
Author's Accepted Manuscript

Comparison of a genetic algorithm and simu-
lated annealing for automatic neural network
ensemble development

Symone Soares, Carlos Henggeler Antunes, Rui
Araújo

PII: S0925-2312(13)00579-1
DOI: http://dx.doi.org/10.1016/j.neucom.2013.05.024
Reference: NEUCOM13428

To appear in: Neurocomputing

Received date: 29 November 2012
Revised date: 21 March 2013
Accepted date: 15 May 2013

Cite this article as: Symone Soares, Carlos Henggeler Antunes, Rui Araújo,
Comparison of a genetic algorithm and simulated annealing for automatic
neural network ensemble development, Neurocomputing, http://dx.doi.org/
10.1016/j.neucom.2013.05.024

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal
pertain.

www.elsevier.com/locate/neucom



Comparison of a Genetic Algorithm and Simulated Annealing for Automatic Neural
Network Ensemble Development

Symone Soaresa,∗, Carlos Henggeler Antunesb, Rui Araújoa

a Institute for Systems and Robotics, Department of Electrical and Computer Engineering, University of Coimbra, Pólo II, PT-3030-290 - Coimbra, Portugal.
b Department of Electrical and Computer Engineering, and INESC Coimbra, University of Coimbra, Pólo II, PT-3030-290 - Coimbra, Portugal.

Abstract

In the last decades ensemble learning has established itself as a valuable strategy within the computational intelligence modeling
and machine learning community. Ensemble learning is a paradigm where multiple models combine in some way their decisions,
or their learning algorithms, or different data to improve the prediction performance. Ensemble learning aims at improving the
generalization ability and the reliability of the system. Key factors of ensemble systems are diversity, training and combining
ensemble members to improve the ensemble system performance. Since there is no unified procedure to address all these issues,
this work proposes and compares Genetic Algorithm and Simulated Annealing based approaches for the automatic development
of Neural Network Ensembles for regression problems. The main contribution of this work is the development of optimization
techniques that select the best subset of models to be aggregated taking into account all the key factors of ensemble systems (e.g.,
diversity, training ensemble members and combination strategy). Experiments on two well-known data sets are reported to evaluate
the effectiveness of the proposed methodologies. Results show that these outperform other approaches including Simple Bagging,
Negative Correlation Learning (NCL), AdaBoost and GASEN in terms of generalization ability.

Keywords: Ensemble Learning, Neural Network, Genetic Algorithm, Simulated Annealing.

1. Introduction

In the last decades ensemble learning has established itself as
a valuable strategy within the computational intelligence mod-
eling and machine learning community. Ensemble learning has
proven to be effective in a broad set of machine learning prob-
lems, including feature selection [1], small data sets [2], local
learning [3], concept drift theory [4], among others. Ensemble
learning is a paradigm in which multiple models combine in
some way their decisions, or their learning algorithms, or differ-
ent data to improve the prediction performance. This technique
is also known as Ensemble Method (EM) or Ensemble system.
Studies have shown that an ensemble system is generally more
accurate than any individual model, and its effectiveness has
been recognized in different benchmark data sets [5, 6, 7, 8, 9].

In this setting, Neural Network Ensembles (NNEs) have been
widely investigated for both classification and regression prob-
lems [10]. The main motivation is that the generalization ability
of the system can be significantly improved.

Key factors of the ensemble system are diversity, training and
combining ensemble members [11]. The success of the ensem-
ble system is mainly attributed to the diversity degree within
the ensemble. A good ensemble is one in which the models
make different errors on the same data point [6]. Research has
encouraged this diversity by manipulating the training data set

∗Corresponding author
Email addresses: symonesoares@isr.uc.pt (Symone Soares),

ch@deec.uc.pt (Carlos Henggeler Antunes), rui@isr.uc.pt (Rui Araújo)

[9], or by designing ensembles with different architectures or
heterogeneous learning algorithms [12, 8]. The ensemble mem-
ber training is the strategy employed to train individual ensem-
ble members. Several algorithms have been developed for this
task, including Bagging [13] and Boosting [14]. The last key
factor of an ensemble system is the approach used to combine
the individual models in the ensemble. This strategy depends
on the type of classifiers. For example, some classifiers provide
only discrete-valued label outputs and others only continuous
valued class-specific outputs.

