another group might use measures of pattern onset and offset to
operationalize the concept of latency for the same dataset.

The use of different metrics has a long history in ERP research. While these diverse
practices present a nuisance for data sharing and integration, there are reasons to embrace
this heterogeneity, since different metrics may yield distinct and complementary insights
[11]. The challenge then becomes how to find valid correspondences between these metrics.
In previous work, we have described top-down (knowledge-driven) methods, that is,
annotation of data using a formal ontology [4, 5, 6, 7]. This approach minimizes
heterogeneity that arises from the use of different labels (e.g., “latency” versus “peak
latency” for time of maximal amplitude). It does not, however, address heterogeneities that
reflect different operational definitions of time (e.g., peak latency versus duration of a
pattern), as described above. For this reason, we have also explored the use of bottom-up
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(data-driven) methods [11] to align different metrics across ERP datasets. In the present
paper, we extend our bottom-up approach by developing and testing a more general
formulation of the metric matching problem. Specifically, we view metric matching as an
assignment problem and articulate a more general solution that can also be used to address a
second problem — that of ERP pattern matching.

1.2. ERP Pattern Matching Problem
The ERP pattern matching problem is the problem of finding correspondences among ERP
patterns from different datasets. This problem is challenging for several reasons. The most
trivial reason is that authors use a variety of labels to refer to the same pattern [4, 7], just as
they use different names for the same or similar metrics. This issue is readily addressed by
the use of an standard ontology (or controlled vocabulary), although there is no guarantee
that such a would be adopted by all research labs. The second reason is related to the metric
matching problem (Sec. 1.1): when two different measures are used to characterize the
timecourse of a pattern, they may capture subtly different views of the same data.
Accordingly, they may introduce additional variability into the pattern matching equation.
Finally, the most profound challenge is a consequence of the physics and physiology of
signal generation: scalp-measured ERPs reflect a complex and unknown mixture of latent
patterns. The reason is that neuroelectric signals are generated in cortex and are propagated
to the scalp surface. Moreover, at each moment, multiple regions of cortex are co-active.
Thus, at every timepoint and at every point in the measurement (i.e., scalp) space, a pattern
in the measured data actually corresponds to multiple overlapping patterns, that is, different
underlying sources. This overlap or “superposition” is exacerbated by volume conduction of
these signals through the resistive skull.

Given these complexities, ERP researchers have adopted a variety of solutions for
identification and extraction of ERP patterns (e.g., [1, 2]). It can therefore be hard to
compare results from different studies, even when the same experimental stimuli and task
are used. Nonetheless, alternative analysis methods, like alternative metrics, may provide
different, and equally informative views, of the “same” data. Thus, we propose to embrace
this heterogeneity, rather than forcing researchers to use a restricted set of solutions for data
analysis. As a consequence, our approach to data integration will require pattern matching,
as well as metric matching, across different ERP datasets. Moreover, this matching should
ideally be robust to differences among patterns that arise from the use of alternative pattern
analysis methods.

1.3. Study Goals and Hypotheses
In this paper, we address the ERP metric and pattern matching problems by transforming
them into two more general problems, both of which have well-known solutions. The metric
matching problem is viewed as a schema matching problem, where the alternative sets of
metrics are treated as attributes (column names) in the schemas that correspond to different
ERP datasets. Similarly, the pattern matching problem is characterized as a cluster
comparison problem, where patterns are extracted from different ERP datasets using cluster
analysis. At an even more general level, the two problems are characterized as a type of
assignment problem. In this way, they can be solved using a common framework, as
described in the following section. We test this framework in a series of case studies, using
ERP datasets that were designed to simulate heterogeneous data from different groups of
subjects under different conditions (via distinct simulated brain activity profiles), as well as
distinct measurement methods (spatial and temporal metrics) and distinct patterns (reflecting
different pattern decomposition techniques).
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To evaluate the performance of our proposed metric matching method, we use two other
methods for comparison — SemInt [12] and cen-com, a method that relies on segmented
central tendency. SemInt calculates statistics, such as maximum, minimum, mean, variance,
etc., of the data. The statistics are extracted by running aggregation queries against the
whole set of attribute values. However, it is possible that two different attributes could have
similar mean values; thus, SemInt statistics may be too coarse-grained to represent different
ERP attributes. In contrast with SemInt, our proposed metric matching method examines the
grouping structure of attribute values through cluster analysis. It therefore supports fine-
grained comparisons between attributes. In this way, it is conceptually similar to methods
that rely on segmented central tendency — for example, the use of multiple, combined
measures, such as <Mean, StdDev>, to characterize substructures within a data distribution.
Segmented central tendency (cen-com) is straightforward and suitable for applications
where the data instances are unordered or randomly ordered. In the present case, the metric
values are randomly ordered across instances (i.e., subjects). We thus apply smoothing to
our point sequence curves as a post-processing step (i.e., after subsequence reordering), to
reduce the within-cluster variance due to instance order. In the present study, we
hypothesize that our metric matching method will outperform SemInt. We further
hypothesize that our method will perform at least as well as a method based on segmented
central tendency.

