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Abstract

The paper proposes a Supervised Adaptive Dynamic Programming (SADP) algorithm for a full-range Adaptive Cruise
Control (ACC) system, which can be formulated as a dynamic programming problem with stochastic demands. The
suggested ACC system has been designed to allow the host vehicle to drive both in highways and in Stop and Go
(SG) urban scenarios. The ACC system can autonomously drive the host vehicle to a desired speed and/or a given
distance from the target vehicle in both operational cases. Traditional adaptive dynamic programming (ADP) is a
suitable tool to address the problem but training usually suffers from low convergence rates and hardly achieves an
effective controller. A supervised ADP algorithm which introduces the concept of Inducing Region is here introduced
to overcome such training drawbacks. The SADP algorithm performs very well in all simulation scenarios and always
better than more traditional controllers. The conclusion is that the proposed SADP algorithm is an effective control
methodology able to effectively address the full-range ACC problem.

Keywords: adaptive dynamic programming, supervised reinforcement learning, neural networks, adaptive cruise
control, stop and go

1. Introduction

Nowadays, driving safety and driver-assistance sys-
tems are of paramount importance: by implementing
these techniques accidents reduce and driving safety
significantly improves [1]. There are many applications
derived from this concept, e.g., Anti-lock Braking Sys-
tems (ABS), Electronic Braking Systems (EBS), Elec-
tronic Brake-force Distribution systems (EBD), Trac-
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tion Control Systems (TCS), Electronic Stability Pro-
gram (ESP) [1].

1.1. Adaptive cruise control

Adaptive cruise control is surely another issue going
in the direction of safe driving and, as such, of partic-
ular relevance. Nowadays, ACC is mounted in some
luxury vehicles to increase both comfort and safety [2].
The system differentiates from the Cruise Control (CC)
system mostly used in highway driving, which control-
s the throttle position to maintain the constant speed as
set by the driver (eventually adjusted manually to adapt
to environmental changes). However, the driver has al-
ways to brake when approaching the target vehicle pro-
ceeding at a lower speed. Differently, an ACC system
equipped with a proximity radar [3] or sensors detect-
ing the distance and the relative speed between the host
vehicle and the one in front of it, proceeding in the same
lane (target vehicle), can operate either on brake or the
engine throttle valve to keep a safe distance.

As a consequence, the ACC does not only free the
driver from frequent accelerations and decelerations but
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also reduce the stress of the driver as pointed out in [4].
Interestingly, [5] showed that if 25% vehicles driving in
a highway were equipped with the ACC system, con-
gestions could be avoided. The ACC problem could be
solved by considering different techniques, e.g., a PID
controller [12], a fuzzy controller as pointed out in [11],
a sliding mode approach [9] or a neural network [18].

ACC systems suggested in the literature, and current-
ly implemented in vehicles, work nicely at a vehicle
speed over 40 km/h and in highways [1], but always
fail at a lower speed hence requiring accelerations (ac-
tion on the throttle) and decelerations (mostly breaking)
to keep a safe clearance to the target vehicle in urban
areas. In this case, the driving activity increases signif-
icantly, even more within an urban traffic with an obvi-
ous impact on fuel consumption and pollutant emission-
s. To address the problem the literature suggested so-
lutions like stop and go, collision warning and collision
avoidance [22]. When the ACC and the SG solutions are
considered together, we speak about a full-range ACC.
A full-range ACC system with collision avoidance was
proposed in [16]. There, driving situations were classi-
fied in three control modes based on the warning index
and the time-to-collision: comfort, large deceleration
and severe braking. Three controllers were proposed
and combined to provide the ultimate control strategy.
[16] pointed out how the full-range ACC problem was a
nonlinear process requesting a nonlinear controller, for
instance designed with reinforcement learning.

1.2. Reinforcement learning and adaptive dynamic pro-
gramming

Reinforcement Learning (RL) [21] is suited for the
ACC problem, because it can grant quasi-optimal con-
trol performance through a trial and error mechanism
in a changing environment. However, the convergence
rate of RL might be a problem [23] also leading to some
inefficiency. Most of the time, the agent (the software
implementing the controller) will learn the optimal pol-
icy after a relatively long training, especially when the
model is characterized by a large state space. This inef-
ficiency can be fatal in some real time control systems.

Supervised Reinforcement Learning (SRL) can be in-
troduced to mitigate the RL problem, by combining Su-
pervised Learning (SL) and RL and, hence, taking ad-
vantage of both algorithms. Pioneering work has been
done in Rosenstein and Barto’s [7, 19] where SRL was
applied to solve the ship steering task and the manip-
ulator control and the peg insertion task. All results
clearly showed how SRL outperforms RL. In [17], a
potential function was introduced to construct the shap-
ing reward function; they proved that an optimal control

policy could be gained. The results showed that such
shaping method could be used also in dynamic models
by dramatically shortening the learning time.

