
HAL Id: hal-00777267
https://hal.science/hal-00777267

Submitted on 17 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Identification of spatial and temporal features of EEG
Nisrine Jrad, Marco Congedo

To cite this version:
Nisrine Jrad, Marco Congedo. Identification of spatial and temporal features of EEG. Neurocomput-
ing, 2012, 90 (1), pp.66-71. �10.1016/j.neucom.2012.02.032�. �hal-00777267�

https://hal.science/hal-00777267
https://hal.archives-ouvertes.fr


Identification of spatial and temporal features of EEG

Nisrine Jrad, Marco Congedo

GIPSA-lab CNRS, Grenoble Univ., 961 rue de la Houille Blanche, 38402 GRENOBLE

Cedex, France

Abstract

Classifying brain activities is a challenging task since Electroencephalography
(EEG) recordings exhibit distinct and individualized spatial and temporal
characteristics correlated with noise and various physical and mental activi-
ties. To increase classification accuracy, it is thus crucial to identify discrim-
inant spatio-temporal features. This paper presents a method for analyzing
the spatio-temporal characteristics associated with Event related Potentials
(ERP)s. First, a resampling procedure based on Global Field Power (GFP)
extracts temporal features. Second, a spatially weighted SVM (sw-SVM)
is used to learn a spatial filter optimizing the classification performance for
each temporal feature. Third, the so obtained ensemble of sw-SVM classifiers
are combined using a weighted combination of all sw-SVM outputs. Results
indicate that inclusion of temporal features provides useful insight regarding
classification performance and physiological understanding.

Keywords:
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1. Introduction

Brain Computer Interface (BCI) is a tool for direct communication be-
tween human and external devices [1]. Many BCIs make use of Electroen-
cephalography (EEG) signals to categorize two or more classes and associate
them to simple computer commands. EEG is a popular technology for BCI
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purposes due to its low-cost, portability and non-invasiveness. Classification
of EEG is not an easy task because this latter can only measure blurred cor-
tical activities due to the diffusion of the skull and the skin [2]. Furthermore,
recordings are highly contaminated by noise of various sources. Interestingly,
EEG signals often reveal various spatial and temporal characteristics. Thus,
it is important to characterize both spatial and temporal dynamics of EEG
data to provide reliable BCI control.

Usually spatial spatial decomposition is performed to extract spatial fea-
tures [3, 4, 5, 6]. Signal-processing criteria like the Signal-to-Noise Ratio
and ratio of class variances [3, 6, 7] have been often employed for Evoked
Response Potential (ERP). These methods are based on the assumption of
the instantaneous and approximately linear relation between the amplitudes
of the generating cerebral electrophysiological current sources and the am-
plitude of the observed scalp potential field. The idea is to find a linear
transformation of the data optimizing the extraction of the relevant EEG
spatial feature and the noise suppression. The performance of such filters
mainly depends on the accuracy of spatial covariance estimations and is jeop-
ardized by the non-stationary nature of the noise. Although a relation might
be found between the objective functions of these aforementioned criteria
and class separability, this relation has, to the best of our knowledge, never
been addressed explicitly. Hence, spatial filter can be suboptimal from the
classification point of view. Another limitation of these methods is that spa-
tial decomposition is performed in a specific time window. However, ERPs
reflect several temporal components, thus, spatial decomposition should be
performed for each interesting interval occurring in the pre-fixed window.

Recently, some algorithms have been proposed to study where the dis-
criminative information lies into the spatio-temporal plane. They visualize
a matrix of separability measures into the spatio-temporal plane of the ex-
perimental conditions. The matrix is obtained by computing a separability
index for each pair of spatial electrode measurement and time sample. Several
measures of separability have been used, for instance the signed-r2-values [3],
Fisher score and Student’s t-statistic [8], or the area under the ROC curve [9].
Separability matrix should be sought as to automatically determine intervals
with fairly constant spatial patterns and high separability values. This proves
difficult and heuristic techniques are often employed to approximate interval
borders. In addition, the three first aforementioned measures rely on the
assumption that class distributions are Gaussian, which is seldom verified.