Despite of the remarkable performance of ensemble systems,
a major drawback is that it is usually necessary to combine a
large number of models to ensure the ensemble accuracy. A
good way to alleviate this problem is the adequate selection of
the subset of models from the original set of models [15, 16].
This approach is also known as ensemble pruning [17]. The
aim is to find a good subset of ensemble members in order to
improve generalization ability, and which additionally reduces
the system complexity. However, the ensemble pruning is a
difficult problem whose solution is commonly computationally
expensive. Pruning an ensemble with n models requires search-
ing in the space of the 2n − 1 non-empty solutions to minimize
a cost function correlated with the generalization error [18].

To address this problem, a number of different meta-
heuristics has been developed for model selection [19]. For ex-
ample, Kim and Oh [20] adopt a Hybrid Genetic Algorithm in-
spired by the feature selection problem to select the most appro-
priated models for the ensemble. Other example is the Genetic
Algorithm based Selective Ensemble (GASEN), which trains a

Preprint submitted to Neurocomputing June 6, 2013



set of Neural Networks (NNs) using bootstrap to increase the
diversity among the models. GASEN uses a Genetic Algorithm
(GA) to select an optimal subset of NN models to include in the
ensemble. In this strategy, a weight derived from the marginal
improvement in the fitness (measuring the solution quality) as-
sociated with including a model in the ensemble is assigned to
each model. Then the models whose weights are higher than a
fixed threshold are selected for inclusion in the ensemble [21].
The main drawback of GASEN is that the NNs have fixed ar-
chitectures and the combination techniques are only simple av-
erage and weighted average for regression and classification,
respectively.

Liu et al. [7] present an automatic strategy for designing
ensemble systems using Evolutionary Learning and Negative
Correlation Learning (EENCL). Negative Correlation Learning
(NCL) generates negatively correlated NN models using a cor-
relation penalty term in the error function to encourage spe-
cialization and cooperation among the models. EENCL does
not explore the linear combination among the models and the
models’ architectures are also predefined. On the other hand,
Bayesian Artificial Immune System (BAIS) is an immune-
inspired methodology for designing NNEs with better general-
ization ability when compared to the EENCL. BAIS introduces
diversity in the models’ architecture. However, only one com-
bination type is used for designing the NN models [22].

This work proposes and compares Genetic Algorithm and
Simulated Annealing (SA) based approaches for the automatic
development of NNEs for regression problems. The main con-
tribution of this work is the development of optimization tech-
niques to select the best subset of models to be aggregated take
into account all the key factors of ensemble systems (i.e. di-
versity, training ensemble members and combination strategy).
Firstly, a set of models with a high degree of diversity is gener-
ated. For each model, the proposed approach creates a different
training data set by applying bootstrap. Then the method selects
the best model’s architecture by varying the number of hidden
neurons, the activation functions and the weight initializations.
Secondly, the optimization strategy is employed to select both
the best subset of models and the optimal combination strategy
for aggregating the subset of models. Experiments on two well-
known data sets are reported to evaluate the effectiveness of the
proposed methodologies. Results show that these outperform
other approaches including Simple Bagging, NCL, AdaBoost
and GASEN in terms of generalization ability.

The paper is organized as follows. Section 2 reports the key
factors in ensemble system development. In Section, 3 key is-
sues for designing ensemble systems are outlined. Section 4
details the proposed methodologies. Experimental results are
detailed and analyzed in Section 5. Finally, Section 6 contains
some concluding remarks.

