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Abstract

A key attribute of the brain is its ability to seamlessly integrate sensory information to form a multisensory representation
of the world. In early perceptual processing, the superior colliculus (SC) takes a leading role in integrating visual, auditory
and somatosensory stimuli in order to direct eye movements. The SC forms a representation of multisensory space
through a layering of retinotopic maps which are sensitive to different types of stimuli. These eye-centered topographic
maps can adapt to crossmodal stimuli so that the SC can automatically shift our gaze, moderated by cortical feedback.
In this paper we describe a neural network model of the SC consisting of a hierarchy of nine topographic maps that
combine to form a multisensory retinotopic representation of audio-visual space. Our motivation is to evaluate whether
a biologically plausible model of the SC can localize audio-visual inputs live from a camera and two microphones.
We use spatial contrast and a novel form of temporal contrast for visual sensitivity, and interaural level difference
for auditory sensitivity. Results are comparable with the performance observed in cats where coincident stimuli are
accurately localized, while presentation of disparate stimuli causes a significant drop in performance. The benefit of
crossmodal localization is shown by adding increasing amounts of noise to the visual stimuli to the point where audio-
visual localization significantly out performs visual-only localization. This work demonstrates how a novel, biologically
motivated model of low level multisensory processing can be applied to practical, real-world input in real-time, while

maintaining its comparability with biology.
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1. Introduction

A key attribute of the brain is its ability to seamlessly
integrate sensory information to form a multisensory rep-
resentation of the world. Examples such as the McGurk
and MacDonald [1] and rubber hand [2] effects and other
perceptual phenomena [3, 4] demonstrate that the pro-
cessing of one sense can influence significantly what we
perceive in another. This influence occurs in both late
and early stages of perceptual processing: as a result of
semantic similarity in crossmodal stimuli, or because of
spatial and temporal similarity [5]. Understanding how
such seamless fusion of sensory information is achieved
is therefore an important goal, and one which may have
a significant impact on computational systems if we can
replicate it.

In early perceptual processing, the SC takes a lead-
ing role in this multisensory integration |6]. The SC is a
paired structure found in the midbrain of vertebrates, also
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known as the optic tectum in non-mammalian species [T7].
As an evolutionary stable structure, the SC successfully
combines sensory information in order to direct eye move-
ments. In mammals, this involves combining visual, audi-
tory and somatosensory stimuli through layers of aligned
topographic maps [5] with a retinotopic organization [8].
The neurons which represent this multisensory space are
significant in that they have a superadditive response to
weaker crossmodal stimuli [9], which makes the SC par-
ticularly important, for example, from a survival perspec-
tive. Imagine you are being stalked by a predator which
is moving quietly and is camouflaged. The weak cross-
modal audio-visual stimuli detected from the quiet sounds
and camouflaged motion will provoke a disproportionately
strong response from the SC (called multisensory enhance-
ment), thus directing your eyes to the approaching preda-
tor |7] even if conflicting loud sounds are present elsewhere
(multisensory suppression). As a pivotal structure in the
saccadic system with significant influence over a large num-
ber of subcortical and cortical areas (Fig. [Il), the SC is
therefore an important structure to study in neuroscience
and computationally.

Computationally the SC has four key principles. First,
the SC uses aligned topographic maps that develop spatial
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(a) Ascending and Descending Inputs

(b) Sensory and Movement Outputs

Superficial and deep layers of the SC 10 inferior olive SNr substantia nigra pars reticulata
SZ stratum zonale LCN lateral cervical nucleus TN trigeminal nucleus
uSGS upper stratum griseum superficiale LP lateral posterior nucleus VLG  ventral lateral geniculate
ISGS lower stratum griseum superficiale ~MD medial dorsal nucleus Z1 zona incerta
SO stratum opticum MdRF  medullary reticular formation
uSGI upper stratum griseum intermediale nBIC nucleus of the brachium of the IC Descending connections
ISGI lower stratum griseum intermediale nOT nucleus of the optic tract AES  anterior ectosylvian sulcus
SAI stratum album intermediale nPH nucleus prepositus hypoglossi FEF  frontal eye field
SGP stratum griseum profundum OPt olivary pretectal nucleus INS insular cortex
SAP stratum album profundum oT optic tract LS lateral suprasylvian cortex
PI posterior interposed nucleus PEF  parietal eye field
Ascending connections PN parabigeminal nucleus PS posterior suprasylvian cortex
CL central lateral nucleus PPRF  paramedian reticular formation of S1 primary somatosensory cortex
cMRF  central mesencephalic reticular the pons SEF supplemental eye field
formation PPt posterior pretectal nucleus A\t primary visual cortex
DCN dorsal column nuclei riMLF  rostral interstitial nucleus of the V2 secondary visual cortex
DLG dorsal lateral geniculate medial longitudinal fasciculus V3 third visual complex
DLPn  dorsolateral pontine nucleus RIP nucleus raphe interpositus
1C inferior colliculus SNI pars lateralis

Figure 1: Known major connectivity of the mammalian SC showing its wide ranging influence: (a) ascending and descending inputs, and (b)
sensory feedback and movement initiation outputs. For convenience, ipsilateral and contralateral areas are shown combined. The superficial
layers of the SC consist of the SZ which is cell free, uSGS and ISGS, and SO, all processing visual stimuli only. The deep layers of the SC
are the uSGI and 1SGI, SAI, SGP, and SAP, of which the SGI and SGP are known to process multisensory stimuli. Connections within the
layers of the SC are not shown but are known to descend from the SGS, through the SO to the SGI. The ipsilateral and contralateral areas of
the SGS, SO, SGI and SGP are also connected to the deep SC of their opposing areas, terminating mostly in the SGI. Constructed from [10].

representations of each different sensory stimuli. Each map
is aligned to form an eye-centered (retinotopic) representa-
tion with vision driving the alignment |7]. Second, during
normal postnatal development, the SC gains the ability to
integrate the senses after the first few months. Crucially,
however, in abnormal development where one sense is de-

prived, the ability to learn how to integrate is not lost,
and integration is gained after only a short period of ex-
posure to crossmodal stimuli |[11]. Here then, the SC not
only demonstrates automatic development, detection and
alignment of sensory information, but it also shows post-
developmental adaptation. Third, while the localization of



crossmodal stimuli in the SC is autonomous, superadditive
multisensory integration is moderated by cortical feedback
from unisensory areas |12], demonstrating how different
parts of the perceptual system work together through both
feed forward and feedback connections. Fourth, the SC is
a prime example of a real-time sensorimotor system that
fuses crossmodal stimuli to react rapidly; in as little as
80ms for express saccades [13].

We might exploit these principles in numerous ways.
For example, as a real-time sensorimotor system, compu-
tational principles extracted from the SC may have a num-
ber of applications, such as controlling binocular gaze in
robotic systems [14] or enhancing camera surveillance to
focus on small-scale anomalies or multisensory cues [15].
This is further enhanced with the ability to adapt, which
could be used to make sensory systems more robust or
allow them to be trained to discriminate between differ-
ent types of crossmodal stimuli, such as for audio-visual
speech recognition [16]. The ability to automatically align
sensory representations could be applied in medical sys-
tems, such as in operating theaters to combine, say, fMRI
and EEG data to aid surgery [17] in real-time. Lastly, the
feedback and cooperation between subcortical and cortical
areas that the SC exhibits may demonstrate how we can
include top-down influences in bottom-up processing [18§]
using neural computation. Learning from the SC through
modeling could therefore prove pivotal.