Our team applied the SRL control strategy to the AC-
C problem first in [14]. There, we showed that the speed
and the distance control had enough accuracy and was
robust with respect to different drivers [14]. However,
since the state and the action needed to be discretized,
there are some drawbacks. Firstly, the discretization of
the distance, speed, and acceleration, introduces some
fluctuations in the continuous control problem. Sec-
ondly, the higher number of discretized states cause the
larger state and the action spaces. As a consequence,
there always exists a conflict between control accuracy
and required training time.

For continuous reinforcement learning problem, AD-
P was proposed in [8, 25] with neural networks mapping
the relationships between states and actions, and the re-
lationships between states, actions and performance in-
dex. More in detail, the algorithm uses a single step
computation of the neural network to approximate the
performance index which will be obtained by iterating
the dynamic programming algorithm. The method pro-
vides us with a feasible and effective way to address
many optimal control problems; examples can be found
in the cart-pole control [13, 20], pendulum robot up-
swing control [26], urban intersection traffic signal con-
trol [15], freeway ramp metering [6, 27], play Go-Moku
[28], and so on. However, the learning inefficiency of R-
L is also inherited in ADP but can also be remedied with
a supervisor to formulate SADP.

1.3. The idea

In this paper we propose a novel effective SADP al-
gorithm able to deal with the full-range ACC problem.
The considered framework is as follows:

(1) There are two neural networks in SADP, the Ac-
tion and the Critic networks. The Action network is
used to map the continuous state space to the con-
trol signal; the Critic network is used to evaluate
the goodness of the action signals generated by the
Action network and provides advice while training
both networks. In this way we avoid the curse of di-
mensionality caused by the large dimension of the
discrete state-action pairs.

(2) The supervisor can always provide information for
RL, hence speeding up the learning process.

In this paper, the ACC problem is described as a
Markov decision process. The main contributions are
as follows:



(1) A simple single neural network controller is pro-
posed and optimized to solve the full-range adaptive
cruise control problem.

(2) An inducing region scheme is introduced as a su-
pervisor, which is combined with ADP, provides an
effective learning algorithm.

(3) An extensive experimental campaign is provided to
show the effectiveness and robustness of the pro-
posed algorithm.

The paper is organized as follows. Section 2 formal-
izes the full-range ACC problem. Section 3 propos-
es the SADP algorithm based on the Inducing Region
concept and presents design details. Section 4 provides
experimental results based on typical driving scenarios.
Section 5 summarizes the paper.

2. The adaptive cruise control

2.1. The ACC model
The ACC model is shown in Figure 1 with the nomen-

clature give in Table 1.
During driving, the ACC system assists (or replaces)

the driver to control the host vehicle. In other word-
s, ACC will control the throttle and the brake to drive
the vehicle safely despite the uncertainty scenarios we
might encounter. More in detail, there are two con-
trollers in the ACC system: the upper and the bottom
ones. The upper controller generates the desired accel-
eration control signal according to the current driving
profile; the bottom controller transfers the desired accel-
eration signal to the brake or the throttle control action
according to the current acceleration of the host vehicle.

Denote as dr(t) the distance at step t between the host
and the target vehicles. Such a distance can be detected
by radar or other sensing devices, and it is used to com-
pute the instant speed of the target vehicle vT (t) (refer to
Figure 1); the desired distance dd(t) between these ve-
hicles is always set by the driver while the host vehicle
speed vH(t) can be read from the speed encoder.

The control goal is to keep the host vehicle within
a safety distance and maintain the safe relative speed
∆v(t)

∆v(t) = vH(t) − vT (t). (1)

Similarly, the relative distance ∆d(t) at step t is

∆d(t) = dr(t) − dd(t). (2)

The upper controller goal is to simultaneously drive
variables (∆v(t),∆d(t)) to zero by enforcing the most ap-
propriate acceleration control action, more in detail, by
taking into account the different driving habits.
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Figure 1: The SADP framework for the full-range ACC. The radar
detects the distance between the two vehicles and the target vehicle’s
speed. The host vehicle speed and the current acceleration come from
the mounted sensors. The upper controller generates the desired ac-
celeration signal by combining the relative speed and the relative dis-
tance information. The bottom controller maps the acceleration to the
brake or the throttle control signals.

The bottom controller manages both the throttle and
the brake. A fuzzy gain scheduling scheme based on
a PID control is used to control the throttle. A hybrid
feed-forward & feedback control is applied to control
the brake. The throttle and the brake controllers are
coordinated by use of a proper switch logic. The con-
trol actions transfer the desired acceleration signal to the
corresponding throttle position or braking strength [10].

2.2. The driving habit function

As previously discussed, different drivers have differ-
ent driving habits: an intelligent ACC controller should
learn the driving habit [29]. The host speed vH(t), the
desired distance d0 between the motionless host and tar-
get vehicles and the headway time index τ is adopted to
characterize the driving habit

dd(t) = d0 + vH(t)τ (3)

It comes out that the headway time is high for conserva-
tive drivers, and low for sportive drivers.

