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Abstract

In this paper, an effective unconstrained correlation filter called Uncon-

strained Optimal Origin Tradeoff Filter (UOOTF) is presented and applied

to robust face recognition. Compared with the conventional correlation filters

in Class-dependence Feature Analysis (CFA), UOOTF improves the overall

performance for unseen patterns by removing the hard constraints on the

origin correlation outputs during the filter design. To handle non-linearly

separable distributions between different classes, we further develop a non-

linear extension of UOOTF based on the kernel technique. The kernel ex-

tension of UOOTF allows for higher flexibility of the decision boundary due

to a wider range of non-linearity properties. Experimental results demon-

strate the effectiveness of the proposed unconstrained correlation filter and

its kernelization in the task of face recognition.
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1. Introduction

Over the past few decades, increasing interest in biometrics has led to

rapid improvements in biometric technologies [1]. Various biometric tech-

nologies are available for identifying or verifying an individual. Face recogni-

tion, in particular, has attracted much attention due to its non-intrusive

nature and important role in the areas of access control, security, video

surveillance, and so on [2]. However, face recognition is a very challeng-

ing task in practice due to great variations in facial appearance caused by

pose, illumination, expression, etc. Particularly, in real-world applications,

face recognition often encounters the small sample size (SSS) problem [3, 4],

where the training samples of subjects are very limited while the dimension-

ality of face data is high.

A variety of face recognition algorithms have been developed so far [2].

Among them, the appearance-based methods are one of the well-studied

techniques where a face is usually represented as a high-dimensional vector.

To overcome the problems incurred by high dimensionality, subspace learn-

ing methods [5], which aim to find linear/non-linear mappings, are used to

project the high-dimensional data onto the low-dimensional subspace. Typi-

cal subspace learning methods include Principal Component Analysis (PCA)

[6], Linear Discriminant Analysis (LDA) [7, 8] and related methods [9, 10, 11],

Locality Preserving Projections (LPP) [12], Non-negative Matrix Factoriza-

tion (NMF) [13], and Class-dependence Feature Analysis (CFA) [14, 15].

The projection axis obtained by the traditional subspace learning meth-

ods, such as PCA, LDA and LPP, is used to preserve the dominant data

information or discriminate all the classes. One common problem of these
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methods is that they are not able to effectively discriminate classes close

to each other since large class distances are often overemphasized during

training. The resulting transformed subspace can preserve the distances of

well-separated classes, while causing overlaps between neighboring classes.

Tao et al. [10, 11] proposed a new criterion based on the maximization of

the geometric mean of the divergences (MGMD) between different pairs of

classes for subspace selection, which reduces the class separation problem.

Recently, NMF [13] and its variants [16, 17, 18] were developed as new sub-

space learning methods. Based on the fact that many real-world data, such

as images or videos, are non-negative, NMF-related methods force the non-

negativity constraints in factorization. This non-negativity constraints are

consistent with the psychological evidence of parts-based representations for

human perception. However, the computational complexity of NMF-related

methods is high for large training data.

Compared with the above methods, the projection axis obtained by CFA

is used to distinguish one specific class from the other classes (see Fig. 1 for

an illustration). Besides, the traditional methods [6, 7, 8, 9, 12, 13] often

employ features derived from the space domain, while CFA uses features de-

rived from the frequency domain [14, 15]. The key step in CFA is the design

of the correlation filters. Phase information which contains the structural in-

formation for human perception is directly modeled by the correlation filters

in CFA [15]. What is more, the correlation filters offer some desirable proper-

ties, such as graceful degradation, shift-invariance, and closed-form solutions

[14, 15, 19, 20, 21, 22, 23].

The original CFA [14, 15] designs the correlation filters by using the 2D
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Figure 1: A comparison between different subspace learning methods for a two-class prob-

lem. The first projection axes for PCA and LDA are shown in black and purple, respec-

tively. Two projection axes for CFA are given in red. Note that CFA obtains a projection

axis for each class while the projection axes of PCA and LDA try to preserve or discrimi-

nate all the classes.

Fourier transforms of images. For simplicity, we call the original CFA as

2D-CFA. In our previous work [20], a tensor correlation filter based CFA

method (TCF-CFA), which generalizes the original CFA by encoding the

image data as tensors, was proposed. It has been shown that TCF-CFA

can be derived in a similar way as 2D-CFA, which is a special case of TCF-

CFA when the image data are encoded as 2nd-order tensors (i.e., image

matrices). Moreover, the commonly-used correlation filters in TCF-CFA

have the same form as those in 2D-CFA. In this study, we mainly focus on

the 1D correlation filter based CFA (1D-CFA), since the previous research

has demonstrated the great success by considering the image data as vectors

[6, 7, 8, 12] and experimental results have already shown that 1D-CFA and
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2D-CFA can achieve similar performance [20, 21].

There have been some widely-used correlation filters existing in the liter-

ature. For example, Mahalanobis et al. [24] proposed the Minimum Average

Correlation Energy (MACE) filter. The objective function of the MACE fil-

ter is to minimize the average energy of the correlation plane outputs while

satisfying the correlation peak amplitude constraints. The MACE filter em-

phasizes high spatial frequencies to produce sharp correlation peaks, which

makes it very sensitive to noise. Kumar [25] derived the Minimum Variance

Synthetic Discriminant Function (MVSDF) filter, which minimizes the corre-

lation output noise variance while satisfying the correlation peak amplitude

constraints. The MVSDF filter focuses on low spatial frequencies to reduce

noise. OTF (Optimal Tradeoff Filter) [26] combines the MACE filter and

the MVSDF filter to produce sharp correlation peaks and suppress noise.