A number of different models of the SC have been de-
veloped to explore its properties. In general, models have
been used to explore how sensory stimuli are integrated in
order to characterize multisensory enhancement and sup-
pression. For example, Bayes’ rule and simple perceptrons
have been applied to describe the computational proper-
ties of enhancement and suppression [19,120]. Other math-
ematical models of integration have also been defined and
compared with biological data [21]. Similar analysis has
been conducted using neurobiologically motivated models
with explicit cortical feedback [22, 123, 124].

A small number of studies have modeled the develop-
ment and adaptation of sensory alignment. Simple Heb-
bian association with rate-coded neurons has been used to
align abstract audio and visual stimuli to produce a mul-
tisensory representation of space [25]. Other studies have
used a more neurobiologically motivated spiking model of
the inferior and superior colliculi coupled with spike-timing
dependent plasticity (STDP) to learn how auditory stimuli
can be re-aligned to displaced visual cues |26, [27].

By far the most extensive models have simulated align-
ment, multisensory integration and cortical feedback to-
gether because of their interdependence. An early model
by Grossberg et al. [28] examined the interaction between
visual and multimodal cues for reactive and planned eye
movement using a neurobiologically motivated model of
burst and buildup neurons found in the deep SC. With
this model |Grossberg et al! explored how different senses
can be automatically aligned and how enhancement and
suppression can be achieved through cortical feedback. A

similar model has also been used to explore the inter-
action between reactive and planned movement for anti-
saccades [29]. Perhaps the most capable neurobiological
model to date has been applied within a robot simulation
that learns to saccade to a target using head, neck and
eye movements |30]. However, despite this model’s com-
plexity, there has been no exploitation of the potential for
the SC to form the basis of a real-time fusion system go-
ing beyond mere simulations. For example, no model of
the SC has been applied to real-time video and audio in-
put. This is in contrast to the more established models
of cortical visual processing, such as those which explore
bottom-up [31] and top-down visual [18] attention. These
models combine visual-only topographic maps sensitive to
color, intensity, orientation and change in intensity over
time to highlight salient areas in images. They therefore
use very similar computational techniques to those em-
ployed in neurobiologically motivated models of the SC,
while they have also been deployed to operate in real-time
in, for example, robot platforms [32], albeit using only a
single modality.

While neurobiologically motivated models of the SC
have been used to explore key attributes of multisensory
integration, none have done this on a large-scale or in
real-time in the same way that visual-only attention mo-
dels have been applied. Applying a model of the SC to
real-world audio-visual stimuli may therefore offer us in-
sight into how such principles might be used for practical
computational intelligence (CI) tasks. An application of
a neuroscience model to a practical task would be signifi-
cant in that it would help us understand if computational
principles of low level sensorimotor brain structures can
be utilized. The development and application of practical
subcortical models is also significant for large-scale cortical
models [33,134] as they will allow us to explore how such
models behave when faced with real-world stimuli, aiding
the analysis of causal flow, such as in Darwin X [35], and
perhaps providing the hybrid architecture needed for us to
bridge the gap between large-scale brain simulations [36]
and cognitive architectures [37].

In this paper, we describe a behavioral model of the
SC that has sensory representations of visual and audio
space and combines these into a multisensory represen-
tation. While on the one hand this attempts to provide
a biologically plausible model of the SC by starting with
its connectivity and functional specialization, on the other
hand this is balanced with the desire to allow the model
to operate on real-time video and audio signals. Although
there are necessary abstractions made to achieve this, no-
tably the use of over 12,000 rate-coded neurons in a fixed
hierarchy, we demonstrate for the first time how a sub-
cortical computational neuroscience model can be applied
to real-world stimuli, and hence how such models may be
applied to practical CI problems. The model also includes
a novel method using temporal inhibition to discriminate
between visual stimuli moving in different directions.

In section [2] we explore the computational properties



of the SC in relation to known physiology and behavior
to drive the development of the model. In section [ we
describe the hierarchical topographic map architecture we
use to model the SC, including properties of the maps and
the required inhibition between neurons. In section [] we
evaluate the model on real-time audio-visual localization
and discuss the implications of the results. Finally in sec-
tion [Bl we summarize the contributions of this work and
relate it to the wider context.

2. Properties of the Superior Colliculus

The SC is a pivotal structure in the control of sac-
cadic eye movements [7] with connections to and from a
large number of brain areas [10] as shown in Fig. [l As
such it takes direct input from the retina for visual stim-
uli, auditory input from the inferior colliculus (IC) and
somatosensory input from the spinal cord and brainstem
(Fig. Mh). Additional feedback is also provided from the
visual, auditory and somatosensory cortical areas, some of
which are crucial for multisensory integration [12].

The main function of the SC is to move the sensory
organs of the head to focus on interesting stimuli. The
principal output from the SC is therefore to the brainstem
in order to initiate eye movement. This is achieved by
connections from neurons in the deep SC (SGI and SGP)
which are sensitive to both uni- and multisensory stimuli
to the PPRF and riMLF in the brainstem (Fig. [Ib) to
initiate eye movement. Similar connections also exist for
head movements via the spinal cord and with other motor
systems since gaze changes are important to many different
functions [10].

Although we have a good understanding of the anatomy
and connectivity of the SC, we know less about the de-
tailed operation of each layer and instead have a broader
understanding of the overall functionality and what it is
sensitive to, especially for visual processing in the super-
ficial layers and auditory processing in the deep layers.
For the purposes of this paper, we will not explore so-
matosensory processing further since we are focused only
on audio-visual integration.

2.1. Visual Sensitivity

Lettvin et al. [38] provided a detailed insight into the
visual stimuli key to the operation of the superficial layers
of the optic tectum of a frog. Their examination deter-
mined that retinal fibers terminate in the tectum to pro-
vide a layered continuous map of the retina. There were
four types of discrimination performed by these fibers and
their corresponding tectal layers. The first layer has re-
ceptive fields which detect static contrast at a sharp edge.
The second layer, perhaps highly specialized for a frog,
detects the motion of convex-shaped dark objects, such
as might be obtained from a fly. The third more general
layer responds to moving edges, while the fourth, again

more specialized, detects a sudden reduction in illumina-
tion, such as might occur if a predator’s shadow became
visible.

These findings are backed-up by studies on the mam-
malian SC. Sterling and Wickelgren [39] found that the
cat SC combined eye-centered information from both eyes
to detect motion, especially if the motion was horizon-
tal toward the periphery of the visual field. Similarly,
Rauschecker and Harris [40] found that cat SC neurons
were selective for the direction of motion. In a study on
the rhesus monkey, Wallace et al. |[41] also saw sensitiv-
ity to moving stimuli from the whole visual field, together
with an expanded representation of the foveal region. A
more recent study on the rat also shows that the SC is
selective for high contrast moving stimuli [42]. In humans,
these mammalian studies have been confirmed with data
from an fMRI study showing that the superficial layers are
sensitive to stimulus contrast and motion [43].