2.3. Driving scenarios

In a full-range ACC the host vehicle driving condi-
tions can be cast into five scenarios, as shown in Figure
2.

(1) The CC scenario: the host vehicle travels at a con-
stant speed without any target vehicle in front of it.



Table 1: ACC nomenclatures
Parameter Description
vH(t) The speed of the host at step t
vT (t) The speed of the target at step t
dr(t) The distance between the host and the target vehicles at step t
dd(t) The distance the host driver desires to maintain at step t
∆v(t) The relative speed at step t
∆d(t) The relative distance at step t
dH(∆t) The distance the host vehicle travels in time interval ∆t
∆dg(t) The maximum tolerable relative distance at step t
∆vg(t) The maximum tolerable relative speed at step t
d0 The zero-speed clearance between the two vehicles
τ The headway time

(2) The ACC scenario: both the target and host vehicles
are running at high speed and the host vehicle needs
to keep pace with the target vehicle or slow down to
keep a safe distance to a slower forerunner.

(3) The SG scenario: this case simulates the frequent
stop and go situations of the city traffic. The target
vehicle stops at first, then moves again; this profile
repeats frequently.

(4) The emergency braking scenario: the target vehicle
stops suddenly with a large abnormal deceleration,
the host vehicle must take an prompt braking action.

(5) The cut-in scenario: while the host car is operating
in a normal ACC or SG mode, another vehicle in-
terferes with it. More in detail, the third vehicle,
coming from the neighboring lane, enters a position
between the host and the target vehicles. The enter-
ing vehicle becomes the new target vehicle.

3. The SADP control strategy

3.1. The ADP framework
The structure of the SADP system is shown in Figure

3. The system includes a basic ADP and a supervisor
(blue shadowed line). The Action and the Critic neural
networks are present to generate the ADP framework.
We recall that the Action network is used to model the
relationship between the state and the control signal. In-
stead, the Critic network is used to evaluate the perfor-
mance of the control signal as coming from the Action
network. The Plant responds to the action and presents
new state to the agent; afterwards, the reward is given.
The dash lines represent the training process involving
the two neural networks. Some major notations are list-
ed in Table 2.

The training process can be summarized by the fol-
lowing procedure: At first, the agent takes action u(t)

Figure 2: Different driving scenarios for the full-range ACC.



Table 2: SADP nomenclatures
Parameter Description
x(t) The current state
u(t) The control signal
r(t) The reward
J(t) The Critic network output
R(t) The return or the rewards-to-go
Uc(t) The desired objective
γ The discount factor
Nah Number of hidden nodes, Action network
Nch Number of hidden nodes, Critic network
Ea(t) Objective training function, Action network
Ec(t) Objective training function, Critic network
wa(t) Weights matrix, Action network
wc(t) Weights matrix, Critic network
la(t) Learning rate, Action network
lc(t) Learning rate, Critic network

following the input state x(t) according to the Action
network indication; the plant moves then to the next s-
tate x(t+1) and the environment gives the agent a reward
r(t); then the Critic network output J(t) provides an ap-
proximate performance index (or return); the Critic and
the Action networks are then trained with error back-
propagation based on the obtained reward [25]. These
procedures iterate until the networks weights converg-
ing.

The ADP control strategy is stronger than a procedure
based solely on RL. In fact, ADP possesses the com-
mon basic features of RL: state, action, transition, and
reward. However, in ADP the state and the action are
continuous values rather than discrete, and the method
used to gain the action and the state values is rather dif-
ferent.

3.1.1. The reward and the return
The return R(t), defined as “how good the situation

is”, is defined as the cumulated discounted rewards-to-
go

R(t) = r(t + 1) + γr(t + 2) + γ2r(t + 3) + · · ·

=

T∑
k=0

γkr(t + k + 1) (4)

where 0 ≤ γ ≤ 1 represents the discount factor, t the
step, r(t) the gained reward and T the terminal step.

The higher the cumulated discounted future rewards-
to-go is, the better the agent performs. However, the
above definition needs the forward-in-time computa-
tion, hardly available. Therefore, in discrete RL, the
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Figure 3: The schematic diagram of the SADP framework: The Ac-
tion network is used to generate the control signal; the Critic network
is used to evaluate the goodness of the control signal as generated by
the Action network. The dash lines represent the training of those neu-
ral networks. There are three types of supervisors: shaping, nominal
control, and exploration.

state value function V(s) or the state-action value func-
tion Q(s, a) is used to estimate R(t). The final goal is to
have a converged look-up Q-table in Q-learning [24]

Q(s, u) = Q(s, u)+α[r(t)+γmaxu′Q(s′, u′)−Q(s, u)].(5)

where α is the step size parameter, u and s is the current
action and state, u′ and s′ is the next action and state,
respectively.