OEOTF (Optimal Extra-class Output Tradeoff Filter) [21] was proposed to

optimize the extra-class correlation outputs at the origin of the correlation

plane. Besides, the unconstrained correlation filters, such as the Uncon-

strained OTF filter (UOTF) [27, 28], are designed to maximize the average

correlation height instead of enforcing the hard constraints on the outputs of

correlation filters.

The traditional correlation filters, such as MACE [24], MVSDF [25], OTF

[26], and OEOTF[21], assume that the distortion tolerance of a filter could

be controlled by explicitly specifying desired correlation peak values for the

training images. As a matter of fact, the overall performance becomes worse

if one enforces the hard constraints on the correlation peak values during

training. Relaxing the hard constraints by using the unconstrained form
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could improve the overall performance for unseen patterns [28]. Unfortu-

nately, experimental results on face recognition show that the direct use of

UOTF [27, 28] is not desirable for feature extraction. The reason is that

the design criterion of UOTF is not optimized for feature extraction in CFA.

Thus, it motivates us to design an effective unconstrained correlation filter

which is in consistence with the feature extraction process of CFA.

In this paper, we propose a novel and effective unconstrained correlation

filter, called Unconstrained Optimal Origin Tradeoff Filter (UOOTF), to

extract the effective discriminative features in CFA. Furthermore, to handle

non-linearly separable distributions between different face classes, we also

develop a nonlinear extension of UOOTF (called KUOOTF) based on the

kernel technique [29, 30]. As far as we know, very few work concerns the

design of unconstrained correlation filters in the CFA framework.

In summary, the main contribution in this paper is a novel unconstrained

correlation filter (i.e., UOOTF) for effective feature extraction. UOOTF

has three main advantages: 1) UOOTF overcomes the overfitting problem

of the traditional UOTF by emphasizing the origin correlation outputs; 2)

UOOTF provides a better generalization capability for unseen patterns by

removing the hard constraints during the filter design; 3) UOOTF can be

easily extended to the kernel form (i.e., KUOOTF) to deal with the non-

linear structure of the class distribution.

The rest of this paper is organized as follows. In Section 2, the details

of the proposed unconstrained correlation filter (UOOTF) are presented. In

Section 3, we show how to extend UOOTF to its kernel form by using the

kernel technique. In Section 4, the proposed methods in the task of face
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recognition on several popular face databases are evaluated. Finally, we

provide some concluding remarks in Section 5.

2. Unconstrained Optimal Origin Tradeoff Filter

In this section, we begin with briefly introducing 1D-CFA [20, 21] in

Section 2.1, since our method mainly focuses on the correlation filter design in

the 1D-CFA framework. Then, the proposed unconstrained correlation filter

design is presented in Section 2.2. In Section 2.3, we discuss the distinctions

between different correlation filters.

2.1. 1D-CFA

Compared with 2D-CFA where the correlation filters are designed in the

two-dimensional image space, 1D-CFA not only achieves similar accuracy,

but also has much lower computational complexity [21, 22]. During the

training stage, the 1D-CFA projection vectors (i.e., the correlation filters)

are generated and used for feature extraction. More specifically, face images

are firstly represented as high-dimensional data (e.g. the pixel intensities

[6] or Gabor features [31]). Then, PCA is used to perform dimensionality

reduction. In the PCA subspace, the correlation filters are obtained by using

the 1D Fourier transforms of the low-dimensional features. Finally, a bank of

class-dependence correlation filters is trained for feature extraction, as shown

in Fig. 2. Note that only the origin correlation outputs are used to form the

feature in 1D-CFA.
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Figure 2: Feature extraction in 1D-CFA. Note that FFT is the Fast Fourier Transform

which effectively computes the discrete Fourier transform.

2.2. Unconstrained Correlation Filter Design

The traditional correlation filters [21, 24, 25, 26] in 1D-CFA are based on

the assumption that the correlation peak amplitude should satisfy a speci-

fied value (i.e., the origin correlation outputs are restricted to 1 for a specific

class and 0 for the others). However, the overall performance of those fil-

ters can become worse for unseen patterns if the correlation peak values are

constrained to some specified constant values during the filter design, which

motivates us to design the filter in the unconstrained form.

UOTF is a traditional unconstrained correlation filter. The design crite-

rion of UOTF is to: (i) minimize the average energy and noise variance of

the whole correlation plane for all the samples; and (ii) maximize the origin

correlation outputs for the intra-class samples. However, the minimization

of (i) cannot guarantee that the origin correlation outputs for the extra-class

samples (used to form the feature) are minimal. As a result, although UOTF
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[28] tries to overcome the generalization problem by removing the hard con-

straints of OTF, UOTF fails in 1D-CFA (see Section 4 for the experimental

results). Therefore, in this paper, we propose to directly optimize the origin

correlation outputs and take the extra-class samples and intra-class samples

into respective considerations during the filter design.

In the following, we describe the details of the proposed UOOTF. For

the clarity of presentation, vectors are denoted by an arrow on top of the

alphabet. Upper case symbols refer to quantities in the frequency plane

terms while lower case symbols represent quantities in the space domain.