These insights show that across species, the SC 1) uses
retinotopic information from both eyes, and that the recep-
tive fields within this visual representation must be sen-
sitive to 2) stimulus contrast and 3) motion, especially
in particular directions for some species. Although there
is little evidence to understand where this information is
processed except within the superficial layers of the SC, it
presumably occurs in the SGS, which receives input from
the optic tract and visual areas of the thalamus [10]. This
visual sensitivity is then used in the deep layers of the SC
via the SO, as well as fed back to the optic tract to ignore
saccade related stimulus changes, and areas of the visual
thalamus, such as LP (Fig.[Ib), in order to influence later
visual processing, including attention.

2.2. Auditory Sensitivity

Auditory input to the SC principally comes from the
inferior colliculus. Sound localization in the IC results in
a spatial map varying by azimuth and elevation [44, |45].
This representation is formed using spectral cues for ver-
tical localization and through a comparison of binaural
signals using interaural level and time difference (ILD and
ITD) for horizontal localization over a range of sound fre-
quencies [46]. Projections from the IC terminate in the
SGI, with a topographic map of the auditory space formed
varying by azimuth and elevation [47, 48].

Despite ILD, ITD and spectral cues being used in the
auditory system for localization, sound representation in
the deep SC appears only to be generated from ILD and
spectral cues [49], with auditory neurons in the SC rapidly
(7 to 27ms) sensitive to a range of sound frequencies, with
white noise being most effective at producing a response [47].
Response rates of these neurons also increase with greater
sound intensity, although this increase is not linear, with
rapid increases if the intensity just exceeds the neuron’s
observed threshold.

Perhaps the most striking observation of the auditory
representation in the SC is that it is eye-centered [7], which
is in contrast to a head-centered representation that we



Table 1: Visual and auditory representation and sensitivity

Visual Auditory
Binocular Binaural
Representation  Retinotopic Topographic
Eye-centered Eye-centered
Sensitivity Contrast ILD for horizontal
Motion Spectral cues for vertical

would expect given that mammalian ears are either fixed
with respect to head position, or move independently to
the eyes. Here then, whenever the eyes move, proprio-
ceptive feedback causes the auditory eye fields to shift to
maintain correspondence |50]. This eye-centered represen-
tation allows the different sensory modalities in the SC to
be integrated, with evidence suggesting that visual pro-
cessing in the superficial layers drives the development of
eye-centered auditory representation [51].

In summary, auditory sensitivity in the SC 1) uses a
binaural, topographic and eye-centered representation of
the auditory space, with receptive fields rapidly sensitive
to 2) horizontal location using ILD and 3) vertical loca-
tion using spectral cues. However, a key part of the topo-
graphic representation is that it remains aligned with the
visual representation even when the eyes move relative to
the ears.

2.8. Properties of Integration in the SC

Table [Tl provides a summary of the visual and auditory
representation and sensitivity attributes of the SC. These
sensory representations in the superficial and deep layers
are brought together to form an eye-centered multisen-
sory representation of space. Multisensory enhancement
and suppression then operate within this representation
through cortical feedback [9] in order to prioritize output
from the SC to drive an appropriate saccade or fixate re-
sponse [52]. Computationally, we are therefore interested
in whether we can construct a model which implements
these uni- and multisensory representations in order to lo-
calize to an audio, visual or audio-visual stimulus in real-
time. For simplicity we do not implement cortical feedback
or motor control, using instead a simple neural mechanism
for integration providing a localization output for a fixed
audio-visual input.

3. Hierarchical Topographic Maps

In developing an appropriate method, we take inspi-
ration from rate-coded techniques that have been used to
model hierarchical processing with receptive fields [53, [54,
55,156]. Although rate-coded techniques are not as biolog-
ically plausible as other spiking or dynamic models [22, 123,
20, 27, 128, 129, 130], they do allow us to build an appropri-
ate architecture with clearly definable properties and ap-
ply appropriate learning algorithms. An example of this
is the model developed by Armony et al. [54] who used a

Figure 2: Neural architecture. Each neuron in the lattice is fully con-
nected to the input. Lateral inhibition is used to suppress activation
in neurons outside the winning neuron’s neighborhood. Temporal
inhibition across time steps is used to suppress activation of neurons
in the non-preferred direction of motion for the specific map.

hierarchy of interconnected modules, each consisting of a
single layer of neurons, to model auditory conditioning in
the rat amygdala [55]. Receptive fields in this model were
developed through a competitive learning algorithm [57]
based on Hebbian principles |58]. The developed repre-
sentations formed within the maps exhibited local proper-
ties of receptive fields, while the combination of modules
exhibited the required global behavioral properties of the
system. This work has been adapted to operate on two-
dimensional, visual inputs [59] with lateral inhibition, and
is similar to other competitive learning models of visual
processing [53, 56]. Crucially, this approach has been vali-
dated against animal behavior [55, 24], while being simple
enough to have the potential to operate computationally
in real-time [60].

3.1. Neural Model

The model defined in Pavlou and Casey [59] arranges
neurons into a hierarchy of maps, where each map is formed
from a two-dimensional lattice of neurons trained using a
competitive learning scheme with lateral inhibition. In
this paper we extend this to implement temporal inhibi-
tion (Fig. 2)).

Maps may take input direct from a source, such as an
image, or from one or more maps, or from a combina-
tion. Each neuron within a map is fully connected with
its input. Connectivity between maps is defined to model
the required functionally, such as to model connectivity
between the superficial or deep layers of the SC. The acti-
vation yr of a neuron at the location 7 in the map given an
input z5(t) at time step ¢ from a two-dimensional stimulus
is calculated as:

ur = az(t) + Y ws(t)wps(t) (1)
Vs
_ f(ur) if |7 — @l < h(t)
o= { f(uz — pyn) otherwise (2)



1 u>1
u O<u<l (3)
0 u<0

flu) =

where wyz(t) is the weight for input 5 to neuron .

Lateral inhibition is used so that the map acts as a
set of topographic feature detectors. This is achieved by
allowing neurons to compete over an input, such that the
neuron with the highest activation, ys = maxvrf(ur) at
location 72, inhibits all other neurons outside of its immedi-
ate neighborhood. The amount of inhibition is moderated
by a factor u (). Note that for multiple neurons with the
same activation f(us), ties are broken randomly.

The circular neighborhood radius h(t) can vary in size,
much like that used in Kohonen’s Self-organizing Map
(SOM) [61]], in order to allow the map to be more or less
selective in its response. This can be used during train-
ing to tune the receptive fields developed by the neuron
weights, or during normal feed forward operation to ex-
pand or restrict the number of neurons that respond to
an input. For example, with a neighborhood that restricts
output to just the winning neuron, when activated, the
winning neuron’s location corresponds to the input that
provokes the strongest activity. This enables the map to
select the most salient input. If the neighborhood was
larger, then the map selects the most salient area repre-
sented by a number of neurons. With inhibition g = 0
activity is enabled for all neurons in the map, and hence
the map selects all locations to which its weights are sen-
sitive.