To overcome all these drawbacks, we develop a spatio-temporal data
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driven decomposition technique. A two-stage feature extraction technique
is proposed. First, a time feature extraction is performed based on Global
Field Power (GFP) [10], defined for each time sample as the sum of the square
potential across electrodes. Second, a spatially weighted SVM (sw-SVM) is
used to learn for each time interval a sparse spatial filter optimizing directly
the classification performance [11]. Finally, the ensemble of sw-SVMs ob-
tained on selected temporal features are combined using a weighted average,
to get a robust decision function.

The remainder of this paper is organized as follows. The proposed method
is introduced in Section 2. Section 3 accounts for experiment and data set
description. Section 4 shows and discusses experimental results. Finally,
Section 5 holds our conclusions.

2. Method

Background brain activities, irrelevant to BCI tasks, continuously gener-
ate EEG signals that can be recorded almost anywhere over the scalp. These
signals interfere with the EEG signals triggered by stimuli. Interestingly,
post-stimulus signals are generated in particular regions of the brain at a
given interval of time. Hence, they present specific spatial and temporal
characteristics. This section describes a method for analyzing ERPs spatial
and temporal characteristics considering the sequence :

• a temporal feature extraction,

• a spatial feature extraction embedded in a classification scheme,

• an ensemble of classifiers learning technique.

2.1. Problem description

In the following, we consider BCI applications with two classes of action
providing a training set of labeled trials from which a decision function is
learned. The decision function should correctly classify unlabeled trials. Let
us consider an EEG post-stimulus trial recorded over S electrodes in a short
time period of T samples as a matrix X̃p ∈ R

S×T . Hence, the entire available
set of data can be denoted {(X̃1, y1), ..., (X̃p, yp), ..., (X̃P , yP )} with yp ∈
{−1, 1} the class labels. Our task consists on finding the spatio-temporal
features that maximize discrimination between two classes.
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2.2. Temporal features

To select temporal intervals in the ERP where discriminative peaks ap-
pear, Global Field Power (GFP) [10] is computed on the difference of the
grand averages of the two class post-stimulus trials as following:

(GFP 2)t =
1

S

S
∑

s=1









∑

p|yp=1

(X̃p)s,t −
∑

p|yp=−1

(X̃p)s,t









2

, (1)

(GFP 2)t is the square of Global Field Power at a given time sample t and
(X̃p)s,t is the EEG recording of trial p at electrode s and pth post-stimuls
time sample t.

Pronounced deflections with large peaks, denoting big dissimilarities be-
tween the two activities, are associated with large GFP values. Windows
involving significant temporal features are chosen as intervals where GFP is
high relative to the background EEG activity.

To select significant windows we require a statistical threshold for the
observed GFP of the difference grand average trials in the two classes. Such
threshold is estimated with a resampling method as the 95th percentile (5%
type I error rate) of the appropriate empirical null distribution. For Q and R
observed single trials in classes labeled 1 and −1, respectively, we resample
Q and R trials with random onset from the entire EEG recording. We com-
pute the difference of the grand average of the Q and R random trials and
retain the maximum value of GFP. The procedure is repeated 1000 times
and the sought threshold is the 95th percentile of such max-GPF null distri-
bution after 10% trimming. The trimming makes the estimated GFP more
robust with respect to outliers given by eye blinks and other large-amplitude
artefacts. Taking the max-GPF at each resampling ensures that the nominal
type I error rate is preserved regardless the number of windows that will be
declared significant.

Noteworthily, contiguous samples with high GFP coincide with stable
deflection configurations where spatial characteristics of the field remains
unchanged [10]. Since within each selected time window the spatial pattern
is fairly constant, average across time is calculated. Averaging over time rules
out aberrant values, reduces signal variability and attenuates noise. Besides,
it reduces dramatically time dimensionality to I where I is the number of
significant time features.
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2.3. Spatial features and classifier : sw-SVM

Temporal filtering provides us withXp ∈ R
S×I trials. Each column vector

(xp)i ∈ R
S reflects a spatial characteristic at a temporal feature i ∈ {1, ..., I}.