1D-CFA designs a correlation filter for each class. Let the filter trained

for the l-th class be ~hl, and ~o l
i be the output of ~hl in response to ~yi. We have

~o l
i (n) = ~yi(n)� ~hl(n), (1)

where � is a correlation function; ~yi is the low-dimensional PCA feature for

the i-th training image; n is the feature index in the spatial domain.

Equation (1) can be expressed in the frequency domain by using the 1D

Fourier transform as follows:

~o l
i (n) =

p−1∑
k=0

~Yi(k)∗ · ~Hl(k)e
j2πkn
p . (2)

Here, ~Yi and ~Hl represent the 1D Fourier transforms of ~yi and ~hl, respec-

tively; p is the reduced dimensionality of the PCA subspace; k is the feature

index in the frequency domain; ‘∗’ denotes the conjugate operator. Accord-

ing to (2), the origin correlation output (n = 0) is the inner product of the

input signal and the correlation filter in the frequency domain.

The framework of the UOOTF design is shown in Fig. 3. For the extra-

class samples, UOOTF tries to balance the tradeoff between the origin cor-
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Figure 3: Framework of the UOOTF design.

relation output energy and the origin correlation output noise variance. It

can be derived by minimizing the weighted sum of the origin energy |~o l
i (0)|2

and the origin noise variance |~n l
i (0)|2 for the extra-class samples, which is

expressed as

min
~Hl

ωs

(
1

Nel

Nel∑
i=1

|~o l
i (0)|2

)
+ ωn

(
1

Nel

Nel∑
i=1

|~n l
i (0)|2

)

= min
~Hl

ωs

(
1

Nel

Nel∑
i=1

|~YE+
i
~Hl|2

)
+ ωn

(
1

Nel

Nel∑
i=1

|~NE+
i
~Hl|2

)
= min

~Hl

ωs ~H
l+Rl

Y
~Hl + ωn ~H

l+C~Hl, (3)

where Rl
Y = 1/Nel

∑Nel
i=1

~YE
i
~YE+
i , and ~YE

i (i = 1, · · · , Nel) is the 1D Fourier

transform of the extra-class sample for the l-th class. C = 1/Nel

∑Nel
i=1

~NE
i
~NE+
i ,

and ~NE
i (i = 1, · · · , Nel) is the 1D Fourier transform of the extra-class noise

sample for the l-th class; C is usually set as a diagonal matrix whose diagonal

elements represent the noise power spectral density (In fact, C can also be

viewed as a regularization term); ‘+’ represents the conjugate transpose; ωs
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and ωn (0 ≤ ωs, ωn ≤ 1) are the tradeoff parameters; N is the number of all

the training samples and Nl is the number of training samples for the l-th

class; Nel = N − Nl denotes the number of extra-class training samples for

the l-th class.

For the intra-class samples, we try to maximize the average origin corre-

lation output, which is given by

max
~Hl

(
1

Nl

Nl∑
i=1

~YI+
i
~Hl) = max

~Hl

( ~Ml+ ~Hl), (4)

where ~Ml = 1/Nl

∑Nl
i=1

~YI
i is the average of all the intra-class samples for

the l-th class, and ~YI
i (i = 1, · · · , Nl) is the 1D Fourier transform of the

intra-class sample for the l-th class.

By combining (3) and (4), we have the following optimization criterion:

J(~Hl) =
| ~Ml+ ~Hl|2

ωs ~Hl+Rl
Y
~Hl + ωn ~Hl+C~Hl

=
~Hl+ ~Ml ~Ml+ ~Hl

~Hl+(ωsRl
Y + ωnC)~Hl

. (5)

The unconstrained correlation filter UOOTF can then be derived by max-

imizing the criterion function J(~Hl), i.e.,

~Hl = arg max
~Hl

J(~Hl). (6)

By using the Lagrange multiplier method [32], it is easy to derive the

following closed-form solution of UOOTF:

~Hl = (Tl)−1 ~Ml, (7)

where Tl = ωsR
l
Y + ωnC.
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Since the hard constraints are removed during the filter design, the peak

values at the origin vary for classes. To overcome the scale differences for dif-

ferent correlation filters, we normalize the feature by using a simple strategy

as follows:

~xn =
~x

max(~x)
. (8)

Here, max(~x) returns the maximum value in the vector ~x; ~xn is the normalized

feature.

In Algorithm 1, we give the outline of the proposed UOOTF based 1D-

CFA for face recognition.

2.3. Discussions

It is worth comparing the performance obtained by different types of

unconstrained correlation filters, which are designed based on various opti-

mization criteria. The traditional unconstrained correlation filter, such as

UOTF, is designed based on the overall correlation output plane. Neverthe-

less, such kind of filter design is not consistent with the feature extraction

process, where only the origin correlation output is used in 1D-CFA. In con-

trast, during the design of UOOTF, the optimization criterion only focuses on

the origin correlation output which is in essence more appropriate for feature

extraction. Fig. 4 shows the normalized origin correlation outputs (OCO)

for UOOTF and UOTF on a test face on the PIE face database [33]. We can

observe in Fig. 4 that UOOTF can produce only one large amplitude peak

value (equal to 1) for the relevant class while suppressing the peak values of

the other irrelevant classes. On the contrary, UOTF produces multiple large

amplitude peak values (close to 1) for several classes due to overfitting.
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Algorithm 1 UOOTF based 1D-CFA for face recognition

Input: Query image ~pq ∈ <m×1, and training data matrix D ∈

<m×N with L classes, where m is the dimensionality of the face

feature.