2. Key Factors in Ensemble Systems

Generalization is an important issue in machine learning.
Generalization refers to the predictor ability to perform well
when applied to unseen data. An ensemble of models has

shown to generalize better than any single model in the en-
semble. Theoretical [6] and empirical [2] studies have proven
why ensembles perform better than single learners. Despite
the remarkable performance of ensembles, building ensemble
systems is not an easy task. The important key of ensemble
systems is to design an ensemble which performs better than
random individual predictors and models which make different
errors on the same sample [23]. That is, diversity is necessary
in the ensemble members’ decisions. If the models provide the
same output, there is nothing to be gained from their aggre-
gation. Different models usually make different errors, which
means that by combining diverse models it is possible to make
more accurate decisions.

During the ensemble development, diversity should be taken
into account. The system may or may not explicitly try to opti-
mize some metric of diversity during the design of the ensem-
ble system. These strategies are divided into explicit and im-
plicit diversity methods, respectively. While implicit methods
rely on randomness to generate diversity, explicit methods de-
terministically generate diversity. For example, Bagging (short
for Bootstrap Aggregation Learning) employs an implicit strat-
egy to achieve diversity [8, 24]. Bagging randomly samples
the training data set by applying bootstrap to create a different
training data set for each individual predictor [13]; at no point
is a measurement taken to promote diversity. On the other hand,
Boosting is an explicit strategy. Boosting directly manipulates
the training data set distributions by the specific weight changes
to ensure some form of diversity in the set of models [14, 25].
The main drawback is that there is no guarantee to be the right
way to promote diversity.

Brown et al. [6] state that the majority of ensemble diversity
approaches can be subdivided into three main categories:

(i) starting the learning with different conditions;

(ii) altering the set of predictors;

(iii) altering the trajectory used by the components in the
search space.

The first category (i) creates each predictor with different initial
components. For an ensemble of NN models, training each NN
with a different weight initialization technique may increase the
probability of continuing on a different trajectory with respect
to the other NN models. Approaches in this category gener-
ally give poor results, because the predictors are not diverse
enough [19]. Methods in this category (ii) aim at modifying
each ensemble member. Common strategies attempt to ma-
nipulate the training data set that each member receives (e.g.,
k-fold cross-validation [26], Bagging, Boosting, or noise injec-
tion [27]), or to alter the model’s architecture (e.g., NN mod-
els with different architectures or different activation functions),
or to design members with heterogeneous learning algorithms
(e.g., Bayesian, RBF NN models and Support Vector Machines)
[8]. Approaches in the third category (iii) aim at modifying the
way the search space is traversed, leading different component
models to converge to different hypotheses. This category can
be subdivided into evolutionary methods and penalty methods.

2



Penalty methods introduce a correlation penalty term into the
cost function of the ensemble system so that each model min-
imizes its error together with the error correlation within the
ensemble. On the other hand, evolutionary algorithms can also
evolve a population of models using techniques to promote di-
versity. Penalty methods and evolutionary algorithms can be
hybridized. A penalty term can be employed to promote inter-
action and diversity among the ensemble members and evolu-
tionary algorithms can be used to select the ensemble members
[7].

Member selection is also a key strategy for ensemble devel-
opment. This strategy can lead to better generalization perfor-
mance. One motivation is that during this process a subset of
models with uncorrelated models (or diverse models) can be se-
lected, promoting the diversity in the ensemble. Several strate-
gies have been employed to select the members for the ensem-
ble, including Genetic Algorithms [21], Particle Swarm Opti-
mization [28], Bayesian Artificial Immune System [22], and
pruning strategies [17].

During the ensemble development some issues are at stake
[29]: how to generate the ensemble members (diversity should
be promoted here), how to evaluate the ensemble members, and
what member selection should be employed. Other important
issue is what combination strategy should be applied to aggre-
gate the models’ outputs. The combination strategy is crucial
for enhancing the ensemble performance [30] and balancing the
diversity among the ensemble members. The main drawback of
most ensemble systems is that usually they consider only one
combination strategy during ensemble development.