Hereafter, xp will refer to (xp)i for convenience. Hence, I spatial filters are
learned over the different time components.

In this work, spatial filtering is learned jointly with a classifier in the
theoretical framework of SVM. This method was proposed in [11] and called
sw-SVM for spatially weighted SVM. It has the advantage of learning a spa-
tial filter so as to improve separability of classes whilst reducing classification
errors. It involves spatial feature weights in the primal SVM optimization
problem and tunes these weights as hyper-parameters of SVM. We denote
by d = [d1, d2, ..., dS]

T ∈ R
S the spatial filter and D a matrix with d on the

diagonal. Matrix D is learned by solving the sw-SVM optimization problem:

min
w,b,ξ,D

1

2
‖w‖2 + C

P
∑

p=1

ξp

subject to yp(〈w,Dxp〉+ b) ≥ 1− ξp and ξp ≥ 0 ∀p ∈ {1, . . . , P}

and

S
∑

s=1

d2s = 1 ∀s ∈ {1, . . . , S}, (2)

where w ∈ R
d×1 is the normal vector, b ∈ R is an offset, ξp are slack variables

that ensure a solution in case data are not linearly-separable, and C is the
regularization parameter that controls the trade-off between a low training
error and a large margin.

By setting to zero the derivatives of the partial associated Lagrangian
according to the primal variables w, b and ξp the optimization problem of
the dual formulation can be written as :

min
D

J(D) subject to

S
∑

s=1

d2s = 1. (3)

with

J(D) =


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maxα 1Tα− 1

2
αTY TXTDTDXY α

subject to yTα = 0
and 0 ≤ αp ≤ C ∀p ∈ {1, . . . , P},
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with α is the vector of Lagrangian multipliers, X = {x1, ...,xP}, yT =
{y1, ..., yP} and Y = Diag(y). The optimization problem, as stated in
(3), is inherently non-convex since the boundary of the unit ball given by
{
∑S

s=1
d2s = 1} is not a convex set. To remove this non-convexity, we perform

a variable substitution D̃ = DTD. We arrive at the following optimization
problem which is convex in D̃:

min
D̃

J(D̃) subject to

S
∑

s=1

d̃s = 1. (4)

This is clearly an instance of the Multiple Kernel Learning (MKL) prob-
lem proposed in [12] where one homogeneous degree one polynomial kernel is
used over electrode s samples and d̃s is its corresponding positive mixing co-
efficient. Authors of [12] prove that the search for the optimal D̃ is convex,
yielding fast convergence toward the optimal conditional solution. Hence,
the optimization problem can be solved efficiently using a gradient descent
as in SimpleMKL [12]. For effect of the ℓ1 constraints over d̃s, the sought
spatial filters will be sparse. Linear sw-SVM can be extended to a non-linear
sw-SVM by replacing inner products with a suitable kernel.

To solve this sw-SVM optimization problem, we proceed by alternating
the search for α and D̃. For D̃ fixed, the problem is reduced to a ℓ1 soft
margin SVM with the only difference being that xp is replaced by D̃xp in
the inequality constraint. Primal and dual objective functions of SVM are
convex, and their solution is obtained by any of the available SVM solver
[13]. For the so obtained α, the minimization problem over D̃ is smooth and
convex [14]. Hence, we can use a reduced gradient method which converges
for such functions [15]. Once the gradient of J(D̃) is computed, D̃ is updated
by using a descent direction ensuring that the equality constraint and the
non-negativity constraints on {d̃s} are satisfied. These two steps are iterated
until a stopping criterion is reached. The stopping criterion we chose is based
on a norm variation of the sensor weights.

2.4. Ensemble of sw-SVM classifiers

As seen above, a way to reduce EEG variability is to perform signal aver-
aging across time. Another way to reduce this influence, from a classification
point of view, is to use an ensemble of classifiers. This technique has proven
efficient in [16, 17] where a set of classifiers were learned on different subsets
of a given training set. Classifier outputs were then averaged. In this work,
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we propose to learn an ensemble of sw-SVMs, each one on a given temporal
feature and to process a weighted average on sw-SVM outputs. Weights are
used to keep significant classifiers and discard insignificant ones.