Output: The class label of the query image.

Training Stage:

Step 1 : Project the training data matrix D ∈ <m×N onto the PCA

subspace to obtain the low-dimensional feature matrix Y ∈<p×N and

the corresponding 1D Fourier transform matrix Y ∈ <p×N .

Step 2 : Do for l = 1,· · ·, L:

2.1 Calculate the tradeoff Tl using the extra-class samples of

the l-th class;

2.2 Calculate the average value ~Ml using the intra-class sam-

ples of the l-th class;

2.3 Design the correlation filter ~Hl by (7).

Step 3 : Construct the projection matrix P = [~H1, · · · , ~HL] .

Step 4 : Compute the feature matrix X = PTY.

Step 5 : Normalize each column of the feature matrix X based on (8)

to obtain the normalized feature matrix Xn .

Testing Stage:

Step 1 : Project the query face ~pq onto the PCA subspace to obtain

the low-dimensional feature ~yq ∈ <p×1 and the corresponding 1D

Fourier transform ~Yq ∈ <p×1 .

Step 2 : Compute the feature ~xq = PT ~Yq.

Step 3 : Normalize the feature ~xq based on (8) to obtain ~xqn .

Step 4 : Assign the class label to the query image ~pq by using the

nearest neighbor classifier based on ~xqn and Xn.
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Figure 4: Normalized Origin Correlation Outputs (OCO) for different face classes on the

PIE database. Top: Normalized OCO for UOTF; Bottom: Normalized OCO for UOOTF.

Different from OTF, UOOTF optimizes the correlation origin outputs for

the extra-class samples. In addition, the solution of UOOTF is simpler and

the output distortion tolerance is further enhanced by relaxing the constraints

on the correlation peaks for the intra-class samples.

However, we should point out that the proposed UOOTF requires more

training time to obtain the closed-form solution compared with the other

filters, such as UOTF and OTF. This is because the non-diagonal matrix

inversion, which consumes the majority of the CPU time, is employed in

UOOTF (see (7)) during the filter design. This problem can be alleviated by

considering using GPU or parallel computation [34].

3. Kernel UOOTF

In this section, UOOTF is designed in a high-dimensional feature space

by using the kernel technique. The main idea of the kernel correlation filter
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is to find a non-linear projection by non-linearly mapping the data onto a

feature space F and then design the correlation filter there, thus implicitly

yielding a non-linear filter in the input space [29, 30].

Suppose φ : ~Y ∈ Zp → ~F ∈ F is the non-linear mapping. Kernel UOOTF

(i.e., KUOOTF) tries to design the filter in F so as to maximize the following

objective function:

J(~Fl) =
~Fl+ ~Ml

φ
~Ml+
φ
~Fl

~Fl+(ωsRl
φ + ωnCφ)~Fl

, (9)

where ~Ml
φ, Rl

φ, and Cφ are the average correlation height, auto-covariance

signal matrix and auto-covariance noise matrix in the feature space for the

l-th class, respectively. To be specific,

~Ml
φ =

1

Nl

Nl∑
i=1

φ(~YI
i),

Rl
φ =

1

Nel

Nel∑
i=1

φ(~YE
i )φ(~YE

i )+,

Cφ =
1

Nel

Nel∑
i=1

φ(~NE
i )φ(~NE

i )+. (10)

According to the theory of reproducing kernels [29], any solution ~Fl ∈ F

must lie in the span of all the training samples in F . Thus, the solution can

be expressed as

~Fl =
N∑
i=1

αliφ(~Yi). (11)

Based on (11) and the expression of ~Ml
φ in (10), we have

~Fl+ ~Ml
φ = ~αl+ ~Ul. (12)
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Here we define (~Ul)i = 1/Nl

∑Nl
j=1 k(~Yi, ~Y

I
j), where k(~X, ~Y) =< φ(~X), φ(~Y) >

is the kernel function which only computes the inner product of two vectors

in F without ever mapping the data explicitly.

Therefore, we have

~Fl+ ~Ml
φ
~Ml+
φ
~Fl = ~αl+ ~Ul ~Ul+~αl. (13)

Using a similar transformation as (13), we can obtain

~Fl+(ωsR
l
φ + ωnCφ)~Fl = ~αl+Kl~αl, (14)

where

Kl = ωs(
1

Nel

Nel∑
i=1

~ψE
i
~ψE+
i ) + ωn(

1

Nel

Nel∑
i=1

~υEi ~υ
E+
i ),

~ψE
i = (k(~Y1, ~Y

E
i ), k(~Y2, ~Y

E
i ), · · · , k(~YN , ~Y

E
i ))+,

~υEi = (k(~Y1, ~N
E
i ), k(~Y2, ~N

E
i ), · · · , k(~YN , ~N

E
i ))+. (15)

As a result, maximizing (9) is equivalent to maximize

J(~αl) =
~αl+ ~Ul ~Ul+~αl

~αl+Kl~αl
. (16)

The above problem can be solved analogously to (6). Thus, the solution

of (16) is

~αl = (Kl)−1 ~Ul. (17)

The training stage of the KUOOTF based 1D-CFA is similar to the

UOOTF based 1D-CFA except for the step of computing the feature ma-

trix, which is given in Algorithm 2.
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Algorithm 2 Computation of the feature matrix for the KUOOTF

based 1D-CFA

Input: Low-dimensional PCA feature matrix Y ∈<p×N with L

classes, where p is the dimensionality of the feature, and the cor-

responding 1D Fourier transform matrix Y ∈ <p×N .