In order to address all the above mentioned key issues related
to ensemble system development, the methodologies proposed
in this work apply the above mentioned diversity approaches (i)
and (ii) to promote diversity and achieve good generalization
ability. In this work the diversity approach (i) is applied to start
the NN learning with different conditions by using three dif-
ferent weight initializations (details in Subsection 3.2). In this
work the diversity approach (ii) is employed to promote diver-
sity by modifying each NN. In this case, the NN models are
generated using different training data sets obtained by boot-
strap and then the best NN architecture is chosen by altering the
number of neurons in the hidden layer and the activation func-
tions. Genetic Algorithm and Simulated Annealing are then
compared as methods to select the best subset of models and
the optimal combination strategy for aggregating this subset.

3. Creating a Neural Network Ensemble

NN is a learning paradigm inspired by biological neurons,
and consists of processing elements and connections between
them [31]. In NN modeling, there are several network struc-
tures and training parameters that need to be carefully chosen.
They include the number of layers, number of neurons in each
layer, activation functions, weight initialization method, learn-
ing rates etc. Several techniques have been proposed for the pa-
rameter selection [32, 33]. However, even if the resulting NN is
correctly designed, the generalization ability can be a problem
[34].

Neural Network 1

Output 1

Neural Network 2

Output 2

Neural Network n

Output n

Combiner

Output of the Ensemble

...

...

Figure 1: Architecture of a Neural Network ensemble.

Ensemble learning has been established as a very promising
approach for improving the generalization of NN systems [5].
Figure 1 illustrates a NNE architecture [35], where the com-
biner is able to aggregate the NN models’ outputs. In NNE
modeling, optimal combination can enhance the robustness and
the accuracy [36]. In this paper, robustness is related to the
approximation performance of the NNE on unseen data points
(generalization ability). The next subsections are subdivided
according to the ensemble development steps.

3.1. Training, Validation and Testing Data Sets
Consider an initial data set (original data set) Dinit =

{(xi, yi)}ki=1 of size k, where xi ∈ IRv×1 (v is the number of in-
put variables) and yi is the output variable. The initial data
set is divided into a training data set Dtrain = {(xi, yi)}k1

i=1, a
validation data set Dvalid = {(xi, yi)}k2

i=1, and a testing data set
Dtest = {(xi, yi)}k3

i=1, of size k1, k2 and k3, respectively, and
k = k1 + k2 + k3.

Bootstrap [37] can be applied in the training data set for pro-
moting diversity in the ensemble. In machine learning, boot-
strap is employed to expand upon a single realization of a dis-
tribution or generate different data sets that can provide a better
understanding of the mean and variability of the original un-
known distribution [24]. Bootstrap is performed by randomly
sampling with replacement from the original training data set
Dtrain. To sample with replacement, one sample {(xi, yi)} from
Dtrain is randomly selected and then placed into a new training
data set Db

train. Db
train must contain the same number of sam-

ples of Dtrain, i.e. k1 samples. Random sample selections from
Dtrain continue until Db

train has been filled with k1 samples. Db
train

data set may include multiple copies of the same sample and no
copies of other samples from Dtrain.

Let us assume an ensemble with n NN models. Then n differ-
ent training data sets Db

train are obtained by bootstrap. For each
training data set Db

train the best NN’s architecture is selected
according to the performance in the validation data set Dvalid.
Dvalid is also used to control the overfitting by early stopping.
The testing data set Dtest is employed to evaluate the ensemble’s
performance.