Our proposed pattern matching method uses cluster comparison methods. These methods are
closely related to methods for determining cluster validity, such as the technique of external,
or relative, indexing, which is used to compare different clustering results. Cluster validity
methods include the Rand index [13], Jaccard index [14], normalized mutual information
[15]. These methods aim at evaluating cluster membership, that is, the assignment of points
to clusters. However, an important limitation of these methods is that they can only be
reliably used to compare different cluster results on the same dataset. By contrast, the aim of
our study is to align patterns across datasets that contain non-overlapping observations.
Thus, membership-based cluster validity criteria are unsuitable. Furthermore, our method
should be able to use information about the distribution of different ERP pattern attributes,
i.e., spatial and temporal features of the data. To this end, we have represented clusters as
density profiles, as proposed by Bae et al. [16], and have selected a cluster similarity index
known as ADCO (Attribute Distribution Clustering Orthogonality). ADCO determines the
similarity between two clusters based on their density profiles, which capture the
distribution of values along each attribute. We hypothesize that ADCO scores will reflect
high (80%) precision in matching ERP patterns across datasets. We further expect that the
more domain knowledge we leverage during the cluster analysis process, the more accurate
the resulted clusters will be. To test this second hypothesis, we apply the ADCO method
under three scenarios, where we leverage varying amounts of domain knowledge.

2. Theoretic Framework
2.1. Overview

In the present section, we present our theoretic framework for finding the general
correspondence function M(S, S′) between two sets S and S′. We discuss application-
specific parameters in Section 2.1.2 and 2.1.3.

2.1.1. Transformation of Matching Problem to Assignment Problem—The goal
of metric matching is to find correspondence between alternative sets of metrics M and M′;
and the goal for pattern matching is to find correspondences between different sets of
patterns (P and P′). These two problems can be formulated in a very general way, as
illustrated in Fig. 2. Fig. 2 (A) shows a sample ERP experiment data from one lab and Fig. 2
(B) from another. Two sets of column headers, M = {M1, M2...Mn} and
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, denote alternative sets of metrics used by the two labs. The task of
metric matching is to infer a function M(M, M′) that establishes a correspondence between
the two metric sets. On the other hand, rows in the data represent individual experiment
observations and can be grouped to clusters to capture ERP spatiotemporal patterns. Fig. 2

shows two sets of patterns, P = {P1, P2...Pn} and , extracted by different
pattern separation and analysis methods from two different datasets. The task of pattern

matching is then to infer a function  that establishes a correspondence between the
two sets of patterns.

Following Bae et al. [16], we propose a theoretic framework that encompasses the solution
to both the metric matching and pattern matching problems by transforming them to the
assignment problem. The assignment problem is formally posed as follows. Let us first
define ρ as the stochastic permutation of a subscript index set. Without causing confusion,
we also define function ρ(k) that returns the value at index k in the permutation set. (i.e., ρ =
{ρ(1), ρ(2), ...ρ(n)} is the permutation of {0, 1, ..., n}.) We can view ρ as a correspondence

function between set Sk and , assuming correspondent positions in each set are
considered to map to each other. For instance, if two sets both have three elements, then the
subscript index set ranges over {0, 1, 2}. Supposing ρ returns {2, 0, 1}, we can then obtain

following matchings: ,  and .

With the notation defined, we can now formalize the problem of matching two sets of
elements in general as an optimization problem, in which the aim is to select the best ρ from
the set of all possible permutations of the elements in one set, under the condition that some
distance function characterizing the similarity between two sets in the matching is
minimized. Equation 1 expresses this idea:

(1)

where S and S′ are two sets under consideration, Kmin denotes the minimum cardinality of
them, and function  denotes the distance function that we try to minimize. The form of 
is subject to different applications.

To calculate ρ that satisfies equation 1, rather than iterating through all possible
permutations of elements in S′, we can consider the equation as a minimum-cost assignment
problem between the sets S and S′. Table 1, for example, illustrates a distance table between
two metric sets M and M′. Matching of the two sets can be considered as an assignment

problem where the goal is to find an assignment of elements {Mk} to  that yields the
minimum total distance without assigning each Mk more than once. This problem can be

efficiently solved by the Hungarian Method in polynomial time of  [17]. It is worth
noting that by formulating the problem as the assignment problem, we assume the matching
between two sets to be a one-to-one function. We will discuss the limitation and implication
of this assumption in Section 5.

2.1.2. Data Representation and Transformation—To apply Equation 1 to solve
metric matching and pattern matching problems, a central problem remains: What are the
appropriate methods to model data, so that the distance function  can be calculated in a
meaningful way? To this end, we develop the following approaches: in the schema matching
problem, we represent ERP metrics (attributes) as either point-sequence curves or
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segmented statistical characterization, and in the cluster comparison problem, we model
clusters by using density profiles [16].

Schema Matching Problem: The central objects of interest in our study of the schema
matching problem are the numeric-typed attributes. In order to represent them in ways that
meaningful quantities can be defined to measure the “goodness” of a matching decision, we
propose to use two methods, namely, the point-sequence curve and the segmented statistical
characterization to represent attributes.