Temporal inhibition across time steps is implemented
in the z7(¢) < 0 term in the weighted summation (). This
defines an amount by which the neuron is temporally in-
hibited, moderated by the temporal rate cv. This temporal
inhibition is determined by previous activity in the map,
such that:

zr(t) = PBzp(t — 1)+ yals (4)

Here, temporal inhibition decays as a factor S over time,
while a pre-determined pattern of inhibition I for each
neuron is used as a template, and z7(0) = 0. This allows us
to model dynamics observed in sensory neurons. For exam-
ple, neurons achieve motion detection using pre-filtering,
delay filtering and non-linear interactions [62]. One such
non-linear interaction uses inhibition for direction sensitiv-
ity where a neuron produces an inhibitory response when
motion is detected in a non-preferred direction. In essence,
our model neurons can inhibit others within the map in the
non-preferred direction in order to only permit responses
from neurons in the preferred direction.

Competitive learning has been used to train maps to
exhibit receptive fields |54, 53, 56]. For example, Linsker
[53] trained a four-layered architecture using Hebbian learn-
ing. With random activity in the first layer, subsequent
layers developed center-surround and orientation selective
cells. We have followed a similar approach to train a hi-
erarchy of topographic maps, coupled with exponentially

decreasing neighborhood and learning rate functions [24].
With a sufficient period of training on randomly selected
stimuli covering the input space, the neurons in each map
can learn to form simple Gaussian receptive fields of ap-
propriate sizes.

While previous work demonstrates how receptive fields
may be developed using competitive learning, the end re-
sult is a uniform set of receptive fields defined by the
weights of each neuron. Having determined how such
weights can be trained and the form they take, we can
therefore use a one-shot learning or fixed weight scheme
to precisely define the required receptive fields for each
neuron. For simplicity, we use a fixed weight scheme in
this paper.

We arrange a series of these topographic maps into a
hierarchy to model the visual and auditory processing in
the superficial and deep layers of the SC, as shown in Ta-
ble Il The hierarchy consists of nine maps with a total of
12,240 neurons. Connectivity between the maps is shown
in Fig.

8.2. Modeling Visual Processing in the Superficial Layer

Visual input to the model is taken from a single camera.
To reduce the input dimension we convert the color 320 by
240 pixel camera input into grayscale 40 by 30 pixel images
with values scaled to range from 0 and 1. From a single
camera the corresponding visual field is 72° azimuth by
55° elevation.

To detect spatial contrast we use center-on and center-
off receptive fields. When a neuron is tuned to respond to
a center-on receptive field, it will fire whenever the center
is exposed to light but the surrounding area is not. For
a center-off receptive field the neuron fires whenever the
surround is exposed to light but not the center. With
varying sized center areas, neurons can therefore detect
different scales of contrast. An established model of these
retinal center-on and -off receptive fields is the a difference
of Gaussians (DoG) [63]. Here,

)\ei(u) (5)

G(T;5,0;0) =
D(r; 8;0¢) G(7; 8005 Ac) — G(T: 5,05 As) (6)
where

os = poec (7)
1

Ae =
2702 ®
1

Ao =
2702 ©)

define an appropriate DoG where the ratio of the standard
deviations of the center and surround Gaussians p can be
set to a suitable value to model the responses observed
from retinal ganglion cells. Enroth-Cugell and Robson [63]
provide a range of suitable parameters for the DoG as ob-
served from ganglion neuron studies. Here we select the



Figure 3: Mammalian SC compared to model architecture. The model consists of a hierarchy of topographic maps where each map consists
of a lattice of neurons which are all fully connected to their input. Camera input (representing input from the optic tract) is scaled to form a
grayscale image with values in the range 0 to 1. Frame differencing is used across one time step to highlight absolute change. In the superficial
layer, maps are sensitive to spatial (center-on and center-off) and temporal (moving up, down, left and right) stimuli, modeling layers in
the SGS. Outputs from each visual map are combined in the SO prior to being used within the deep layer. The SGI within the deep layer
has audio input which is pre-processed to localize using ILD (representing input from the inferior colliculus). The ILD localization is then
represented within an auditory map and this is combined with visual information in a multisensory map for audio-visual localization. Note
that the auditory representation is wider (64 neurons) than the visual representation (40 neurons). One pixel in each map shown equates to

the value of the output of one neuron.

ratio p = 5.95 for center-on, which is the median of the
values reported from their study, with 1/p for center-off.

With a map that has the same number of neurons as
the input, we can define each neuron to correspond to the
equivalent location in the input by defining 7 the center
of the receptive field within the range of input values s.
With this set-up we could therefore have a number of dif-
ferent maps with varying DoG radii to select center-on and
center-off contrast at different scales [31]. However, as we
shall demonstrate in section [ for our selected image size,
one radii is sufficiently sensitive for a range of scales. We
therefore used one map for center-on and one for center-off
sensitivity with appropriate radii, each taking input direct
from the scaled image.

For motion detection, we use frame differencing as a
pre-filter and neural inhibition to promote sensitivity to
particular directions [62]. Frame differencing allows us to
model time within a rate coded model. The absolute differ-
ence between the current and last frame is calculated and
scaled to be from 0 (no change) to 1 (maximum change).
This is then input to four maps with center-on receptive
fields as described above that use inhibition to prefer up,
down, left and right motion. Center-on fields are used to
select the areas of change in the frame difference, while

appropriate inhibition patterns are defined for each of the
preferred directions through evaluation (further detail in
section ). We note that these four direction sensitive
maps could be replaced by a single map sensitive to any
motion without direction specific inhibition. However, in
the model we wish to test whether direction sensitivity can
be achieved since this is found in the SC [39, |40].

The output from each of these six maps represents pro-
cessing in the SGS, which are then combined into a single
visual map representing the SO. The output from each
map is weighted such that motion detection takes a higher
priority over static contrast. The fixed weight for the com-
bination is formed such that the weighted output from a
map for neuron 7 is added to the corresponding weighted
outputs from each map. For generality, the output from
each neuron is averaged over its neighboring neurons using
a Gaussian with A, = 1 and o, = 1 so that broad patterns
of activity can provoke a response in the combination.

8.8. Modeling Auditory Processing in the Deep Layer

The SC takes input from the IC for sound localization.
Here ILD information is used for horizontal localization
and spectral cues for vertical localization. Localization
using ILD is less accurate than spectral methods, but this



reflects the crude but rapid level of processing needed for
low-level gaze shifts. Note that consumer hardware, such
as Microsoft’s Kinect [64], is already capable of real-time
sound source localization using techniques such as beam-
forming [65], which is an analogue of ITD in that wave-
forms are correlated to determine the likely direction of a
sound. Unlike these waveform techniques, ILD is relatively
simple to implement, rapid and matches closely to the re-
quired functionality. We therefore use ILD for horizontal
localization with two microphones, which can be used to
localize on a single plane. For simplicity, we do not imple-
ment spectral techniques for vertical localization.