3.2. Generation of Neural Networks
After creating n training data sets Db

train, the next step is to
produce n NN models. For this purpose, for each training data

3



set the best NN’s architecture is selected.
NN models are implemented using one hidden layer using

Multilayer Perceptron Neural Network (MLP NN) trained by
the Levenberg-Marquardt (LM) algorithm [38]. LM is a well-
known learning algorithm for non-linear problems, widely used
in a broad range of applications. The LM algorithm is a hy-
bridization of steepest descent and Gauss-Newton method.

For each training data set, a NN’s topology is chosen from a
collection of NN models based on its performance. This eval-
uation is done using the Mean Squared Error (MSE) between
the estimated output of NN and the actual output y in the vali-
dation data set. The collection of models is obtained by varying
the number of neurons in the hidden layer (from 1 to 10); vary-
ing among two activation functions (linear and fast hyperbolic
tangent) for both the hidden layer and output layer; and three
different weight initialization methods. The weight initializa-
tion methods are:

• Randomly initialize the weights within the interval
[−1/ni, 1/ni], where ni is the number of input neurons
[31];

• Nguyen-Widrow approach: set initial weights using the
Nguyen-Widrow initialization method [39];

• Randomly initialize the weights within the interval
[−0.5, 0.5], using a uniform distribution [40];

3.3. Combiner
This step aims at combining the n NN models. In this pro-

cess, the NNs’ outputs are combined using predictions of the
testing data set. This paper uses the main combination strate-
gies reported in the literature: mean, trimmed mean, median
[41], and weighted mean [36]. Assuming n models, f j() as out-
put of model j, and F() as the ensemble’s output, combination
strategies are given by:

1. Mean: the ensemble’s output is calculated by averaging
the n models’ predictions:

F(xi) =
1
n

n∑
j=1

f j(xi); (1)

2. Trimmed mean: the ensemble’s output is obtained as the
trimmed mean of the n predictors’ outputs. Trimmed mean
excludes the lowest predictors’ outputs and the highest
models’ outputs before obtaining the mean, avoiding ex-
treme outputs. For example, considering a P% trimmed
mean, the mean is calculated by removing P%/2 from the
highest NN models’ outputs and P%/2 from the lowest
NN models’ outputs. (This work sets P% as 10%).

3. Median: the ensemble’s output is the median among all
models’ outputs:

F(xi) = median
j=1,...,n

{ f j(xi)}; (2)

4. Weighted mean: the ensemble’s output is calculated
through a weighted sum of the models’ outputs:

F(xi) =

n∑
j=1

w j · f j(xi); (3)

where each weight w j is related to the accuracy of model
j. In this paper, the accuracy of a model j is determined
using the MSE in the validation data set, and is calculated
using [22]:

w j =
adjusted MSE j∑n

k=1 adjusted MSEk
, (4)

where the “adjusted MSE j” is determined by:

adjusted MSE j = 1 − average MSE j, (5)

and the average MSE j is given by:

average MSE j =
MSE j∑n

k=1 MSEk
. (6)

To evaluate the ensemble performance, it is used the MSE
between the estimated output F() and the actual output y in the
testing data set MSEtest.

4. Proposed Methodology

This work proposes two different methods for automatic en-
semble development: Genetic Algorithm for Designing Neural
Network Ensembles (GA-NNE) and Simulated Annealing for
Designing Neural Network Ensembles (SA-NNE). The ensem-
ble construction using GA-NNE and SA-NNE is performed by
two main steps:

1. Generation of candidate NN models;
2. Selection of a subset of NN models and the best combina-

tion strategy for aggregating this subset.

The aim is to produce an ensemble which has good performance
when compared to an individual NN performance. This objec-
tive is achieved by producing and selecting diverse NN models
and then selecting the most suitable combination strategy.

The sub-steps for the generation of candidate NN models are
the same as in Subsections 3.1 and 3.2. For generating n candi-
date NN models, first n different training data sets are generated
by applying bootstrap. Then, the most suitable NN’s architec-
ture is chosen for each training data set. At the end of this
process n candidate NN models are generated.