The point-sequence curve is a curve plotted as attribute value against instance number. The
distance between point-sequence curves characterizes the similarity between respective
attributes. However, since instances are randomly ordered within a dataset and the instance
numbering is inconsistent across datasets, the resulting original graph of point-sequence
curves will show no clear pattern and thus no visible correspondence between alternative
metrics (see Fig. 6, left frame). The key problem then becomes to align subsequences of
curves in a principled way to enable valid comparisons among curves across datasets.

Our solution is to introduce structure into these (initially randomly ordered) point-sequence
curves by applying clustering to extract similar subsequences, which are further labeled
using pattern classes defined in the NEMO ontologies. These labeled subsequences can then
be aligned across datasets, (which implies that pattern matching must be carried out
beforehand,) and correspondences between curves established using standard techniques for
sequence similarity search in time-series (see Fig. 1, right frame). This approach exploits
prior knowledge of the patterns that are commonly seen in ERP experiments of a particular
type (e.g., visual perception) while asserting no prior knowledge about the measures.

Numeric-typed attributes can be represented by the segmented statistical characterization, in
which data instances are first partitioned into groups (e.g., through unsupervised clustering)
and then characterized by a vector of indicators, each denoting a statistical characterization
of the corresponding group. For example, if values of an attribute A are clustered into n
groups, then it can be represented by a vector of segmented statistical characterization as
follows:

where we choose the mean value μi for cluster i as the statistical indicator. The indicators
can be also defined as a combination of several statistical quantities such as a weighted sum
of mean and standard deviation. In other words, an attribute can be represented as a =
[t1, . . . , tn], where ti = αci1 + βci2, ci1and ci2 are mean and standard deviation respectively,
α and β are weights, and n is the number of clusters.

Cluster Comparison Problem: The density profile is a method of cluster representation
that aims at capturing cluster structural information. By representing clusterings as density
profiles, a novel clustering similarity measure, known as ADCO (Attribute Distribution
Clustering Orthogonality) [16], has been designed which is able to take into account
attribute distribution information, as well as point membership information.

To induce density profiles, we first conduct EM clustering on different datasets, and then
label clusters with respect to the simulated ERP patterns or “components”. The attribute's
range in each cluster is discretized into a number of bins, and the similarity between two
clusters corresponds to the number of points of each cluster falling within these bins (details
in Section 2.3).
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2.1.3. Choice of Distance Function—With the data modeling approaches presented in
the previous section, we adopt two distance functions for the metric matching and pattern
matching problems respectively, described as follows.

1) Distance function in metric (schema) matching: Representing attributes (metrics) using
point-sequence curves enables us to utilize a range of sequence similarity search techniques.
Keogh et al. [18] surveyed a wide range of sequence similarity measures and subjected these
measures to extensive performance tests. They concluded that Euclidean distance
outperformed other measures. Therefore, we used Euclidean distance to quantify degree of
similarity among alternative metrics  in our study. We applied sub-sequence reordering
and post-processing steps (details in Section 2.2) prior to calculating the distance so that the
resulting sequences could be compared in a principled way. Euclidean distance can also be
used to calculate the similarity between attributes under segmented statistical
characterization as well. In this case, the vector representations for two sets of attributes that
derive from two different datasets need to be aligned, e.g., with reference to the cluster
alignment. This alignment step corresponds to the sub-sequence reordering step in the point
sequence-based method.

To apply Equation 1 for matching two sets of ERP metrics (attributes) A and A′
characterized by respective sets of point-sequence curves, we substitute the variables in
Equation 1 and derive Equation 2, and plugging in the Euclidean distance for function 
results in Equation 3.

(2)

(3)

2) Distance function in pattern matching (cluster comparison): After the density profile
vectors of two clusterings C and C′ are obtained, the degree of similarity between C and C′
can be determined by calculating the dot product of the density profile vectors:

To derive correspondences for two sets of clusterings C and C′ representing two sets of ERP
patterns, we substitute the variables in Equation 1, resulting in Equation 4. Since the
similarity function is inversely related to the distance function, in order to calculate Equation
4, it suffices to use the similarity function sim(C, C′) and change the operator to argmax.
This is shown in Equation 5. Details of the process for this calculation are described in
Section 2.3.

(4)
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(5)

2.2. Metric Matching Method
We propose to view the attribute value vector of each ERP summary metric as forming a
point-sequence curve. The similarity between metrics can then be addressed by calculating
the Euclidean distance between the respective point-sequence curves. Fig. 3 (left frame)
illustrates the flowchart for the metric matching process, which consists of the following
steps:

1. To identify structured subsequences in each attribute vector, we use clustering and
label discovered clusters with respect to the simulated ERP patterns or
“components”, e.g., P100, N100, N3, MFN, and P300, as defined in our NEMO
ontology [4].

2. By labeling the attribute instances in this way, we can group them in each dataset
based on their pattern labels and then align the instance groups across datasets
accordingly. This step can be viewed as a subsequence reordering process.

3. We then apply a sequence post-processing step to achieve better performance in the
similarity search, leveraging the rich collection of sequence similarity search
algorithms presently available.