We implement the ILD algorithm defined by Birchfield
and Gangishetty [66] which allows us to localize by com-
paring the energy received between two microphones. The
root mean square (RMS) of a single frame of pulse-code
modulation (PCM) input from each microphone is calcu-
lated to give a sound pressure level (db SPL) which is con-
verted into sound intensity (db SIL) for each microphone.
The intensity is then used to describe the radius of a cir-
cle centered on each microphone. By assuming that sound
emanates from a plane with base defined by the straight
line joining each microphone, an estimate for the sound lo-
cation via the intersection of the circles can be calculated.
We also assume that the location falls at the point on the
circle which is closest to the center point between the two
microphones and ignore the so-called “cone of confusion”.
Full details of the algorithm can be found in [66].

The output location from the ILD algorithm is rep-
resented as a one-dimensional Gaussian input with maxi-
mum amplitude 1, standard deviation 1. The amplitude
varies in proportion to the maximum energy detected so
that the loudest sound gains amplitude 1. This is input to
the auditory map representing parts of the SGI. The map
is defined such that a vertical strip of neurons is active to
represent the input location. The weights for this map are
fixed to be Gaussian G(7;3;0; ) with A\, =1 and 0, = 1
and are set to be the same for each row of neurons.

3.4. Modeling Multisensory Processing in the Deep Layer

In order to form a multisensory representation of audio-
visual space, the output from the visual and auditory maps
are combined to provide the desired localization. The SC
provides feedback to the IC to translate the incoming head-
centered auditory space into an eye-centered space [50].
In our model, we fix the camera and microphone posi-
tions so that the eye- and head-centered representations
correspond. However, because the auditory space is larger
(spanning 114°) than the visual space (72°), the visual
and auditory map outputs are combined in a multisensory
map which has the same size as the auditory representa-
tion, but with the visual output placed centrally within
this. The visual and auditory map outputs are weighted
equally after scaling from their maximum output to 1 and
combined using a Gaussian function in the same way as
for the visual map.

Table 2: Input Parameters

Input S Value Range
Camera 40 x 30 Grayscale 0 to 255
Scaled Image 40 x 30 x¥(t) Oto1l
Frame Difference 40 x 30 |z%(¢) —2%(t—1)] Oto1l

Left Audio 22050 x 1 PCM 44.1kHz 16 bit signed
Right Audio 22050 x 1 PCM 44.1kHz 16 bit signed
ILD 64 x1 x2(t) Otol

S

4. Audio-Visual Localization

In order to evaluate the model, we first describe the
analysis we conducted to parameterize its visual sensitiv-
ity. A key part of this is evaluating the performance of mo-
tion detection using neural inhibition. Second, we test the
model on audio-visual stimuli. These latter tests mimic
those of Stein et al. [67] when exploring with cats how
coincident or disparate auditory stimuli changed visual lo-
calization. Video and audio data for the experiments were
captured using a Java implementation of the model at two
frames per secondl. This was run on a Dell Precision
M2400 laptop with an Intel Core 2 Duo P8600 (2.40GHz)
processor, 4GB of RAM, Logitech Live! Cam Voice USB
camera and two Logitech USB desktop microphones. The
laptop was running Windows XP Professional SP3, Live!
Cam driver version 1.1.2.410, Java Runtime Environment
1.6.0_26-b03 and Java Media Framework 2.1.1e. Table
shows the size (5), value and range of each input and input
filter used in the model.

4.1. Visual Sensitivity Analysis

To select receptive field sizes for the center-on and
center-off DoGs, we tested a range of Gaussian radii so that
the receptive fields spanned from 1 up to 15 pixels (half the
image height). Images were used with varying contrast (6
variations of background and foreground pixel intensity)
which contained a single target (contrasting squares at 5
locations). We found that a radius of 2 pixels for center-
on and 64 pixels for center-off gave the best localization
rates (93% and 53% respectively) across all the different
sized targets. This rate of localization on various sized
targets is sufficient to use a single map for center-on and
another for center-off. An alternative approach is to use
multiple maps, each with different radii in a similar way
to the Gaussian pyramid used by Itti et al. [31].

For motion detection, we tested a range of inhibition
patterns against moving Gaussian blobs with effective radii
varying from 1 to 12 pixels (bandwidths 0.25, 1, 2 and 4).
Each target was presented on its own, moving in one of
the four preferred directions. The inhibition pattern for a
neuron was determined by the map’s preferred direction.
The pattern was a simple rectangular strip with no inhi-
bition enabled (I7 = 0) starting from the adjacent neuron

1A Java demonstration of the system 1is available at
http://mypages.surrey.ac.uk/cssimc/superior_colliculus.zip,


http://mypages.surrey.ac.uk/css1mc/superior_colliculus.zip

and extending in the preferred direction (Fig. d]). Strip
widths of 1, 3, 15 and 41 pixels wide were tested to evalu-
ate the best performing area. All other neurons outside of
the strip were inhibited (I = —1). Note from (@) that the
pattern of inhibition is moderated by the winning neuron’s
output. This pattern therefore concentrates detection on
stimuli evoking the highest response.

By varying the strip width from a focused, small strip
to a strip which encompasses the whole width of the map,
we found that a strip of 3 neurons wide was the best at
detecting patterns moving up, down, left or right in the
single target motion tests with 94% accuracy. Here we de-
fine a correct localization as the highest activity in the map
coinciding with the center of the target blob 41 standard
deviation of the blob’s bandwidth (equivalent to the win-
ning neuron exactly locating the smallest, 1 pixel target,
up to a radius of 5 neurons locating the largest, 12 pixel
target). Since frame differencing is being used, the first
frame was ignored as this gave a biased correct localiza-
tion because of the large change between no input and the
first frame. For the larger blobs, localization performance
dropped to 76% because of the significant overlap between
successive frames preventing the frame differencing from
easily highlighting the center of the movement.

The method of inhibition is therefore effective at lo-
calizing single moving targets within a static background
with a range of target sizes. However, we are also in-
terested in its effectiveness in more complex scenes. To
analyze this performance, we constructed scenes consist-
ing of four blobs, each moving in one of the four preferred
directions. For the largest radii, the blobs overlapped sig-
nificantly. An example frame with blobs of bandwidth 1
is shown in Fig. @l

To detect up, down, left and right motion in the scenes,
we use four maps each selective for one of these preferred
directions. The maps achieved a combined mean localiza-
tion accuracy of 38% across the four directions and four

Figure 4: Example output from maps selective for up, down, left
and right motion using neural inhibition. Over successive frames the
maps filter motion in their preferred direction. Targets are Gaussian-
shaped blobs (bandwidth 1 pixel) in the input moving in the direc-
tions indicated by the arrows. For the ‘right’ map, the temporal
inhibition pattern is shown, highlighting that all activity outside of
the strip which is 1 neuron wide is inhibited.

Table 3: Localization of Four Moving Gaussian Blobs

Blob Bandwidth Up Down Left Right Mean
0.25 100% 17% 0% 59% 44%

1.00 66% 86% 0% 17% 42%

2.00 66% 52% 59% 59% 59%

4.00 62% 45%  38% 0% 36%
Mean 73% 50% 24% 34% 45%

blob sizes, using the same criteria for correct localization
as above. Blobs with a bandwidth matching closely to
the center-on receptive field size evoked the best localiza-
tion across all directions (45%), while the largest blobs
achieved the lowest localization (26%). The best perform-
ing strip radii were 1 and 3 neurons wide, both achieving
45% correct localization.