For defining the methodology proposed for the selection of
a subset of NN models and a combination strategy using GA-
NNE and SA-NNE algorithms, firstly it is necessary to intro-
duce how the possible solutions are encoded and the fitness
function.

• Solution encoding: a candidate solution to the problem is
encoded as a binary string sequence. The solution con-
tains information about the ensemble of NN models to be
designed. The solution structure consists in two parts, as
illustrated in Figure 2. The first part is the model section,
which contains information about the subset of NN models
for composing the ensemble. The second part is the com-
bination type, which represents the combination strategy
to be employed for aggregating the subset of NN models.

As an example, consider a set of n candidate NN models
{net1, net2, . . . , netn}, where each locus of the model part is

4



models

net1 ... netn 1 c...

combination type

Available Neural Networks:

NN

#1

NN

#2

...
NN

#n

comb.

#1

comb.

#2

...
comb.

#z

Available combination strategies:

net2

Figure 2: Binary solution representation.

models

net4

combination 

type

net1 net2 net3 net5 net6 net7 net8

1 1 0 1 0 1 0 1 10

(a) Binary solution representation.

selected 

Neural Networks

comb.

#3

selected 

combination type

weighted

mean

NN

#1

NN

#2

NN

#7

NN

#5

(b) Decoding the solution.

Figure 3: Example of a solution.

related to the absence “0” or presence “1” of a model net j

in the ensemble system. Considering z as the number of
combination strategies, and c as the number of bits to rep-
resent them, then c = ⌈log2(z)⌉, where ⌈x⌉ is the smallest
integer not lower than x. Our proposed methodology uses
the four combination strategies mentioned in Subsection
3.3: mean, trimmed mean, median and weighted mean,
with their binary representations being “00”, “01”, “10”
and “11”, respectively. Figure 3 illustrates an example of
a solution representation using a set of eight NN models
{net1, net2, net3, . . . , net8}. Figure 3a shows the binary en-
coding of the solution and Figure 3b shows the decoding
of the same solution. The final subset of NN models to
compose the ensemble is {net1, net2, net5, net7} and the se-
lected combination strategy is weighted mean (i.e., “11”).

• Fitness function: for a candidate solution, the fitness func-
tion is calculated based on the ensemble performance.
This is obtained through the aggregation of the subset of
NN models using the selected combination strategy. The
ensemble evaluation is performed using the predictions on
the testing data set, where the fitness function is defined by
1/MSEtest (see Section 3.3).

Algorithm 1 Genetic Algorithm for Designing Neural Network
Ensembles (GA-NNE)

Inputs n; c; maxgenerations; p%
m ; p%

s ; e; m;

1. Produce n candidate models according to Subsection 3.2;
2. Generate randomly an initial population P1 with m indi-

viduals;
3. Evaluate the fitness of each individual of P1 with all pos-

sible combination strategies;
4. Assign the best combination strategy (on the last c bits) to

each individual of P1 according to the fitness;
5. Set generation number as t ← 1;
6. Repeat:

(a) Select a percentage p%
s of the individuals of Pt;

(b) Perform crossover on the selected individuals to gen-
erate a new population of offspring Ot;

(c) Mutate randomly with probability p%
m on the first n

bits (the model part) of the individuals in Ot;
(d) Evaluate the fitness of each individual in Ot with all

possible combinations strategies;
(e) Assign to each individual in Ot the best combination

strategy according to the fitness;
(f) Select individuals for the new population Pt+1:

i. Set P′t as a temporary population P′t ← (Ot∪Pt);
ii. Apply elitism by assigning to Pt+1 the e individ-

uals of P′t with the best fitness;
iii. Select (m − e) individuals of P′t for Pt+1;

(g) Set t ← t + 1;

until t = maxgenerations.