Weights are set as the product of two functions growing proportionally
with the accuracies of the two (positive and negative) classes, evaluated on
a validation set. If TP , FP , TN and FN hold for True Positive, False
Positive, True Negative and False Negative of a given sw-SVM classifier,
respectively, then Positive Predective Value (PPV ) and Negative Predective
Value (NPV ) can be defined as :

PPV =
TP

TP + FP
, NPV =

TN

FN + TN
,

and weights associated to the classifier are such as:

{

0 if PPV < 0.5 or NPV < 0.5
tan(2(PPV − 0.5))× tan(2(NPV − 0.5)) otherwise

(5)

This weighting strategy is ideal for unbalanced data sets since it privileges
classifiers that jointly present good accuracies for both classes.

3. Experiment

The proposed method was evaluated on a visual feedback Error Related
Potentials (ErrP) [18] experiment. Eight healthy volunteers (including three
women) participated in this experiment. All subjects were BCI-naive at the
time of the experiment. Subjects had to retain the position of an ensemble
of two to nine digits. The digits were displayed as a sequence in square boxes
and evenly distributed along a circle. When the sequence disappeared, a
target digit was shown and subjects were asked to click on the box where
it previously appeared. A visual feedback indicates whether the answer was
wrong or correct.

The experiment involved two sessions that lasted together approximately
half an hour. Each session consisted of six blocks of six trials, for a total of
6× 6× 2 = 72 trials.

The temporal order of each trial, illustrated in Figure 1, is detailed next.
The score, initially zero, was displayed for 3000 ms followed by a fixation
cross, which was in turn displayed for 3000 ms. Then the memorization se-
quence started with variable duration depending on the number of digits the
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Fixation cross
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res
ult
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Figure 1: Temporal diagram of one ErrP trial.

subject had to memorize. When it ended the subject was asked to click on the
box where the target digit had appeared. Once the subject had answered the
interface was paused for 1500 ms and then turned the clicked box into green
upon a correct answer or into red upon an erroneous answer. This feedback
lasted for 2500 ms. The 1500 ms preceding the feedback was introduced to
avoid any contamination of ErrP by beta rebound motor phenomena linked
to mouse clicking [19]. The subject was then asked to report if the feed-
back (correct/error) matched his expectation by a mouse click (”yes”/”no”).
Following his answer a random break of 1000 ms to 1500 ms preceded the
beginning of the new trial. The number of digits was adapted with an algo-
rithm tuned to allow about 20% errors for all subjects. The mean error rate
(standard deviation) was equal to 17.87(±4.64)% of the trials.

Recordings of the EEG were made using 31 sensors from the extended
10/20 system. The Mitsar 202 DC EEG amplifier was used for signal ac-
quisition. We used one ground positioned on the forehead and two earlobe
references. The acquisition software links the two references digitally and
computes one common reference for all cephalic sensors. During acquisition,
EEG was band-pass filtered in the range 0.1−70 Hz and digitized at 500 Hz.

4. Experimental results

4.1. Preprocessing

Raw EEG potentials were first re-referenced to the common average by
subtracting from each sensor the average potential (over the 31 sensors) for
each time sample. Many studies report two peaks, Ne and Pe, as the main
components of Error Related Potential components [18]. Ne shows up about
250 ms after the response as a sharp negative peak and Pe shows up about
300 to 500 ms after the response as a broader positive peak. According to
these knowledge, only a window of 1000 ms posterior to the stimulus has
been considered for each trial, which results in 500 samples per sensor. A
1− 10 Hz 4th order Butterworth filter was applied as error related potentials
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Figure 2: Top : GFP computed on the difference of the grand average error-minus-correct
for 1s trials, selected intervals and topographies associated. Middle : the difference com-
puted on electrode FCz. Bottom : accuracies for error (blue bar) and correct (green bar)
classes and sw-SVM associated weights (red bar, normalized between 0 and 1).

are known to be a relatively slow cortical potential. No artifact rejection
algorithm was applied and all trials were kept for analysis.