To illustrate the performance, the results for the 3 neu-
ron strip radius are shown in Table Bl The ability of the
model to detect all four moving blobs at any one time is
lower than detection of a single target. This is because of
the difficulty each map has in initially selecting the correct
stimulus. Prior to any inhibition being applied, the most
active neurons in the map are those that correspond to the
largest change in pixel intensity between frames. With four
identical blobs, all have an equal change in intensity and
therefore all have an equal chance of being selected as the
origin for the temporal inhibition even if the chosen blob
is not moving in the preferred direction for the map. With
ties of winning neurons broken randomly, these equally
likely situations can result in low detection rates. Once
the inhibition pattern coincides with the correct blob this
situation resolves itself. In Table Bl we can see that detec-
tion of up and down were typically resolved correctly and
achieved a mean of 73% and 50% respectfully over all of
the tested blob sizes, while left and right were more diffi-
cult to resolve with some blob bandwidths (0.25, 1 and 4)
not localized at all for different directions.

A second difficulty that the maps had in resolving the
preferred motion was due to the size of the blobs. Blobs
with bandwidth 4 overlapped in the input and therefore
frame differencing did not highlight the motion of the blobs.
This caused the overall performance to drop to 36% across
all directions for this bandwidth. What these demonstrate
is that, while single target blobs are localized with 94% ac-
curacy, once the scene becomes more complex the accuracy
depends significantly on the size of stimulus and how the
temporal inhibition patterns overlap if the stimuli have an
equal amount of change.

These experiments allowed us to tune the parameters
required to localize using either spatial or temporal con-
trast. Tabled shows the size (3), how the weights are con-
structed (wy5(t)), maximum map output observed during
testing, and combination map scaling for each map. Tem-
poral inhibition uses a rectangular strip of 3 neurons for
the up, down, left and right maps. All map outputs are
normalized from their maximum to 1. Maximum values



Table 4: Map Parameters

Map s wrz(t) Vt Max  Scale
Center-on 40 x 30  D(7;5;0.125)  0.969 1.5
Center-oft 40 x 30  D(7;5;4.000)  0.203 3.0
Up 10x30 D(r50.125) 0969 6.0
Down 40%x30 D(50.125) 0969 6.0
Left 40%x30 D(750.125) 0969 6.0
Right 40%x30 D(750.125) 0969 6.0
Visual 40 x 30 G(7;5;1;1) 1.000 2.0
Auditory 64 x 30 G(7;8;1;1) 0.791 2.0
Multisensory 64 x 30 G(7;5;1;1) - -

were determined using data which provoked a peak re-
sponse from the maps. Visual testing data consisting of
20 samples generated with a constant dark background (in-
tensity 13) with multiplicative (speckle) noise with pixel
intensity variance 256. Auditory test data had a maximum
constant intensity of 1.

Once each map output is normalized it is then multi-
plied by the combination scale prior to input to the rele-
vant visual or multisensory map (Fig. B]). These combina-
tion scales have been defined to ensure that any one input
can cause a response in the combination map based upon
the average activity of the map (and not just the peak).
For example, the center-on map (weighting 1.5) responded
with a higher overall activity in the map in response to
the test patterns compared to the center-off map (weight-
ing 3.0). Although average activity in the up, down, left
and right maps varied slightly, we have chosen a single
weighting for all for simplicity. The weight value (6.0) was
chosen such that any detected motion results in a peak in
the visual combination map overriding the peak center-on
and -off activities. In the multisensory map, visual and
auditory stimuli combine together equally.

With this set-up we tested the visual capabilities of the
model on a real-world scene. We collected 30 seconds of
data at two frames per second from a camera set up in
a room with non-uniform lighting conditions and motion.
The scene provided examples of static center-on and -off
contrast with motion from a person walking from the right
hand side of the scene to the left and then back. For all
frames target bounding boxes were defined manually with
the person as the target. The person was moving in 43 of
the 60 frames but was otherwise visible but stationary.

Fig. Bl shows two example frames from this scene with
the corresponding combined visual map output. Across
all frames the person was localized with an accuracy of
87%. Of these 52 localizations, 41 were when the person
was moving and 11 when stationary, leaving the remaining
localizations focused on other areas of static contrast in the
frame. This demonstrates that the contrast and motion
maps can be combined effectively to localize in real-world
scenes to a high degree of accuracy.
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(a) Person moving left (b) Localization of motion

(c¢) Person stationary (d) Localization of contrast

Figure 5: Example frames from a real-world scene testing for motion
detection: a) and b) showing a scene where the person is walking left
with the corresponding localization (red showing the highest map
response); ¢) and d) showing the person stationary on the right with
the corresponding localization of static contrast from the wall.

4.2. Spatial Coincidence and Disparity

To test multisensory integration in cats Stein et al. [67]
positioned a cat at the center of a semi-circular screen
which had lights and speakers arranged around it at 30°
intervals from —90° (left) to 90° (right). The cat was
trained to fixate at 0° until a stimulus was presented. For
spatial coincidence, the cat had to orient and move towards
a coincident light and sound. For spatial disparity, the cat
had to orient and move towards the light only, ignoring the
sound. The experiments were designed to compare the
cat’s performance when congruent or conflicting sensory
stimuli were received.

To evaluate our model, we positioned the camera cen-
trally to take the place of the cat. The two microphones
were placed 0.25m in front of the camera in parallel with
the visual plane, and separated by 1m (Fig.[6). The micro-
phones were calibrated so that their response to maximum
energy (db SIL) for the same intensity input are equal.
Unlike the cat, our camera and microphone position were
fixed so that localization could only take place between
+45°. Audio and visual stimuli were therefore placed on
the arc at 15° intervals 1m in front of the camera starting
at —30° (left) and ending at 30°. Auditory-only stimuli
were placed at +£45° 0.25m in front of the microphones.
The auditory stimulus was 45 db SPL of white noise, which
registered from 13 db SPL to 32 db SPL by either micro-
phone at the various test positions. The light was from
a small bulb so that with the room lights turned off, this
was the only light visible and hence an easily identifiable
target. Since our set-up differs sufficiently to that of the
set-up used by Stein et al. [67] (such as in the positioning
of the microphones compared to ears) we cannot compare
directly to the experiments on cats. Nonetheless, the com-



Figure 6: Experimental setup for live audio-visual localization.

putational principles remain the same in that we are com-
bining crossmodal stimuli for localization in a biologically
plausible manner.

To test the influence of crossmodal stimuli on local-
ization, the visual target was systematically obscured by
increasing levels of noise (described below). Throughout
all experiments, the following parameters are fixed for all
maps: neighborhood radius h(t) = 1 V¢, temporal inhibi-
tion rate & = 1 and decay 8 = 0.4. For the multisensory
map the inhibition rate 4 = 1 so that only one neuron is
active to provide a single localization, while for all other
maps p = 0.