There are many strategies for action selection, e.g.,
those based on the Boltzmann action selection strategy,
the Softmax strategy and epsilon greedy strategy [21].

In ADP, the Critic network output J(t) is used to ap-
proximate the state-action value function Q(s, a). The
Critic network embeds the gained experience (through
trial and error) in the weights of the neural networks in-
stead of relying on a look-up Q-table.

The definition of reward is somehow a tricky concept,
as it happens with human learning. A wrong definition
of reward will lead, with a high probability, to scarce
learning results.

3.1.2. The Action network
The structures of the Action and the Critic network-

s are shown in Figure 4. Based on [20], simple three
layered feed-forward neural networks with hyperbolic
tangent activation function

Th(y) =
1 − exp(−y)
1 + exp(−y)

is considered to solve the full-range ACC problem.
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Figure 4: The structure of the Action and the Critic networks. The
Action network has two inputs, namely, the relative distance and the
relative speed; the output is the acceleration control signal. The Critic
network has three inputs: the acceleration control signal, the relative
distance and the relative speed; its output is the rewarding value J(t).

The Action network’s input is state x(t) =

(∆d(t), ∆v(t)). The output is u(t) which can be derived
from

u(t) = Th(m(t)), (6)

m(t) =

Nah∑
i=1

w(2)
ai

(t)gi(t), (7)

gi(t) = Th(hi(t)), i = 1, 2, · · · ,Nah, (8)

hi(t) =

2∑
j=1

w(1)
ai j

(t)x j(t), i = 1, 2, · · · ,Nah, (9)

where Nah is the number of neurons in the hidden layer,
w(1)

ai j is the generic input weight of the Action network
and w(2)

ai is the generic output weight.
The Action network is trained to minimize the objec-

tive function

Ea(t) =
1
2

e2
a(t), (10)

ea(t) = J(t) − Uc, (11)

where Uc is the desired objective.
Training is performed with error back propagation

wa(t + 1) = wa(t) + ∆wa(t), (12)

∆wa(t) = −la(t)
∂Ea(t)
∂J(t)

∂J(t)
∂u(t)

∂u(t)
∂wa(t)

, (13)

where la(t) is the learning rate for the Action network.

3.1.3. The Critic network
The network receives as inputs both the state and the

control signal, and outputs the estimated return J(t),

J(t) =

Nch∑
i=1

w(2)
ci

(t)pi(t), (14)

pi(t) = Th(qi(t)), i = 1, 2, · · · ,Nch, (15)

qi(t) =

3∑
j=1

w(1)
ci j

(t)x j(t), i = 1, 2, · · · ,Nch, (16)

where Nch is the number of neurons in the hidden layer,
w(1)

ci j is the generic input weight of the Critic network to
be learned, and w(2)

ci the generic output weight.
The Critic network is trained by minimizing the ob-

jective function

Ec(t) =
1
2

e2
c(t), (17)

ec(t) = γJ(t) − J(t − 1) + r(t). (18)

When the objective function Ec(t) approaches zero,
J(t − 1) can be derived from Eq. (18) as

J(t − 1) = r(t) + γr(t + 1) + γ2r(t + 2) + · · · , (19)

which is the same of return R(t). Therefore, the conver-
gence of the Critic network output J(t) can be used to
evaluate the goodness of the control signal.

Again, training is modeled as

wc(t + 1) = wc(t) + ∆wc(t), (20)

∆wc(t) = −lc(t)
∂Ec(t)
∂J(t)

∂J(t)
∂wc(t)

, (21)

where lc(t) is the learning rate for the Critic network.

3.2. The disadvantages of the ADP

As mentioned above, ADP proposes a simple, feasi-
ble, and effective solution for the RL problem with con-
tinuous states and actions. Higher storage demand for
the Q-table in Q-learning can be avoided and the “curse
of dimensionality” problem in Dynamic Programming
(DP) can be solved with a single step computation by
using the above equations.

However, there are still some problems to be solved
with ADP. The first is associated with the choice of the
initial values of the network weights. Inappropriate con-
figurations lead to poor Action and Critic networks (and
then it becomes interesting to know how likely we will
end in a good performing algorithm).

The second comes from Uc. This reward value is crit-
ical to the training phase. Usually, the reward is set 0
for encouragement and -1 for punishment and the re-
turn R(t) is zero if the action is an optimal one. Hence
the output J(t) of the Critic network converges to 0 if
optimal actions are always taken (and the induced val-
ue of Uc is 0). But in some complex cases a continu-
ous reward would be a better choice. With error back
propagation, a large discrepancy on Uc might lead to a



large training error which will affect negatively the per-
formance of the controller.

The above problems can be solved if we consider a
supervisor to guide the learning process.

3.3. The supervisor: Inducing Region

As shown in Figure 3, SADP combines the structure
of ADP and SL. Therefore, the agent learns from the in-
teraction with the environment as well as benefits from
a feedback coming from the supervisor.