4.2. Cross Validation

Single trial classification of ErrPs was assessed using a 5-Cross Validation
technique. Because of the limited number of trials, temporal and spatial
extraction were performed on four subsets. sw-SVM was trained with a
given regularization parameter C (selected from a set of pre-defined values
of C) and weighted using (5). Performances were computed on the remaining
subset. For each value of C, this process was repeated five times for a given
subject and averaged. The highest average accuracy was reported.

4.3. Results

Figure 2 shows the average of the difference error-minus-correct for chan-
nel FCz of subject 7. It also reports GFP computed on the difference average.
Five components are to be noted. A negative deflection can be seen around
240ms after the feedback and a second positive component occurs about
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Figure 3: Selected time intervals are shown in white pixels, for each of the 8 subjects and
5 partitions. Each matrix refers to a subject where columns hold time-course and rows
hold partitions.

350ms. Three more peaks are also detected; a negative deflection around
500ms, a less pronounced negative deflection around 700ms and a small pos-
itive deflection around 800ms.

Scalp potentials topographies associated with the five extracted temporal
features are also shown on Figure 2. The first negative peak seems to be
occipital whereas the second positive peak covers a rather fronto-central area.
The third peak covers a parieto-central area, the fourth peak covers the whole
right hemisphere and the last one is more central.

Figure 2 shows accuracies for error and correct classes for each sw-SVM
and their corresponding weights (normalized between 0 and 1). Only sw-
SVMs learned on the most pronounced peaks (second and third) show good
accuracies in both classes and are thus retained.

An important question is whether time interval selection, found by GFP,
are consistent across different partitions of the data and across subjects.
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Figure 4: From left to right: performances of classical SVM, sw-SVM and the proposed
method for the 8 subjects. Mean (std) accuracies across the 8 subjects are of 70.71(10.77),
80.71(6.61) and 87.80(3.63) respectively.

Figure 3 shows, for each subject, and each of the five partitions, temporal
intervals (in white) selected on the ErrP data set. Because of the very small
number of trials used in each partition, some inter-partition differences can
be noted in these data, but overall, the procedure appears robust and mean-
ingfull. Latencies, thus selected time intervals, are different from subject to
subject, which is not surprising. However, for almost all subjects, an impor-
tant activity is noted between 400 and 600ms. These findings confirm those
of [18] where a negative deflection, following an incorrect visual feedback of
a time-production task, peaked at 330ms with a duration of 260ms. This
witnesses in favor of the effectiveness and the consistency of the proposed
temporal feature extraction.

Concerning classification results, figure 4 shows the 5-Cross Validation
performance provided by a classical SVM approach where all electrodes were
used, the sw-SVM where only one spatial filter was used on the whole trial
duration and the proposed method where spatio-temporal features were ex-
tracted. The proposed method proved constantly superior to SVM and sw-
SVM. A paired Wilcoxon signed-rank test was evaluated to compare the
proposed method to SVM and sw-SVM and p-values of 0.0078 and 0.0391
were obtained. We conclude that, inclusion of temporal features along with
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learning an ensemble of classifiers, provide with superior performance.

5. Conclusion

Spatio-temporal feature identification was addressed. An analysis of
Global Field Power highlighted time periods of interest where effects are
likely to be the most robust yielding to a data-driven temporal feature ex-
traction. For each temporal feature, a spatial filter was learned jointly with
a classifier in the SVM theoretical framework. Spatial filters were learned to
optimize classification performance. A weighted averaging on the so obtained
ensemble of classifiers yielded to a robust final decision function. Experimen-
tal results on Error-related Potentials illustrate the efficiency of the method
from a physiological and a machine learning points of view. Further research
may extract all relevant aspects of brain post-stimulus dynamics recorded in
EEG (spatio-temporal-frequential).
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