We first tested the ability of the model to locate sin-
gle modality stimuli. Visual- or auditory-only stimuli were
presented to the model and the localization recorded. Each
test consisted of 20 frames (10 seconds of data). The
number of frames was selected to provide sufficient ex-
amples for each location and to allow us to evaluate if
any change occurred in localization across multiple frames.
The model’s localization was taken to be the neuron with
the maximum output in the multisensory map (the win-
ner). Following the method by Stein et al. [67], the target
localization was the visual stimuli. We therefore used the
peak visual intensity as the target. This target was speci-
fied as a 3x3 square of pixels centered on the peak (cover-
ing the bulb’s illumination), and constitutes just 0.75% of
the audio-visual field. However, because we are combining
horizontal and vertical visual localization with horizontal-
only auditory localization it is difficult to compare individ-
ual modality performance. Therefore to aid comparison we
also report performance for horizontal-only visual localiza-
tion. Since we use frame differencing to detect change in
the visual input, the first frame will always detect a change
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Table 5: Confusion Matrix for Stimuli against Visual Targets

Target Model Response
—45° —=30° —15° 0° 15° 30° 45° NK
—45° 19 17 2 0 0 0 19 76
—30° 19 19 18 0 0 0 19 58
—15° 19 19 12 0 0 0 19 64
0° 19 4 10 18 19 19 19 25
15° 19 0 0 13 19 19 19 44
35° 19 0 0 0 13 19 19 63
45° 19 0 0 0 0 0 19 95

between no input (darkness) and the turning on of the light
source. Consequently in reporting the results below, we
discard the response from the first frame to avoid experi-
mental bias in the results. Results are therefore reported
against 19 frames.

Visual-only localization successfully located 66% of all
audio-visual possible targets (93% of the visual-only tar-
gets). 7 frames at —15° were not localized because of slight
reflections of the light from the floor surface. In contrast,
auditory localization was 99% successful for all targets.
When both auditory and visual stimuli are presented to
the model and are coincident, the combination of audio
and visual cues gives 94% localization. Here, auditory lo-
calization makes up for the lack of visual input at +45°,
although visual input dominates still at —15°. Compar-
ing this with horizontal-only visual performance, 71% of all
possible audio-visual targets were located using visual-only
stimuli (100% of visual-only targets). When audio-visual
stimuli were combined, 99% of all targets were located.
This demonstrates that the vertical visual component is
accounting for just 7 out of 133 incorrect localizations and
that the horizontal component dominates.

Table [ shows the confusion matrix for coincident and
disparate stimuli with visual targets (rows) against the
model’s corresponding localization response (columns). For
example, when a visual target of 15° is presented, the
model responds with 19 correct localizations when the vi-
sual and auditory stimuli are both at 15° (coincident re-
sults are shown on the diagonal in the table with a maxi-
mum of 19 correct responses each). When the stimuli are
disparate, 114 incorrect localizations are recorded, such
as when the auditory stimulus is at —45° resulting in 19
localizations at —45° because the auditory stimulus con-
fuses the response. In some cases neither of the conflicting
stimuli dominate but instead are combined in the maps
to form an intermediate localization. In these cases where
the intermediate localization is not at one of the known
target points, this is labeled as “not known” (NK). For
the 15° example this occurs 44 times. In total there are
7 x 19 = 133 possible coincident (19) and disparate (114)
sample pairs.

When presented with coincident and disparate audio-
visual stimuli, the ideal outcome is for a diagonal confu-
sion matrix with 133 for each diagonal element. We can



see from Table[H] that disparate stimuli produce adverse lo-
calizations. From 94% correct for coincident-only stimuli,
the performance drops to 13% (for horizontal-only visual
targets this goes from 99% to 14%). However, we can see
that there is a greater likelihood of responding with a loca-
tion near the target for closer audio-visual stimuli, versus
no localization for stimuli further apart. The exception to
this is £45° where there is only an auditory stimulus. A
similarly profound decrease in localization was observed in
cats when disparate stimuli were presented.

With clear single and coincident modality visual and
auditory stimuli being localized with greater than 93% ac-
curacy, what benefit does audio-visual integration bring
except to make up for localization outside of the available
visual field? Recalling the example of being stalked by a
predator which is moving quietly and is camouflaged ﬂ],
crossmodal localization is useful when one or both stimuli
are weak or difficult to discern. To test this in our model
we can therefore weaken one of the stimuli to determine if
the deficit is compensated for via the other modality. Since
vision tends to dominate in the SC @] we tested the model
on a series of degraded visual stimuli but kept the auditory
stimuli unchanged (note that only a slight amount of noise
in the auditory modality would cause an immediate fail-
ure in sound localization using ILD). Multiplicative noise
(speckle) was added to each recorded frame with variance
increasing from pixel intensity 16 to 256 in steps of 16,
such that the location of the light in the input was com-
pletely obscured with noise variance 192 and above. The
resulting coincident audio-visual localization performance
is shown in Fig. [ compared against the single-modality
visual localization.

By combining audio-visual stimuli, localization perfor-
mance does not drop below 41% (17% for visual-only tar-
gets). This demonstrates how the auditory stimulus pro-
vides a horizontal location, while what remains of the orig-
inal visual target (or random noise) provides the vertical
localization. Using crossmodal stimuli is clearly of bene-
fit. Note that random noise in the visual stimuli can be
selected by the maps for the localization. This results in
the minimum 17% localization on visual-only stimuli.

4.3. Discussion

These results demonstrate that our model of the SC is
capable of processing visual and auditory stimuli in real-
time to form a localization to relevant multimodal stimuli.
This localization performs well on single-modality stim-
uli, and is significantly enhanced for coincident multimodal
stimuli, especially when the visual stimulus is weakened.
However, the increase in performance is not a straight-
forward combination of single-modality performance since
audio-visual localization achieves a maximum of 94% and
a minimum of 41% when noise (variance 176 or 240) is
applied. This compares to 99% for auditory stimuli alone.
If we assume that each stimulus is treated independently
in combined localization as per Stein et al. @], then the
probability of correctly locating an audio-visual stimulus
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Figure 7: Visual vs. audio-visual localization performance for the 7
target locations with increasing levels of multiplicative noise applied.
Audio-visual localization is maintained at a level above 41% even
when the visual stimulus is obscured by noise from variance 192 and
above.

P,, can be calculated using the independent probabilities
of correctly responding to audio P, and visual P, stimuli:

Py (P, + P,) — (P, x Py) (10)

Since P, = 1 for all targets, P,, = 1. This holds for
any level of visual noise. However, we can see from our
results that the actual performance does not achieve this.
Stein et al. @] found a similar response in cats, and con-
cluded that the combination must therefore be multiplica-
tive, rather than additive, and this led to investigations
into multisensory enhancement and suppression ﬂﬂ]

In addition to this, two general models of sensory inte-
gration for spatial localization have been proposed. Knud-
sen and Brainard @] reviewed audio-visual integration in
the tectum and the forebrain to conclude that vision domi-
nates whenever visual information is available. In contrast,
Ernst and Banks @] proposed a maximume-likelihood in-
tegrator in which the brain’s estimate of the reliability of a
given modality is used to weight the relative contribution
the modality has to the integration. Both models have
been evaluated by Battaglia et al. m] who conclude that
each is partially correct in that noise within a modality is
taken into account in the integration, but that one sense
still tends to dominate.