4. The final step is to evaluate the similarity of the structured point-sequence curves
that represent our two simulated ERP datasets as quantified by their respective
measures. Instead of calculating the distance between all pairs of sequences from
the two datasets, this evaluation is achieved by transforming the problem to an
assignment problem that can be solved by the Hungarian method [17].

Next, we describe details of the subsequence reordering and sequence postprocessing steps.

1) Data Partitioning and Reordering—In the present study, we perform clustering on
the spatial and temporal values of the two alternative sets of measures using the Expectation
Maximization (EM) algorithm. The resulting clusters represent candidate ERP patterns,
characterized by the central tendencies of their cluster attributes (i.e., mean values for the
spatial and temporal metrics). We label the resulting clusters with pattern labels defined in
the NEMO ontologies (P100, N100, etc.) using rules specified by domain experts.

Following clustering and labeling, the pattern labels are used to align groups of instances
across datasets, resulting in subsequence reordering. As illustrated in the right-hand graphs
of Fig. 6, for example, the point-sequence curves for metrics IN-O1 and IN-LOCC (plotted
using their original orderings prior to grouping/reordering on the left-hand side) are
manifestly more similar after reordering subsequences in the two curves by aligning
instances that belong to the same (or similar) patterns.

2) Sequence Post-processing—After alignment of the subsequences according to
pattern labels defined in the NEMO ontology, we carry out three post-processing steps: (1)
Normalization, i.e., scaling all the sequence values to unit range; (2) Smoothing, using a
moving average method to reduce within cluster variance; and (3) Interpolation of curves, if
the number of points in two point-sequence curves is different. Fig. 7 illustrates the results
of normalization, smoothing and interpolation to the point-sequence curves of IN-O1 and
IN-LOCC in Fig. 6.

Liu et al. Page 8

Neurocomputing. Author manuscript; available in PMC 2012 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2.3. Pattern Matching Methods
As explained in Section 1, the problem of pattern matching can be framed as a cluster
comparison task. Figure 3 (right) illustrates the flowchart of the proposed pattern matching
method comprising the following steps:

1. We first conduct EM clustering then label clusters with respect to the simulated
ERP patterns or “components” (e.g., P100, N100, N3, MFN, and P300).

2. We then employ density profile to model clustering result and derive a matching
between two clusterings by finding the best alignment of their respective density
profiles that yields the highest similarity measure.

3. In the final step, we generate a distance matrix (e.g., Table 1) and then employ the
Hungarian method to solve the alignment problem. The alignment induces
matching between clusters, with the confidence of the matching expressed
numerically by the ADCO score.

By representing clustering using a density profile, we are able not only to compare clusters
derived from non-overlapping datasets but also to take into account attribute distribution
information in the matching process. We describe below how to represent clusters using
density profiles and the calculation of the ADCO score. More details and explanations can
be found in [16].

1) Density Profile—To represent clusters using density profiles, the attribute's range in
each cluster is first discretized into a number of bins, and the similarity between two clusters
corresponds to the number of points of each cluster falling within these bins. The formal
definition for this number of points is the density of an attribute-bin region for cluster ck in
clustering C, denoted as densC(k, i, j). It refers to the number of points in the region (i, j)—
the j-th bin of the i-th attribute—that belongs to the cluster ck of clustering C. For example,
for clustering C in Fig. 4, densC(1, 1, 1) = 8, because there are 8 data points in region (1, 1)
—the first bin of the first attribute x—that belongs to the first cluster c1.

The values of densC(k, i, j) for all possible k, i, j are then listed in a certain ordering to form
a clustering's density profile vector (defined below). This ordering is imposed on all
attribute-bin regions and must be applied to the two datasets in which the clusterings were
generated. It is necessary, then, that both datasets must have the same attribute set. If this
requirement does not stand, the matching between the sets must be specified in advance.
Therefore, in order to apply the density profile method in the ERP pattern matching
problem, we must first carry out measure matching. We further discuss the interdependence
between pattern matching and metric matching in Section 5.

The density profile vector VC for a clustering C is formally defined as an ordered tuple:

where Q is the number of bins in each of the R attributes, and K is the number of clusters in
C.

2) The ADCO measure—After the density profile vectors of two clusterings C and C′ are
obtained, the degree of similarity between C and C′ can be determined by calculating the
dot product of the density profile vectors:
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Given a permutation function ρ under which the similarity function sim(C,ρ(C′)) is
maximized, an ADCO measure is calculated using a normalization factor (NF)
corresponding to the maximum achievable similarity of the clusterings: NF(C,C′) =
max[sim(C,C), sim(C′,C′)]. The ADCO(C,C′) measure is defined as follows:

The ADCO measure can be transformed to a distance function (we refer interested readers to
[16]). However, since the similarity function is inversely related to the distance function, in
order to calculate matching in Equation 1, it suffices to plug in the similarity function sim(C,
C′) and change the operator to argmax. This is shown in Equation 7.