Output: The feature matrix X.

Step 1 : Do for l = 1,· · ·, L:

1.1 Calculate the tradeoff Kl based on the kernel function of

the extra-class samples of the l-th class;

1.2 Calculate the average value ~Ul based on the kernel func-

tion of the intra-class samples of the l-th class;

1.3 Calculate the weight vector ~αl via (17) of the l-th class.

Step 2 : Compute the feature matrix X based on (18).

During the testing stage, the origin correlation output of a sample ~Y

using the kernel filter in F is given by

~Fl+φ(~Y) =
N∑
i=1

αlik(~Yi, ~Y). (18)

4. Experiments

We evaluate the performance of the proposed UOOTF based 1D-CFA

and its kernelization (KUOOTF) in face recognition. In our experiments,

we use the widely-used AR [35], FERET [36], FRGC [37], LFW [38], and

CAS-PEAL-R1 [39] face databases. These face databases contain a wide

range of facial variations with different conditions including changes in facial

expression (in AR, FERET, LFW, and CAS-PEAL-R1), illumination (in AR,

17



FRGC, LFW, and CAS-PEAL-R1), and pose (in FERET and LFW).

The methods chosen for comparisons are the Eigenface method (PCA) [6],

the Fisherface method (PCA+LDA) [7], the MGMD method [11], the Lapla-

cianface method (PCA+LPP) [12], and 1D-CFA (including OTF [15] based

and UOTF [27] based methods). In addition, the kernel subspace learning

methods including the recently proposed eigenspectrum regularization based

kernel LDA (ER-KDA) [40] and the kernel OTF (KOTF) based CFA [19],

are also selected.

All the face images are cropped and normalized to the size of 64 × 64.

Histogram equalization is applied to the face images for photometric nor-

malization. The linear combination coefficient in MGMD [11] is chosen by

cross-validation in the training set. The reduced dimensionality of the PCA

subspace in 1D-CFA is set to N − 1 (N is the number of all the training

samples). In our experiments, to demonstrate the capability of feature ex-

traction for different subspace learning methods, the pixel intensities [6] and

Gabor features [31] are respectively used for representing the face images.

In particular, we use the Gabor wavelets with five scales and eight orienta-

tions and then down-sample the obtained features by a factor (four in our

case). For the kernel based methods, the widely-used Gaussian RBF kernel

k(~X, ~Y) = exp(−||~X − ~Y||2/δ2) is applied. Other kernel functions, such as

the polynomial kernel function, could also be used. However, the performance

difference by using the two kernels is not significant [19, 40]. Therefore, we

mainly focus on the RBF kernel in our experiments.
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4.1. AR Database

The AR database [35] consists of more than 4,000 frontal face images of

120 persons. Each person has up to 26 images taken in two sessions. The first

session contains 13 images, including different facial expressions, illumination

variations, and occlusions. The second session duplicates the first session two

weeks later. We select 14 face images (each session contains seven images)

from each of these 120 individuals. Fig. 5 shows the sample images of one

person used in our experiments.

Figure 5: Sample images of one person on the AR database.

A random subset (withm images per individual) is taken from the database

to form the training set. The rest of the image database is used for testing.

For eachm, the experiments with randomly sampled subsets are implemented

twenty times. We report the top average recognition rate and the correspond-

ing dimensionality of the reduced subspace over the randomly sampled testing

sets as the final results [41]. Moreover, the highest recognition rate for each

case is shown in the bold font. In this paper, we focus on the small sample

size problem, which is one of the most fundamental issues in face recognition

[3, 4, 41]. Therefore, for all the databases, the value of m is set to 2 and 3.

In our experiments, we set the tradeoff parameter ωn equal to
√

1− ω2
s

(which is same as [14, 15, 19]). We test different settings of the tradeoff
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parameter ωs. In the cases of m = 2 and m = 3, the recognition rates based

on the pixel intensities vary with different values of ωs, which are respectively

shown in Fig. 6 (a) and (b).
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Figure 6: Recognition rate vs. tradeoff parameter ωs under m = 2 and m = 3.

The recognition rates achieve the best results when ωs is 0.4 for OTF and

UOOTF. Meanwhile, the optimal ωs for UOTF is 0.3. In fact, we observe

similar results on other face databases. Therefore, we set ωs to be constant

values (ωs = 0.4 for OTF and UOOTF/KUOOTF; ωs = 0.3 for UOTF) for

all the following experiments.

To determine proper parameters for kernels, we use the global-to-local

search strategy, which is similar to [8]. After searching over a wide range

of the parameter space, we locate the interval within which the optimal

parameters exist. For the Gaussian RBF kernel, the interval is chosen from

1 to 10. The optimal kernel parameters are then found within the interval.

Fig. 7 gives the changes of recognition rates based on the pixel intensities

with the different widths of RBF kernel when m = 2 and m = 3, respectively.