4.1. Genetic Algorithm for Designing Neural Network Ensem-
bles (GA-NNE)

Genetic Algorithms were proposed by Holland [42] as a
global optimization approach inspired by natural evolution and
survival of the fittest. GAs use a solution population (chro-
mosomes) which evolve by means of selection, crossover and
mutation operators [43].

GA-NNE is herein proposed for evolving a population of
candidate ensembles [44], as shown in Algorithm 1. GA-NNE
starts by setting the parameters n, c, maxgenerations, p%

m , p%
s , e

and m. In GA-NNE, each chromosome represents an ensemble
to be designed. A chromosome is implemented using a binary
solution representation shown in Figure 2, and 1/MSEtest is the
fitness function.

In Step 1, a set of n candidate NN models is produced accord-
ing to Subsection 3.2. In Step 2 an initial population P1 with
m individuals is generated, where each individual has length of
(n + c) bits.

Step 3 evaluates each individual of P1 using the fitness func-
tion. This is done by evaluating the performance of the subset
of models (information contained in the model part) using all
possible combination strategies. Step 4 assigns the combina-
tion strategy with best performance to the chromosome (last

5



c bits, i.e., combination type part). This strategy ensures that
the ensemble system will always be designed using the optimal
combination type.

In Step 6, the algorithm loops over t generations. Sub-step 6a
selects p%

s of the individuals of population Pt by using Roulette
Wheel Selection [43]. In this operation, an individual of Pt

is picked to be a parent with a probability proportional to its
fitness.

Sub-step 6b combines the selected parents to compose a new
population of offspring Ot. This operation is done using uni-
form crossover with a random mask, where two parents, parent1
and parent2, generate two offspring, offspring1 and offspring2.
The method applies crossover only on the model part of each
individual. First a random binary mask of length n is produced.
If there is 0 in the bit of the mask, the corresponding bit from
parent1 is copied to offspring1 and the corresponding bit from
parent2 is copied to offspring2. If there is 1 in the bit of the
mask, the corresponding bit from parent1 is copied to offspring2
and the corresponding bit from parent2 is copied to offspring1
[45].

Sub-step 6c selects p%
m individuals from population Ot to be

mutated on the model part, where p%
m is the mutation probabil-

ity. In this operation, for each selected individual one or more
bits can be randomly changed to foster diversity in the offspring
population. Sub-step 6d and sub-step 6e evaluate each individ-
ual of Ot with all possible combination strategies and then the
best combination type is assigned to the last c bits.

Individuals for composing the new population Pt+1 are
picked in sub-step 6f. In this operation, elitism is applied, by
means of which e (with e < m) individuals with best fitness
from Ot ∪Pt are assigned to Pt+1 (of size m). Then (m− e) indi-
viduals of Pt+1 are selected from Ot ∪ Pt using Roulette Wheel
Selection.

After maxgenerations, the individual with best fitness of the
last population is selected as the final solution to the problem.

4.2. Simulated Annealing for Designing Neural Network En-
sembles (SA-NNE)

Simulated Annealing is a meta-heuristic that has proven to
be effective in solving many difficult, especially combinato-
rial, problems [46]. Annealing is a process to change materi-
als’ properties. It is performed by heating a material and then
freezing it slowly until it crystallizes. As the heating allows the
atoms to move randomly, the cooling process should be slow
enough to allow atoms to move themselves to lower energy po-
sitions. Considering this procedure as an optimization problem,
if the atoms’ arrangement is achieved with lowest energy level,
the arrangement is an optimal solution to the energy minimiza-
tion problem. SA applies this analogy in order to search for
the optimal solution to an optimization problem [47]. The main
SA’s advantage is the ability to avoid becoming trapped at local
optima.