There are three ways to implement the supervisor in
SADP [7]: (1) shaping: the supervisor gives additional
reward, hence simplifying the learning process for the a-
gent; (2) nominal control: the supervisor gives addition-
al direct control signal to the agent; (3) exploration: the
supervisor gives hints that indicate which action should
be taken.

The exploration way gives the smallest supervisor in-
formation and is adopted here. Since the goal of the
control system is to drive the relative speed and the rel-
ative distance to zero, the desired target requires that
both v(t) and d(t) satisfy{

|∆v(t)| < ϵv
|∆d(t)| < ϵd

, (22)

where ϵv and ϵd are feasible tolerable small positive val-
ues for ∆v(t) and ∆d(t), respectively.

The aim of the full-range ACC is to satisfy the above
inequalities or “goal state” as soon as possible (prompt-
ness in action) and stay there during the operational
driving of the vehicle. However, at the beginning, the
agent is far away from the goal state, especially when
no priors are available. If the goal state region is too s-
mall the agent will always be penalized during learning
and the training process will hardly converge. Even if
a high number of training episodes are given there it is
not guaranteed that the ADP will learn an effective con-
trol strategy. On the contrary, if the goal state area is
too large, then the learning task might converge at the
expenses of a poor control performance.

It makes sense to have a large goal state area at the be-
ginning to ease the agent entering into a feasible region
and reduce gradually afterwards the area, as learning
proceeds, to drive the learning towards the desired fi-
nal state configuration. In other terms, it means that the
supervisor will guide the agent towards its goal through
a rewarding mechanism. This concept is at the base of
the Inducing Region where ϵv and ϵd evolve with time.

3.4. SADP for the full-range ACC

There are five components in the SADP framework:
the state, the action, the state transmission matrix, the
reward and the supervisor.

3.4.1. The state
The relative speed ∆v(t) and the relative distance

∆d(t) are the state variables x(t) = (∆v(t),∆d(t)). The
aim of the full-range ACC is to achieve the final goal s-
tate with the minimum amount of time and an Inducing
Region characterized as{

|∆v(t)| < 0.072 km/h
|∆d(t)| < 0.2 m , (23)

Besides the goal state, a special “bump” state is intro-
duced and reached when the host vehicle collides with
the target one, namely,

∆d(t) + dd(t) < 0. (24)

3.4.2. Acceleration: the control variable
The full-range ACC problem can be intended as map-

ping different states to corresponding actions. Here, the
action is the acceleration of the host vehicle. In view
of the comfort of the driver and passengers, the accel-
eration should be bounded in the [−2, 2] m/s2 interval
in normal driving conditions, and to [−8,−2] m/s2 in
severe and emergency braking situations [16]. It is re-
quired to transfer u(t) which is within the [−1, 1] range
into the range [−8, 2] m/s2, namely,

a =
{
|amin| · u u < amax/|amin|
amax u ≥ amax/|amin|

, (25)

where amin is −8 m/s2 and amax is 2 m/s2 here.

3.4.3. The state transition
When the vehicle is in state x(t) = (∆v(t),∆d(t)), and

takes action a = aH , the next state x(t + 1) is updated as
vH(t + 1) = vH(t) + aH(t)∆t
dH(∆t) = vH(t) + aH∆t2/2
∆v(t + 1) = vH(t + 1) − vT (t + 1)
∆d(t + 1) = ∆d(t) − (dH(∆t) − (vT (t)

+vT (t + 1))∆t/2)

, (26)

where ∆t represents the sampling time. It can be seen
that the next state x(t+ 1) cannot be computed after tak-
ing an action, since the target speed of the next step or
the acceleration is unknown.



3.4.4. The reward
The reward is 0 when the agent reaches the goal state,

-2 when it reaches the bump state, -1 otherwise. The re-
ward provides an encouragement for achieving the goal,
heavy penalty for collision, and a slight punishment for
having not reached the target state.

3.4.5. Inducing Region
The updating rule for the Inducing Region is given by

∆dg(t) = ∆dg(t − 1) −Cd,
0.2 < ∆dg(t) < ∆dg(0);

∆dg(t) = 0.2, 0.2 ≥ ∆dg(t);
∆vg(t) = ∆vg(t − 1) −Cv,

0.072 < ∆vg(t) < ∆vg(0);
∆vg(t) = 0.072, 0.072 ≥ ∆vg(t);

. (27)

where the ∆dg(t) and ∆vg(t) characterize the goal state
area for ∆d(t) and ∆v(t), respectively. Cd and Cv are
the constant shrinking length at each step for the goal
distance and the goal speed, set to 0.3 m and 0.36 km/h.
∆d(0) and ∆v(0) are the initial goal state ranges, set to
18 m and 18 km/h, respectively. As presented above,
the goal state area gradually shrinks to guide the Action
network towards the final goal.