We can see that the KUOOTF based 1D-CFA achieves better results than
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the KOTF based 1D-CFA and ER-LDA.

We experimentally choose the proper kernel parameters which give the

results in Fig. 7. For instance, the width of RBF kernel can be set to 3 for

the KUOOTF based 1D-CFA with respect to a nearest neighbor classifier

while the optimal width is 4 for the KOTF based 1D-CFA. By using the

kernel technique, we see that the nonlinear kernel extension is beneficial to

improve the performance of UOOTF for feature extraction.
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Figure 7: Recognition rate vs. the width of RBF kernel under m = 2 and m = 3.

Table 1 shows the performance of the different subspace learning methods

based on the pixel intensities and Gabor features under different values of

m. From Table 1, the recognition accuracy of the UOOTF based 1D-CFA is

about 3% ∼ 4% better than the OTF based 1D-CFA based on the pixel inten-

sities. The recognition rates are further improved when the Gabor features

are used. However, the performance difference between different methods

is smaller for the Gabor features compared to the pixel intensities. This is

because the Gabor features can extract high-dimensional features that are

more tolerant to variations caused by facial expression and illumination than
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Table 1: The top average recognition rate (%) and the corresponding dimensionality of

the reduced subspace (in the bracket) on the AR database.

Method Intensity (m = 2) Intensity (m = 3) Gabor (m = 2) Gabor (m = 3)

Eigenface
72.37 82.67 78.41 79.32

(110) (101) (236) (146)

Fisherface
80.53 83.15 81.21 90.16

(74) (119) (74) (119)

MGMD
81.15 82.07 85.54 88.18

(118) (120) (115) (120)

Laplacianface
83.01 84.54 89.93 91.02

(113) (110) (119) (119)

1D-CFA 85.62 90.12 90.40 92.14

(OTF) (120) (120) (120) (120)

1D-CFA 46.87 52.09 60.43 65.98

(UOTF) (120) (120) (120) (120)

1D-CFA 88.78 94.42 91.83 95.82

(UOOTF) (120) (120) (120) (120)

ER-KDA
86.81 87.29 89.44 90.50

(59) (128) (83) (146)

1D-CFA 87.97 91.84 91.17 93.29

(KOTF) (120) (120) (120) (120)

1D-CFA 90.02 95.29 92.34 96.80

(KUOOTF) (120) (120) (120) (120)

the pixel intensities. As shown in Table 1, the KUOOTF based 1D-CFA

achieves the best recognition accuracy among all the competing methods. In

addition, KOTF and KUOOTF can still increase the recognition rate about

2% compared with OTF and UOOTF by using the Gabor features.

4.2. FERET Database

The FERET database [36] is a well-known face database for testing and

evaluating state-of-the-art face recognition methods. A subset of the FERET
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database including 800 images and 200 persons (i.e., there are 4 images for

each person) is tested. This subset involves variations in facial expression,

illumination, and pose. Several examples are given in Fig. 8.

Figure 8: Sample images of two persons on the FERET database.

The recognition results based on the pixel intensities and Gabor features

under different values ofm are shown in Table 2. The performance of UOOTF

based 1D-CFA is about 10% better than the OTF based 1D-CFA with respect

to the pixel intensities. The Gabor features help to further improve the

recognition accuracy on the FERET. The ER-KDA method performs well on

the FERET database, where it achieves the best recognition rate (91.69%)

when m = 2 and the Gabor features are used. However, the KUOOTF

based 1D-CFA obtains the recognition rate up to 99.01% when more training

samples are used (i.e., m = 3).

4.3. FRGC Database

The FRGC (Face Recognition Grand Challenge) face database [37] is an-

other public database for performance evaluation. It consists of controlled

images, uncontrolled images and three-dimensional images for each object.

We select 6,000 images for 300 individuals (20 images for each person) from

the FRGC face database. The face images were captured in both controlled
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Table 2: The top average recognition rate (%) and the corresponding dimensionality of

the reduced subspace (in the bracket) on the FERET database.

Method Intensity (m = 2) Intensity (m = 3) Gabor (m = 2) Gabor (m = 3)

Eigenface
63.90 66.75 76.25 80.22

(397) (595) (296) (464)

Fisherface
72.81 78.63 83.86 91.88

(82) (190) (148) (199)

MGMD
76.90 84.22 86.93 92.10

(198) (200) (200) (195)

Laplacianface
74.69 82.15 86.41 93.17

(199) (199) (199) (199)

1D-CFA 75.07 82.25 89.76 95.88

(OTF) (200) (200) (200) (200)

1D-CFA 27.69 38.68 54.00 59.61

(UOTF) (200) (200) (200) (200)

1D-CFA 84.95 93.10 90.90 98.25

(UOOTF) (200) (200) (200) (200)

ER-KDA
83.27 90.17 91.69 95.23

(37) (102) (129) (84)

1D-CFA 80.25 85.12 90.36 96.12

(KOTF) (200) (200) (200) (200)

1D-CFA 85.72 95.98 91.24 99.01

(KUOOTF) (200) (200) (200) (200)

and uncontrolled conditions with harsh illumination and expression varia-

tions. Fig. 9 shows the sample images of one person used in our experiments.

The recognition results based on the pixel intensities and Gabor fea-

tures under different values of m are shown in Table 3. From Table 3, the

recognition rates of all the methods are low on the difficult FRGC database.