(6)

(7)

3. Experiment
In the present section, we describe an application of our theoretic framework, described in
Section 2, to the ERP metric matching and pattern matching problems. For this application,
we used a set of simulated ERP datasets, which were designed to support evaluation of ERP
analysis methods [7]. As previously noted, real ERP data arise from superposition of latent
scalp-surface electrophysiological patterns, each reflecting the activity of a distinct cortical
network that cannot be reconstructed from the scalp-measured data with any certainty. Thus,
real ERP data are not appropriate for evaluation of ERP pattern matching. By contrast,
simulated ERP data are derived from known source patterns and therefore provide the
necessary gold standard for evaluation of our proposed methods.

The datasets for the present study were specifically designed to simulate heterogeneous data
from different groups of subjects under different conditions (via distinct simulated brain
activity profiles), as well as distinct measurement methods (spatial and temporal metrics)
and distinct patterns (reflecting two different pattern decomposition techniques).

3.1. Simulated ERP Datasets
The raw data for this study consist of 80 simulated event-related potentials (ERPs), in which
each ERP comprises simulated measurement data at 150 time samples and 129 electrode
channels for a particular subject (n = 40) and experiment condition (n = 2). The 40 simulated
subjects are randomly divided into two 20-subject groups, SG1 and SG2, each containing 40
ERPs (20 subjects in 2 experimental conditions). Each ERP consists of a superposition of 5
latent varying spatiotemporal patterns that represent the scalp projections of distinct
neuronal groups (dipoles). The varying spatiotemporal patterns modeled inter-subject and
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inter-conditional differences amongst the ERPs, and consisted of changes to the latency and
standard deviation of their dipole activation curves (described below). This ensured that the
simulated ERPs would be complex, realistic and yet tractable to the PCA and ICA
decompositions.

To create a set of scalp-referenced patterns of neural activity, 9 dipoles were located and
oriented within a 3-shell spherical head model (Fig. 5 A–C). The dipole locations and
orientations were designed to simulate the topographies of 5 ERP components (Fig. 5 D)
commonly seen in studies of visual word recognition. Each dipole was assigned a 600 ms
activation consistent with the temporal characteristics of its corresponding ERP. Simulated
“scalp-surface” electrode locations were then specified with a 129-channel montage, and a
complex matrix of simulated noise was added to mimic known properties of human EEG.
Because of volume conduction (overlap in spatial or scalp-topographic activity), as well as
overlap in temporal activity, the dipole activations combine to yield a complex spatial and
temporal superposition of the 5 modeled ERP patterns.

Spatiotemporal patterns were extracted from the two datasets, SG1 and SG2, using two
techniques: temporal Principal Components Analysis (tPCA) and spatial Independent
Components Analysis (sICA), two data decomposition techniques widely used in ERP
research [19]. tPCA decomposes each ERP into a sequence of spatiotemporal patterns, based
upon the distribution of the ERP's temporal variance. The superposition of these patterns, in
which each captures a topography with a distinct temporal evolution, reconstruct the original
ERP. sICA is an analogous ERP decomposition, but is based upon the statistical
independence of the ERP's spatiotemporal patterns in the decomposition sequence [20, 21].
To quantify the spatiotemporal characteristics of the extracted patterns, two alternative
metric sets, m1 and m2, were applied to the two tPCA and the two sICA derived datasets.
For a complete explanation of these alternative metrics, please see Appendix in [7].

In summary, the simulated ERP data generation process yielded a total of eight test datasets,
reflecting a 2 (subject groups) × 2 (metric sets) × 2 (decomposition methods) factorial
design. The reason for including these three factors (simulated subjects, alternative metrics,
and alternative decomposition methods) was to test the robustness of our matching method
to different sources of heterogeneity across the different datasets.

3.2. Metric Matching Experiments
The experiment is conducted on the simulated datasets described in Section 3.1. The test
cases for the metric matching discovery experiment are derived as follows: each test case
contains a source and target dataset. The source dataset is derived from one subject group
(SG1 or SG2) characterized with one metric set (m1 or m2) and formulated under one
decomposition method (sICA or tPCA). The target dataset is derived from the other subject
group, using the alternative metric set and decomposition method. This yields 2 (subject
groups) × 2 (metric sets) × 2 (decomposition method) = 8 test cases, each of which includes
two different datasets, two alternative metric sets and two decomposition methods. In order
to test the robustness of the proposed methods, we replicate the datasets for each test case
into five copies with different random ordering of the instances, resulting in a total of 40
enriched test cases.

We test our method on each of these test cases. The overall result is presented in Section 4.1.
Table 2, for example, shows the detail of one individual result calculated from tPCA-derived
data SG1-m1 and SG2-m2. Cell values indicate the Euclidean distance between two point-
sequence curves representing two ERP metrics (row header and column header that meet at
the cell). Highlighted cells are the minimum distance assignments found by the Hungarian
Method. The assignments indicate matchings discovered by our methods. For example, from
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this table we can derive the following matchings: IN-O1↔IN-LOCC, IN-O2↔IN-ROCC,
IN-C3↔IN-LPAR, etc. Note that the orders of the row and column header labels are such
that the golden standard matching falls along the diagonal cells. Therefore we can easily
conclude that the precision of matching in this test case is 9/13=69.2% since 4 out of 13
cells are shifted off from the diagonal.