3.5. Learnability vs. stability

It is very hard to prove the stability of the suggested
full-range ACC in a close form. However, we can make
a strong statement in probability by inspecting the learn-
ability properties of the suggested full-range ACC prob-
lem. Since the suggested SADP algorithm is Lebesgue
measurable with respect to the weight spaces of the ac-
tion and critical networks we can use Randomized Al-
gorithms [30, 31] to assess the difficult of learning prob-
lem.

To do this, we define at first the “performance sat-
isfaction” criterion Ps(S ) and say that the performance
provided by the full-range ACC system S is satisfying
when:

(1) convergence: the Action and Critic networks con-
verge, i.e., they reach a fixed configuration for the
weights at the end of the training process.

(2) comfortable: the acceleration of the host vehicle is
mostly within [−2, 2]m/s2 range and comes out of
that range only in emergency braking situations.

(3) accurate: the suggested full-range ACC system can
effectively control the host vehicle to achieve the
final goal state defined in Eq.(23) and, then, stay
there.

When the performance is satisfied, Ps(S ) assumes value
1, 0 otherwise.

As SADP learns through a trial and error mechanis-
m, it will explore exhaustively the state space provided
that the number of experiments is large enough. At the
end of the training process we can then test whether the
performance of the full-range ACC system Ps(S ) is 1
or not. Of course, the performance satisfaction criterion
must be evaluated on a significant test set containing all
those operational modalities the host vehicle might en-
counter during its driving life. It is implicit that if the
full-range ACC system satisfies the performance satis-
faction criterion it is also stable. The opposite does not
necessarily hold.

We observe that the unique randomization in the
training phase is associated with the process providing
the initial values for the network weights. Afterward-
s, SADP is a deterministic process that, given the same
initial configuration of weights and the fixed training da-
ta (experiment) provides the same final networks (not
necessarily satisfying the performance criterion).

Train now a generic system S i and compute the indi-
cator function Id(S i) defined as

Id(S i) =
{

1, i f Ps(S i) = 1
0, otherwise . (28)

In fact, the indicator function Id(S i) = Ps(S i) and
states whether the generic system satisfies the perfor-
mance criterion or not for the full-range ACC for the
i-th training process.

Let ρ be the probability that a trained system S satis-
fies the performance criterion for the full-range ACC. ρ
is unknown but can be estimated with a randomization
process as suggested in [30, 31]. More specifically, we
can evaluate the estimate ρ̂N of ρ by drawing N initial
configurations for the Action and Critic networks, hence
leading to the N systems

ρ̂N =
1
N

N∑
i=1

Id(S i). (29)

To be able to estimate ρ we wish the discrepancy be-
tween ρ̂N and ρ to be small, say below a positive ε val-
ue, i.e., |ρ − p̂N | < ε. However, the satisfaction of the
inequality is a random variable, which depends on the
particular realization of the N systems. We then request
the inequality to be satisfied with high confidence and
require

Pr(|ρ − p̂N | < ε) ≥ 1 − δ, (30)



where 1 − δ represents the confidence value. The
above equation holds for any value of ε and δ provid-
ed that N satisfies the Chernoff’s bound [32].

N ≥
ln ( 2

δ
)

2ε2 (31)

If we now select a high confidence, say 1 − δ then,
with probability at least 1 − δ inequality |ρ − p̂N | < ε
holds. In turn, that means that the unknown probability
ρ is bounded as

p̂N − ε ≤ ρ ≤ 1 (32)

Eq (32) must then be intended as follow: designed a
generic system S with the SADP method and the above
hypotheses, the system will satisfy the performance sat-
isfaction criterion with at least probability p̂N − ε; the
statement holds with confidence 1 − δ. In other terms,
if p̂N assumes high values the learnability for a generic
system is granted with high probability and, as a con-
sequence, the stability for the system satisfying the per-
formance criterion is implicitly granted as well.

4. Experimental results

4.1. Longitudinal vehicle dynamic model

We adopt the complete all-wheel-drive vehicle
model present in the SimDriveline software of
Simulink/Matlab. The vehicle model is shown in Figure
5. It combines the Gasoline Engine, the Torque Conver-
tor, the Differential, the Tire, the Longitudinal Vehicle
Dynamics and the Brake blocks. The throttle position,
the brake pressure and road slope act as input signals,
the acceleration and the velocity as output signals. Such
a model has been used to validate the performance of
the suggested controllers [10].

4.2. Training process

In the SADP model, the discount factor γ is 0.9,
the initial learning rates for the Action and the Crit-
ic networks are set to 0.3, and decrease to 0.001 by
0.05 at each step. Both the Action and the Critic net-
works are three layered feed-forward neural networks
with 8 hidden neurons. The network weights are ran-
domly generated initially, to test the SADP learning
efficiency and drawn from section 3.5. Here, we set
τ = 2 s, d0 = 1.64 m and ∆t = 1 s.