However, UOOTF and KUOOTF can still extract effective features for clas-
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Figure 9: Sample images of one person on the FRGC database.

Table 3: The top average recognition rate (%) and the corresponding dimensionality of

the reduced subspace (in the bracket) on the FRGC database.

Method Intensity (m = 2) Intensity (m = 3) Gabor (m = 2) Gabor (m = 3)

Eigenface
47.38 57.56 54.68 63.22

(127) (136) (392) (146)

Fisherface
47.89 53.42 57.99 71.43

(148) (199) (104) (14)

MGMD
49.45 57.16 60.47 78.14

(295) (300) (300) (298)

Laplacianface
53.31 61.21 68.34 80.26

(299) (298) (288) (294)

1D-CFA 54.32 62.03 66.94 80.91

(OTF) (300) (300) (300) (300)

1D-CFA 25.43 30.61 40.29 49.35

(UOTF) (300) (300) (300) (300)

1D-CFA 64.89 76.96 67.27 87.62

(UOOTF) (300) (300) (300) (300)

ER-KDA
60.07 62.23 68.51 83.54

(82) (190) (104) (127)

1D-CFA 55.19 63.37 67.23 84.52

(KOTF) (300) (300) (300) (300)

1D-CFA 66.43 78.39 67.97 88.15

(KUOOTF) (300) (300) (300) (300)

sification. Besides, we also observe that the Laplacianface achieves slightly

better performance than the UOOTF and KUOOTF based 1D-CFA meth-
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ods on FRGC when we use the Gabor features (m = 2). But the recognition

rates obtained by UOOTF and KUOOTF are significantly higher than the

other competing methods when m = 3.

4.4. LFW Database

The LFW (Labeled Faces in the Wild) face database [38] contains images

of 5,749 different individuals collected from the web. LFW-a [42] is a version

of LFW after alignment using a commercial face alignment software. A subset

of 100 individuals (5 images for each person) was chosen from the LFW-a

database. This subset involves severe variations in illumination, pose, facial

expression, age, etc. Fig. 10 shows the sample images of two persons used

in our experiments.

Figure 10: Sample images of two persons on the LFW database.

The recognition results based on the pixel intensities and Gabor features

under different values of m are listed in Table 4. One can see that the per-

formance of all the methods decreases largely under the unconstrained envi-

ronments, which demonstrates the difficulty of LFW. The proposed methods

show superior performance to all the other competing methods. Compared

with the OTF based 1D-CFA, the recognition rate is greatly improved by the

UOOTF based method. KUOOTF only leads to a little improvement (about

1%) over UOOTF in LFW. This is mainly due to the kernel parameter of
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KUOOTF is fixed for all the databases in our experiments. The kernel pa-

rameter of KUOOTF can be further optimized (e.g. using cross validation)

for the LFW database.

Table 4: The top average recognition rate (%) and the corresponding dimensionality of

the reduced subspace (in the bracket) on the LFW database.

Method Intensity (m = 2) Intensity (m = 3) Gabor (m = 2) Gabor (m = 3)

Eigenface
8.23 12.28 18.09 22.46

(134) (245) (78) (109)

Fisherface
16.10 22.31 26.00 32.34

(99) (97) (32) (45)

MGMD
18.34 20.57 26.20 28.45

(100) (99) (100) (97)

Laplacianface
3.35 7.28 10.09 12.48

(90) (99) (99) (99)

1D-CFA 17.14 21.19 26.00 32.34

(OTF) (100) (100) (100) (100)

1D-CFA 6.40 10.76 11.11 14.90

(UOTF) (100) (100) (100) (100)

1D-CFA 25.11 32.25 35.12 42.18

(UOOTF) (100) (100) (100) (100)

ER-KDA
23.25 26.94 32.16 37.33

(56) (89) (32) (12)

1D-CFA 20.09 28.26 27.61 35.90

(KOTF) (100) (100) (100) (100)

1D-CFA 25.85 32.19 37.00 42.78

(KUOOTF) (100) (100) (100) (100)

4.5. CAS-PEAL-R1 Database

To test the generalization capability of the proposed methods, we use

the CAS-PEAL-R1 Chinese face database and the evaluation protocols in-

troduced in [39]. The CAS-PEAL-R1 database contains three types of data,
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i.e., the training set, gallery set and probe set. The training set consists of

1,200 images. The gallery set includes 1,040 images of 1,040 persons (i.e, one

image for each person). The CAS-PEAL-R1 database contains six probe sets

which correspond to six subsets under different conditions: accessory, age,

background, distance, expression, and lighting. All the images that appear

in the training set are excluded from the probe sets and the probe identity

may not be trained in the training set. The details of the CAS-PEAL-R1

database are shown in Table 5. Fig. 11 shows the sample images of two

persons used for training.

Figure 11: Sample images of two persons used for training on the CAS-PEAL-R1

database.

The recognition rates obtained by the competing methods based on the

pixel intensities and Gabor features are shown in Tables 6 and 7 respectively,

which demonstrate the superiority of our proposed methods on the CAS-

PEAL-R1 database under different probe sets. Especially, the KUOOTF

based 1D-CFA achieves the approximate 40% recognition rate under the most

difficult lighting set based on the pixel intensities. The Gabor features further

boost the recognition performance for all the subspace learning methods. For

the age and the distance probe sets, the recognition rates of the KUOOTF

based 1D-CFA are 100% while the improvement goes up to 56.26% for the

lighting probe set.
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Table 5: The datasets used in the CAS-PEAL-R1 database.