3.3. Pattern Matching Experiments
We design three test cases for pattern matching using different cluster analysis schemes to
extract patterns from ERP data. The goal is to simulate different ERP analysis scenarios that
leverage varying amounts of domain knowledge. The three cases are as follows:

1. Constrained EM clustering (clustering with known number of clusters);

2. Unconstrained clustering with postprocessing (clustering without a priori
specification of the number of clusters, but with expert post-processing);

3. Unconstrained clustering (clustering without specifying number of clusters).

In the first case, the EM algorithm is performed and number of clusters is set to 5,
conforming to the number of latent patterns that we modeled when generating the simulated
dataset. The clusters labels are conveniently labeled according to corresponding pattern
labels determined by the EM algorithm.

In the second case, our domain expert examines the EM clustering results and collapsed
similar clusters or drop outliers based on the distribution of spatial and temporal metrics.
Note that this process could be partly or fully automated in principle, but was carried out by
manual inspection of the clustering results in this case.

In the third case, we perform the EM algorithm without setting the number of clusters. The
clustering result is then aligned to a priori pattern class labels and outliers are dropped.

Experiment results for the three test cases are shown in Section 4.2. We also keep a record
of all detailed individual matching results. Table 3, for example, shows an individual
matching result calculated from two clusterings derived from datasets SG01_tPCA_m1 and
SG02_sICA_m1 in case study 1. Each cell value represents the density profile-based
similarity measure. The column and row header elements in the table are cluster labels
(aligned to pattern class labels). They are listed in the same order so that the golden standard
matching falls along the diagonal cell. The highlighted cells represent the maximum
similarity assignment. The accuracy of matching induced from this assignment is 100%
since all highlighted cells fall along the diagonal. We also calculate the ADCO measure
(Section 2.3 for this assignment, which can be viewed as a measure that quantifies the
degree of confidence of the matching result.

By inspecting the matching results, domain experts can get a sense of the quantitative
relationship between two clusters in terms of density profile-based similarity measure. For
example, in Table 3, although the assignment selected by the Hungarian method suggests a
correct matching between two clusters labeled P1, one can also find that the P1 pattern in
one dataset is close to the MFN pattern in another dataset. Such information can be very
valuable to domain experts as it provides clues to the nature of the relationships between
different ERP patterns.
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4. Results
4.1. Metric Matching Results

Figure 6 and 7 illustrate the effect of subsequence reordering and postprocessing on point-
sequence curves IN-LOCC and IN-O1, which are derived from two tPCA-derived datasets
SG1_tPCA_m1 and SG2_tPCA_m2 with a random ordering of data points. IN-LOCC and
IN-O1 are a matching according to gold standard. As shown in the figure, the two point-
sequence curves are manifestly more similar after subsequence reordering and
postprocessing.

The robustness of the methods is assessed by evaluating the overall performance over the 40
test cases (described in Section 3.2). Table 4 summarizes the result in terms of precision for
each test case. The table consists of eight divisions, each of which illustrates the precision
measures for the datasets generated by five samples of replication to one of the original eight
test schemes with random instance ordering. Since the fact that the precision of matching by
making a random guess is almost zero and that the results demonstrate consistent
performance on randomly ordered data, the precision of our method appears markedly
robust. Combining the matching results in the 40 test cases into an ensemble model by a
majority vote of each individual matching, we obtain the ensemble matching result. The
overall precision is 11/13=84.6 We also carry out experiments to test the performance of
attribute matching based on the segmented statistical representation. The experiment are
conducted on the same 8 test cases together with a baseline method based on the SemInt
[12].

In the segmented statistical representation, an attribute can be represented as a :=< t1, ..., tn),
where ti = α· ci1 + β·ci2, ci1 and ci2 are mean and standard deviation respectively, α and β
are weights, and n is the number of clusters. In the experiment, α and β are empirically set
to 0.5. In the SemInt method, we configure the algorithm it to extract from each feature
value vector two discriminators, i.e., mean and standard deviation. The feature value vector
is then projected to a match signature characterized by these discriminators. A neural
network is trained based on datasets from the 8 test cases with one metric set and tested on
the rest datasets with the alternative metric set to determine the match.

The result for the comparative study is shown in Fig 8. Both the segmented statistical
characterization-based method (cen-com) and SemInt are run on the 8 test cases. Since they
are not sensitive to data ordering, they are not tested on randomly ordered samples. The
performance of the sequence similarity-based method (seq-sim) in each test case is shown as
the average of 5 randomly ordered replicate data. The result shows that both seq-sim and
cen-com significantly outperform SemInt. The reason is that both methods take into
consideration sub-structures (i.e., patterns) within the data, allowing for finer-grained
comparison of attributes.