An experiment, e.g., a full training of a controller re-
quires presentation of the same episode (training pro-
file) 1000 times. Each episode is as follows:

(1) The host speed and the initial distance between the
two vehicles are 90 km/h and 60 m, respectively.
The target speed is 72 km/h and fixed in time inter-
val [0, 90) s;

(2) The target speed then increases to 90 km/h in time
interval [90, 100) s with fixed acceleration;

(3) The target maintains the speed at 90 km/h in the
time interval [100, 150) s.

In this case, ∆v(0) = 18 km/h and ∆d(0) = 18.36 m,
hence the agent starts from the initial state x(0) =
(18, 18.36), takes continuous action at each time in-
stance and either ends in the bump state or in the goal
state. We have seen that if a collision occurs, a heavy
penalty is given and the training episode will restart.
Although the agent is trained in a simple scenario, the
training process is not trivial. SADP, through trial and
error, will force the agent to undergo many differen-
t states. The training phase is then exhaustive and the
trained SADP controller shows a good generalization
performance.

For comparison we also carried out training experi-
ments with ADP which has the same final goal as SAD-
P. The training episodes are increased until 3000 to give
the agent more time to learn. Table 3 shows the per-
formance comparison between SADP and ADP. We say
that one experiment is successful when both the Action
and Critic networks weights keep fixed for the last 300
episodes and the performance of the system evaluated
on the test set satisfies the performance criterion defined
in section 3.5. As expected, the presence of the supervi-
sor guarantees the training process convergence so that
the full-range ACC is always achieved.

Table 3: Convergence comparison between SADP and ADP
Training Number of Number of
episodes experiments success

SADP 1000 1000 999
ADP 1000 1000 0
ADP 3000 1000 0

Analyzing the only one failed experiment from SAD-
P, we obtain that the Action and Critic networks weights
keep fixed for the last 224 episodes. If the number of
episodes defining the success is smaller, e.g., 200, then
this experiment can also be thought of as a success one.

4.3. Generalization test with different scenarios

The effectiveness of the obtained SADP control s-
trategy is tested in the driving scenarios of Section 2.
The driving habit parameters are changed as follows:



Figure 5: Longitudinal vehicle dynamic model suggested within Matlab/Simulink [10].

τ = 1.25 s and d0 = 4.3 m. Here, the CC scenario is
omitted for its simplicity. The test scenarios include the
normal ACC driving scenario, the SG scenario, the
emergency braking scenario, the cut-in scenario and
the changing driving habit scenario.

[16] proposed three different control strategies for the
full-range ACC problem, namely, the safe, the warning,
and the dangerous modes as the function of the warning
index and the time-to-collision. The outcome controller
provides an effective control strategy that we consider
here for comparison.

In this paper, only a single trained nonlinear con-
troller is used to deal with the full-range ACC problem.

4.3.1. The normal ACC scenario
The target vehicle runs with varied speeds and the

host vehicle has to either keep a safe distance or a rela-
tive speed with respect to the target.

Results are shown in Figure 6. We comment that
speed and distance requests are nicely satisfied. More-
over, the requested acceleration is more than acceptable.
More in detail, at time 20 s the host vehicle reaches the
goal state, and stays there. Whenever the target vehicle
slows down or increases its speed, the host vehicle react-
s to the change by imposing the corresponding acceler-
ation action. The normal ACC problem can be thought
as a linear process, while the mixed control strategy [16]
provides a near-optimal control. Experiments show that
the obtained SADP behaves as well as the mixed control
strategy.

4.3.2. The SG scenario
Starting from 20 km/h the target vehicle accelerates

to reach a speed of about 40 km/h and, then, deceler-

ates to a full stop. Results are shown in Figure 7. We
appreciate the fact that the host vehicle performs well
both in distance and speed control. In the first 10 s, the
host vehicle decelerates to a stop, then the host vehi-
cle accelerates (constant acceleration) until time 80 s.
Afterwards, it keeps a constant speed for a period and,
finally, goes to a full stop. As in the case of the nor-
mal ACC scenario, the mixed control strategy [16] and
SADP both provide near-optimal control performance,
indicating the good learning ability of SADP.

4.3.3. The emergency braking scenario
This scenario is designed to test the control perfor-

mance under extreme conditions to ensure that driving
safety is achieved. The target vehicle brakes suddenly
at time instant 60 s and passes from 80 km/h to 0 km/h
in 5 s.

Figure 8 shows the experimental results, clearly indi-
cating that both the methods stop the vehicle successful-
ly with similar clearances to the target vehicle, but the
SADP control strategy outperforms the mixed control s-
trategy [16] with a smoother acceleration (e.g., see the
deceleration peak requested by the mixed approach). In
[16] the control signal was a combination of two control
strategies; as such it introduced frequent spikes in the
acceleration signal when prompt actions were request-
ed.