Datasets
Training Gallery Probe set

set set Accessory Age Background Distance Expression Lighting

No. of Images 1,200 1,040 2,285 66 553 275 1,570 2,243

Table 6: The top recognition rate (%) and the corresponding dimensionality of the

reduced subspace (in the bracket) on the CAS-PEAL-R1 database (based on the pixel

intensities).

Method Accessory Age Background Distance Expression Lighting Average

Eigenface
59.39 57.58 95.84 93.09 73.69 10.16

51.00
(158) (56) (64) (66) (139) (64)

Fisherface
45.95 33.33 87.70 77.45 61.34 4.95

40.67
(298) (164) (209) (179) (238) (144)

MGMD
44.68 28.79 88.43 78.91 61.78 6.78

41.02
(300) (299) (300) (290) (294) (300)

Laplacianface
38.38 25.76 82.28 70.91 51.08 3.30

34.61
(319) (317) (320) (294) (315) (265)

1D-CFA 53.52 56.06 94.58 92.00 67.83 15.78
49.41

(OTF) (300) (300) (300) (300) (300) (300)

1D-CFA 13.74 6.06 57.14 44.00 41.34 0.62
13.74

(UOTF) (300) (300) (300) (300) (300) (300)

1D-CFA 74.84 71.21 98.19 98.55 83.12 31.43
65.52

(UOOTF) (300) (300) (300) (300) (300) (300)

ER-KDA
72.60 66.67 97.47 96.00 85.29 20.37

61.53
(231) (234) (325) (124) (132) (178)

1D-CFA 60.96 63.64 96.38 92.73 75.48 15.34
53.66

(KOTF) (300) (300) (300) (300) (300) (300)

1D-CFA 78.29 75.76 98.37 98.55 88.09 39.05
70.26

(KUOOTF) (300) (300) (300) (300) (300) (300)

4.6. Summary and Discussions

From Tables 1-7, we can see that the UOOTF and KUOOTF based

1D-CFA achieve the comparable or better recognition accuracy compared
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Table 7: The top recognition rate (%) and the corresponding dimensionality of the

reduced subspace (in the bracket) on the CAS-PEAL-R1 database (based on the Gabor

features).

Method Accessory Age Background Distance Expression Lighting Average

Eigenface
67.00 69.70 94.03 94.18 68.22 18.64

54.99
(118) (62) (92) (101) (117) (119)

Fisherface
78.73 89.39 88.79 86.91 84.20 17.70

61.60
(299) (299) (237) (299) (224) (268)

MGMD
80.31 92.42 89.51 90.91 85.67 20.06

63.44
(300) (287) (300) (300) (296) (300)

Laplacianface
75.67 87.88 84.27 85.82 51.27 22.69

54.39
(299) (241) (254) (287) (299) (299)

1D-CFA 84.16 100 97.11 98.91 90.25 30.58
70.09

(OTF) (300) (300) (300) (300) (300) (300)

1D-CFA 37.86 25.76 76.49 77.45 60.51 10.48
38.66

(UOTF) (300) (300) (300) (300) (300) (300)

1D-CFA 87.22 100 99.10 100 93.57 50.38
78.39

(UOOTF) (300) (300) (300) (300) (300) (300)

ER-KDA
78.50 86.36 98.19 97.82 86.88 30.58

67.40
(265) (124) (176) (213) (120) (209)

1D-CFA 87.61 100 99.10 99.27 93.69 42.40
75.96

(KOTF) (300) (300) (300) (300) (300) (300)

1D-CFA 88.36 100 99.28 100 95.03 56.26
80.99

(KUOOTF) (300) (300) (300) (300) (300) (300)

with the other competing methods. UOOTF is very effective for extracting

the features in the 1D-CFA framework. Furthermore, the kernel extension

(KUOOTF) can effectively improve the recognition performance. Compared

with ER-KDA and the KOTF based 1D-CFA, the KUOOTF based 1D-CFA

can achieve higher recognition rate by ∼ 2% to 5% on average. The kernel

extension of UOOTF allows for higher flexibility of the decision boundary

due to a wider range of non-linearity properties.
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It is worth noting that the overall recognition ability of the UOOTF based

1D-CFA is much better than the UOTF based 1D-CFA in our experiments.

The traditional UOTF based 1D-CFA cannot achieve satisfying recognition

rates in face recognition because the design criterion in UOTF is to opti-

mize the whole correlation output plane which will lead to the overfitting

problem in 1D-CFA (i.e., producing multiple large amplitude peak values).

As a matter of fact, the feature extraction in 1D-CFA only considers the

origin correlation outputs. Therefore, the UOOTF based 1D-CFA enhances

the discriminative ability of the features by allowing the flexible distortion

tolerance.

5. Conclusions

In this paper, we present an effective unconstrained correlation filter and

apply it to the task of face recognition. By removing the hard constraints dur-

ing the filter design and emphasizing the origin correlation outputs, UOOTF

can extract discriminative face features very effectively for classification. Fur-

thermore, we derive the kernel extension of UOOTF to handle non-linearly

separable distributions between different classes. Experimental results on

several public face databases show that the proposed UOOTF and KUOOTF

methods achieve promising results in face recognition.
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