The advantage of cen-com to SemInt can be illustrated by a simple conceptual example:

Suppose given 4 attributes, A1, A2 from one dataset and ,  from another, all centered
around zero (mean = 0), and each dataset can be split into two equal-size clusters, the mean
values of each cluster in different attributes are as follows: A1 = [10, — 10], A2 = [100,—

100], , , where the numbers in the brackets denote the mean
values of corresponding clusters in an attribute. SemInt would use the top attribute-level
distribution to represent attributes, in which case, since all attribute-level means are zero,
SemInt would not be able to find a matching. On the other hand, using our approach to
examine the distributions broken down to the pattern level, it is obvious to see A1 matches

to , and A2 matches to . This argument applies to all statistical indicators other than
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mean as well. Our hypothesis is that similar attributes should exhibit similar per-cluster
distributions.

Note that seq-sim and cen-com yielded similar results. These two methods can be viewed as
conceptually similar as they both utilize clustering structure in the data. It is worth noting
that cen-com can be further improved by automatic weight assignment through learning. In
this regard, it may prove to be more powerful, and more generalizable, than the simple
comparison of means and standard deviations.

4.2. Pattern Matching Results
Table 5–7 show the pattern matching results for the three test cases described in 3.3. The
column and header elements in each table represent the 8 test ERP data files. Every cell
element represents the ADCO score for cluster matching between the two data files
represented by the corresponding header and column elements. In all three test cases, pattern
matching was conducted on all 64 pairs of the test data files. Among the 64 pairs, 8 were
trivial (self matching). Further, due to the symmetric property of matching, only a half of the
remaining 56 need to be computed, leaving a total of 28 nontrivial cases for examination. In
other words, table 5–7 are symmetric matrices, with values on diagonal cells being 1.

We achieve 100% correct matching in all tests for case 1 and 2. It is worth noting, however,
the average ADCO score for case 1 is slightly higher than case 2. This conforms to our
intuition that the more domain knowledge we leverage during the cluster analysis process,
the more accurate the resulted clusters are.

The third test case is the only one where the proposed matching method outputs incorrect
result (marked cells in Table 7). This is due to the fact that we employ the least amount of
domain knowledge in case 3. Unconstrained EM clustering without specifying the number
of clusters causes the splitting of observations of a single pattern into two or more clusters.
This phenomenon leads to a many-to-many matching between clusters, which cannot be
effectively handled by the density profile-based matching method. Therefore the matching
result is the worst among the three cases (however it can still be considered a good result in
terms of error rate: 4 out of 28 matchings are incorrect). Note that the assignment of
observations to clusters and the corresponding splitting of observation is a function of the
metrics used to generate the dimensions and axis orientations of the multidimensional
attribute space. Observations that are close in L2 norm along one dimension of a
spatiotemporal attribute space may be farther away in L2 norm on a separate dimension of
an alternate attribute space instantiated by an alternate metric set. This is consistent with
mathematical topology, in which mathematical objects that are close in one topology, or one
generalized measure of distance, can be far apart in another topology, or an alternate
measure of distance.

5. Discussion
In this section we describe how our proposed methods compare with existing methods. We
then summarize the contributions, as well as the assumptions and limitations, of the current
study and outline some directions for future work.

Metric and pattern matching
As noted in Section 1.3, the problem of finding correspondences among alternative metrics
can be viewed as a schema matching problem. We have proposed a method that relies on
alignment of point-sequence similarity curves and examines the grouping structure of metric
values through cluster analysis. Consistent with our hypotheses, we found that our method
outperformed a well-known attribute matching method, SemInt. We further showed that our
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method performed as well as a method based on segmented central tendency. In addition,
the proposed method does not require overlapping instances in different ERP datasets.
Matching systems such as the iMAP [22] method that builds joint paths between two tables
through which data instances can be cross-referenced perform poorly on ERP datasets
because overlapping data instances from different ERP datasets are simply non-existent.

It is important to note the role of a priori knowledge (i.e., top-down methods) in our metric
mapping approach: subsequences (clusters) were labeled by domain experts, prior to
subsequence ordering. This was a necessary step, to ensure that metric values were
compared across datasets for like patterns. As a result, we were able to calculate distance
between point-sequence curves in a principled way. In future work, this labeling will be
done completely automatically, through application of our ontology-based classification and
labeling workflow [4, 5, 6, 7]).

In addition to the metric matching problem, our method handles a more profound challenge
for ERP data sharing and integration: ERP pattern matching. This challenge requires that we
discover correspondences among ERP patterns from datasets with non-overlapping
observations (i.e., different study participants). For this reason, we used cluster comparison
methods, which do not assume overlap in cluster membership across datasets. By contrast,
most previous methods have relied on evaluation of cluster membership ([13, 14, 15]). A
further advantage of our method is that it takes into account the multidimensional nature of
ERP data: ERP patterns are characterized by several attributes, such as time course (e.g.,
early or late), polarity (positive or negative), and scalp topography. We therefore chose a
clustering similarity index known as ADCO (Attribute Distribution Clustering Orthogonality
[16];) to represent clusters as density profiles. The ADCO measure can determine the
similarity between clusters based on the distribution of data points along each attribute.

Future work
The present study has provided important evidence on the use of matching methods to
address heterogeneities in ERP datasets from different studies of human brain function. An
important next step is to extend our methods beyond the current study, where we have made
several simplifying assumptions.