In our model the combination of responses is achieved
through a linear weighting of the outputs from indepen-
dent modality topographic maps, yet the resulting local-
ization performance appears to be non-linear. For exam-



ple, for stimuli at —15°, we get 63% visual-only localiza-
tion, 100% audio-only, but 63% combined (Table[Bl). This
effect is caused by the competition between neurons in the
multisensory map. With conflicting audio-visual localiza-
tions, the map forms a combined response by selecting
a winning neuron which has the highest combined input.
The net effect is that regions with lower responses which
overlap can have higher combined responses than a sin-
gle modality. It is therefore the overlap which becomes as
important as a large single-modality response. This is a
crude form of multisensory enhancement of coincident low
intensity cues, versus suppression of high intensity single-
modality cues and is demonstrated in the way that local-
ization performance is maintained in our model even when
the visual stimulus is degraded by noise.

Although our model can successfully combine audio-
visual stimuli, the combination is fixed and is not based
on maximume-likelihood. We selected weightings of each
map within the hierarchy (Table[]) to ensure that any one
map can provoke a multisensory response when presented
with test stimuli consisting of noise. A limitation of our
choice of weights was to bias activity towards motion de-
tection, and hence our model is dominated by vision as
per Knudsen and Brainard [68]. However, current work
on the mechanisms underlying enhancement and suppres-
sion have shown that integration is more complex in that
it depends upon coincident activity in sensory cortical ar-
eas feeding back into the SC [12]. This feedback may ex-
plain the findings of Battaglia et al. [70] such that the
SC internally provides a visual bias, while cortical feed-
back performs the likelihood estimate to override the in-
tegration. In this paper we modeled integration without
feedback, but we have explored how such feedback might
be modeled with topographic maps representing cortical
structures |24]. Alternate approaches using spiking neu-
rons have also been explored in higher level vision [71].
So far such techniques are too crude to shed any further
light on this phenomenon, yet they show promise in that
they can be trained using conditioning-type feedback to re-
spond differently to varying stimuli [54,59], perhaps show-
ing how coincident cues could be recognized and enhanced
cortically.

5. Conclusion

We set out in this paper to demonstrate whether a bi-
ologically motivated, behavioral model of the SC could be
applied to localize real-time audio-visual stimuli. With
12,240 neurons arranged into nine topographic maps, the
model is capable of localizing in real-time (at two frames
per second using a Java implementation). The localiza-
tion performed is deliberately simple in order to match the
computational capabilities of the SC. For visual sensitivity
we focus on spatial sensitivity to detect broad patterns of
high contrast, and temporal sensitivity to detect motion
in preferred directions from the most intense changes ex-
tracted by frame differencing. Our auditory sensitivity is
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based upon locating the loudest sound. In the SC, this
simple but fast sensitivity determines the focus of subse-
quent midbrain through to cortical sensory processing. For
example, through a subcortical pathway to the amygdala,
relevant multimodal stimuli can be assessed in more detail
to detect potential threats [72].

The principle we are following is therefore to construct
a hierarchy of increasingly more complex functional pro-
cessing. Hierarchical approaches are often used in com-
putational neuroscience models, but few aim at achieving
functionality. For example, the large-scale model devel-
oped by Izhikevich and Edelman [34] is impressive in its
scale and use of biologically plausible computational units
(a model thalamocortical column). While the model is
not designed to be functional, for us a key objection to
the approach is the smaller amount of detail in modeling
low level structures in comparison with the detail applied
to the cortical neurons. This imbalance reflects the focus
on cortical operation, which is an understandable focus in
exploring higher cognition, but at the expense of low level
detail. Without low level detail or the influence of real-
world stimuli, such models may not be able to demonstrate
comparative cognitive properties. Darwin X [35] is a good
example of how a combination of levels of processing on
real-world stimuli can be utilized, and this is something
our model aspires to by showing how low level processing
can be used practically, despite its deliberate simplicity. A
natural next step in our model development is to explore
whether a spiking model of the SC could achieve similar re-
sults to our rate-coded model and then use this to enhance
models of the thalamocortical column to make them func-
tional. The potential for this has been demonstrated with
a hierarchical model of auditory localization in the inferior
colliculus using leaky integrate-and-fire neurons [73].

To improve localization, we could implement different
spatial maps with varying contrast sensitivity. The model
of visual attention developed by Itti et al. [31] is a good
example of this with a real-time implementation. Our ap-
proach is very similar to theirs in that we also use a hi-
erarchy of topographic maps to select salient locations.
Since they use cortical visual structures for motivation,
their model is sensitive to color, intensity and orientation.
With our focus on the SC, we model visual contrast and
motion. In other respects our models are also very simi-
lar, such as the combination of hierarchical processing and
competitive selection of saliency. Yet our model is distin-
guished by its more biologically motivated implementation
of maps, plus the combination of auditory sensitivity which
we use to explore how multimodal cues interact.

Our biological motivation is evident in the way we use
temporal inhibition to detect motion. Sensory neurons use
pre-filtering, delay filtering and non-linear interactions [62]
to detect motion. We use simple frame differencing to pre-
filter incoming stimuli, temporal inhibition between neu-
rons to concentrate sensitivity on stimuli moving in pre-
ferred directions, and non-linear interactions between neu-
rons to select the highest response. This combination of



simple mechanisms achieves high detection rates in simple
scenes, but lower rates in scenes with conflicting motion
stimuli. Further evaluation of this mechanism is needed to
understand how it performs against computational, rather
than biologically motivated, approaches [cf. [74].

For auditory localization we use ILD. This intensity-
based approach suffers from a number of limitations. First,
in order to detect energy differences between the two fixed
microphones, they need to be calibrated. We chose two
identically branded microphones which reduced the need
for calibration, yet both varied in their performance. Re-
verberation within the room also impacts on localization.
Second, the energy recorded at a microphone represents
all locations on the radius of a sphere centered on the
microphone, where the radius is determined by the com-
parative energy received by the second microphone. In
order to localize we have to assume that the sound source
is horizontal between the microphones (to avoid the ‘cone
of confusion’). With more microphones, some of these as-
sumptions can be avoided. Third, if more than one sound
source is present, this can disrupt the localization because
the energies compared may come from different locations.
To overcome these limitations a range of techniques can be
used across frequency bands, or more accurate localization
via calibrated equipment such as Microsoft’s Kinect [64].

Returning back to the mammalian localization, an im-
portant aspect of the SC is its ability to automatically
translate auditory spatial coordinates into visual coordi-
nates. This means that we can move our eyes relative to
our ears and still combine coincident cues. This is achieved
through feedback from the SC to the IC. In our model we
have assumed a fixed camera to microphone setup and a
purely feedforward operation. Feedback from the multi-
sensory space could be used to adjust the relative position
of the eyes in the auditory space. An example of how this
might be achieved is provided by Huo and Murray [27].
Notably their model uses spiking neurons with spike tim-
ing dependent plasticity to learn the alignment between
multimodal stimuli. This type of approach, using more
biologically plausible models of neurons and learning, cou-
pled with cortical feedback and a movable camera position
is the next step in our work.
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