4.3.4. The cut-in scenario
The host and target vehicles proceed at high speed, A

vehicle from the neighboring lane interferes and inserts
between the target and the host vehicle, which needs
to the host one brake. The distance to the new target
vehicle abruptly reduces up to 50%.
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Figure 6: Experimental results with SADP and the mixed control s-
trategies in the normal ACC scenario: (a) distance; (b) speed; (c) ac-
celeration.

Figure 9 shows that both algorithms perform well. S-
ince there is a significant reduction in the safety dis-
tance, the host brakes to avoid the crash. This is a nor-
mal action in current ACC systems. In our algorithm,
small driving habit parameters must be set to emulate
the behavior of a sportive driver, which might leave a
very small and safety distance for the neighboring vehi-
cle to cut in.

4.3.5. The changing driving habit scenario
The above four scenarios are set with parameters

d0 = 4.3 m and τ = 1.25 s. In practical implementation-
s, there could be several driving habits for the human
driver to choose from. We verify the proposed algorith-
m and it always meets the driver expectation.

4.4. Robustness

In real vehicles, measurement errors introduce uncer-
tainties on the relative distance and the relative speed
measurements. Such uncertainties affect the controller
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Figure 7: Experimental results with SADP and the mixed control s-
trategies. SG scenario: (a) distance; (b) speed; (c) acceleration.

performances. In the following we consider sensing un-
certainties by adding noise to the real values. Figure 10
shows an emergency braking situation. A random 2%
in magnitude uniform noise is added to the target speed.
Since the relative distance is derived from the speed un-
certainty propagates. We see that SADP outperforms
the mixed control strategy [16], with a higher accura-
cy in the distance control and a smoother acceleration
requirements. We verified that SADP provides satisfac-
tory performances when the noise increases up to 5% in
magnitude.

Other uncertainties may include the changing load of
the vehicle and the friction between the vehicle and the
road. They can be solved with the aforementioned bot-
tom controller.

4.5. Discussions
We can conclude that the SADP control strategy is

robust and effective in different driving scenarios.
Furthermore, the changing driving habit scenario im-

mediately shows the generalization performance of the
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Figure 8: Experimental results with SADP and the mixed control s-
trategies. The emergency braking scenario: (a) distance; (b) speed;
(c) acceleration.

control strategy: the controller performs well, especially
in its distance control, when the driving habit changes.

There are two reasons for the good performance of
the SADP control strategy:

(1) The training scenario only consists of changing the
speed in time. However, due to the trial and error
mechanism of SADP, the state space is exhaustively
explored during the training process. As a result,
most typical states are excited and used during the
training phases.

(2) The state of SADP is (∆v,∆d) and not (∆v, dr). As
such, different driving habits will solely lead to d-
ifferent states of SADP, which means that the Ac-
tion network will provide corresponding action s-
trategies.

The Demonstration of stability for the obtained con-
troller in a close form is not an easy task. However, as
shown in section 3.5. We can estimate how the learning
process is difficult. Such a complexity can be intend-
ed in terms of learnability, namely, the probability that
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Figure 9: Experimental results with SADP and the mixed control s-
trategies. The cut-in scenario: (a) distance; (b) speed; (c) acceleration.

given a training experiment the outcome controller is
effective. By having considered 1000 experiments (i.e.,
we have generated N = 1000 controllers) we discover
that only 1 out of 1000 does not provide the requested
performances.

Following the derivation given in section 3.5 and the
Chernoff’s bound, let δ = 0.01 and ε = 0.05, then
N ≥ 1060 is obtained. With p̂N = 0.999 obtained from
the experiment results, we can state that the probability
that our controller satisfies the performance criterion is
above 0.95: the statement holds with confidence 0.99.
In other terms, the learning process is particularly effi-
cient. Since performance validation is carried out on a
significant test set covering the functional driving con-
ditions for our vehicle, stability is implicitly granted, at
least for the considered conditions.

Future analysis might consider a double form of ran-
domization where driving habits are also drawn ran-
domly and provided to the vehicle so as to emulate its
lifetime behavior.
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Figure 10: Robust experiments with SADP and the mixed control s-
trategies in an emergency braking scenario (Moon et al., 2009): (a)
distance; (b) speed; (c) acceleration.

5. Conclusions

The major contribution of this paper is the suggestion
of a simple and effective learning control strategy for the
full-range ACC problem. The control action is based on
SADP and introduces the concept of Inducing Region
to speed up the learning efficiency.

The trained SADP is applied to different driving sce-
narios including normal ACC, SG, emergency braking,
cut-in and driver habits changing. The SADP control s-
trategy performs well in all encountered scenarios. The
method shows to be particularly effective in the emer-
gency braking case.

We also show, by using randomized algorithms, how
the proposed SADP is particularly effective to provide
good control performance on our test scenarios at least
with probability 0.95 and confidence 0.99.
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