First, in formulating the metric and pattern matching problems, we have assumed one-to-one
correspondences between alternative sets of metrics and between sets of patterns from
different datasets. These assumptions may not be met in real-world applications. To address
this limitation, we propose to use unconstrained EM clustering in future studies. In
unconstrained EM, several clusters in one dataset may correspond to a single latent pattern
in another dataset [7]. This can result in many-to-many correspondences, and thus requires
that we relax the one-to-one matching constraint.

Second, the density profile (pattern matching) method requires that two datasets contain the
same or similar underlying clusters (i.e., the same latent patterns). The method allows that
these patterns might be characterized by distinct spatial and temporal metrics. At the same
time, it assumes that these metrics are, or can be, aligned. Thus, our method presupposes
that the metric matching problem has — in one way or another — already been solved.
Conversely, alignment of sub-sequences (metric matching) requires that the target and
source datasets contain the same subsequences (i.e., patterns). In other words, metric and
pattern matching are interdependent problems. In future work, we will address variability
across ERP metrics and ERP patterns simultaneously. That is, we will address the three-
dimensional assignment problem. If we succeed, this could lead to a fully automatic, data-
driven procedure for ERP integration.
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Finally, the simulated ERP data used in the present study were carefully designed to mimic
many, but not all, features of real ERP data. In particular, we minimized variability in
latency and spatial distribution of patterns across the datasets so that the data decomposition
and clustering of patterns would be tractable and relatively straightforward to interpret. In
future work, we will carry out additional tests on simulated datasets that are progressively
more complex along these dimensions. This will allow us to test the robustness of our
proposed matching methods in a systematic way. After we have evaluated our methods
across a wider range of simulated data, we will apply these methods to real ERP datasets,
such as those that have been collected, analyzed, and stored in our NEMO ERP ontology
database [5, 6, 8]. Again, however, it is important to note that ERP data are extremely
complex and — most importantly — that they contain unknown mixtures of patterns.
Therefore, it is only with the use of simulated data that we can test the robustness and
validity of our methods with any confidence.

6. Conclusion
In this paper, we have described a data-driven solution for two key challenges in the sharing
and integration of electrophysiological (brainwave) data. The first challenge, ERP metric
matching, involves discovery of correspondences among distinct summary features
(“metrics”) that are used to characterize datasets that have been collected and analyzed in
different research labs. The second challenge, ERP pattern matching, involves discovery of
matchings between spatiotemporal patterns or “components” of ERPs.

We have treated both problems within a unified framework that comprises multiple methods
for assignment (matching). The utility of this framework has been demonstrated in a series
of experiments using ERP datasets that were designed to simulate heterogeneities arising
from three sources: (a) different groups of subjects, (b) different measurement methods, and
(c) different spatiotemporal patterns (reflecting different pattern analysis techniques). Unlike
real ERP data, the simulated data were derived from known source patterns, providing a
gold standard for evaluation. We have shown that our method outperforms well-known
existing methods, such as SemInt, because it utilizes cluster-based structure and thus
achieves finer-grained representation of ERP attributes. We have further discussed the
importance of this work in the broader context of ERP data sharing, analysis, and
integration: While top-down (ontological) methods have played a key role in our project,
extensions of the present work could lead a fully automatic, data-driven framework for ERP
meta-analysis, enabling major breakthroughs in the science of human brain function.
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Figure 1.
(A) 128-channel EEG waveplot; positive voltage plotted up. Black, response to words; Red,
response to non-words. (B) Time course of P100 pattern for same dataset, extracted using
Principal Components Analysis. (C) Topography of P100 factor.
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Figure 2.
Sample ERP data A and B from two laboratories. The goal of metric matching is to find
correspondence between alternative sets of metrics M and M′; and the goal for pattern
matching is to find correspondences between different sets of patterns (P and P′).
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Figure 3.
Flowchart of the proposed approach. (left—metric matching, right—pattern matching.)
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Figure 4.

Two clusterings C = {c1, c2} and . Two attributes X (attribute 1) and Y (attribute
2) are discretized into 2 bins each. See [16] for details.
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Figure 5.
Top (A–C), Base model for generation of simulated ERP data. Bottom (D), Representation
of the scalp distribution of the 5 latent patterns. Approximate peak latency given in
parentheses.
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Figure 6.
(Left) IN-LOCC and IN-O1 point-sequence curves prior to grouping and reordering. (Right)
Labeled curves for metrics IN-O1 and IN-LOCC after grouping/reordering.
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Figure 7.
After normalization, smoothing, and interpolation of point-sequence curves in Fig. 6
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Figure 8.
Comparative study on the performance of three metric matching methods. Seqsim stands for
the proposed sequence-similarity-based method; cen-com stands for the segmented central
tendency based method; and SemInt is an existing method that uses statistical aggregations
to represent numeric attributes.
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Table 1

A sample similarity table between two sets of ERP metrics M and M′

M1
′ M2

′ · · · Mn
′

M 1 16415 11438 9443

M 2 11395 12394 6317

⋮ ⋱

Mn 9132 6384 8376
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