This paper develops a SA based approach for designing en-
sembles of NN models, as detailed in Algorithm 2. SA-NNE is
able to select the best subset of models from a set of candidate
models, and then select the best combination type for aggregat-

Algorithm 2 Simulated Annealing for Designing Neural Net-
work Ensembles (SA-NNE). (Maximization problem)

Inputs n; c; Ti; T f ; tr; α; h;

1. Produce n candidate models according to Subsection 3.2;
2. Generate randomly a current solution sc;
3. Set T ← Ti;
4. Repeat:

(a) Set q← 0;
(b) Repeat:

i. Select randomly a new solution sn in the neigh-
borhood of sc using a Hamming distance h;

ii. if eval(sc) < eval(sn)
A. then sc ← sn;
B. else if random[0, 1) < exp

(
eval(sn)−eval(sc)

T

)
a. then sc ← sn;

iii. Set q← q + 1;
until q = tr.

(c) Set T ← T × α;

until T = T f .

ing this subset. A solution is encoded according to Figure 2 and
1/MSEtest is used as the evaluation function, given by eval().

SA-NNE is started by setting the parameters n, c, Ti, T f tr,
α and h. Step 1 produces n candidate NN models according to
the description in Section 3.2. In Step 2, a current solution sc

of size (n + c) bits is randomly generated.
Step 3 assigns the initial temperature Ti to the temperature

parameter T . In Step 4, SA-NNE loops over until temperature
T is equal to final temperature T f . Temperature T is gradually
decreased according to the cooling ratio T ← T × α, where α
is the cooling factor. In Step 4(b)i, a new solution sn is ran-
domly selected in the neighborhood of sc. This neighborhood
is defined using a Hamming distance h, that is, only h bits at
most change from sc to sn. The algorithm always accepts sn as
the new sc, if sn is better than sc. If sn is worse than sc, there
is a probability of acceptance of sn that depends on the current
value of T and a random value, as described in Step 4(b)ii. Pa-
rameter tr is the maximum number of tries allowed for a given
value of the temperature parameter.

5. Experimental Results

In this Section, experiments to evaluate the proposed GA-
NNE and SA-NNE approaches are described. The main ob-
jectives of the experiments are: (i) to evaluate the performance
of a single Neural Network; (ii) to analyze the characteristics
of the candidate NN models; (iii) to evaluate the GA-NNE and
SA-NNE performances by varying important parameters; and
(iv) to compare GA-NNE and SA-NNE to other ensemble tech-
niques.

6



5.1. Data Set Description
Experiments are performed using two data sets available at

Luís Torgo’s website [48]: Friedman and Boston Housing.
These data sets are adopted because they are widely used in the
literature. Therefore they are useful to compare our algorithms
with other methodologies.

• Friedman data set: Friedman function is a well-known
function for data generation [49]. It uses both non-linear
and linear relations between output and inputs. The origi-
nal Friedman function contains five independent variables:

y = 10sin(πx1x2) + 20
(
x3 −

1
2

)2

+ 10x4 + 5x5 + ϵ , (7)

where ϵ ∼ N(0, 1) is a standard normal deviation. In the
data set, the input space is increased by adding other five
independent variables x6, . . . , x10 that do not have influ-
ence on y. The total set of variables {x1, x2, . . . , x10} is uni-
formly distributed over [0, 1]. The data set includes 40768
samples.

• Boston Housing data set: this data set has been applied
extensively in literature to benchmark methods. It con-
tains information collected by the U.S. Census Service
about housing in the area of Boston, Massachusetts [50].
The data set consists of 13 independent variables (mainly
socio-economic) and 1 output variable (median housing
price). The data set is small in size with 506 samples.

Experiments are organized in runs. Each run is evaluated
using 10-fold cross-validation, where the data set is split into
10 subsets. The result is the average of the results of the 10
subsets, where each subset is in turn used as a testing data set
while the samples of the other 9 subsets are randomly divided
into a training data set (90%) and a validation data set (10%).
At the end of this process, there are 10 artificial data sets each
of which consists of training, validation and testing data sets.
Below, the results of MSEtest are given by averaging the MSE
of all 10 testing subsets.

5.2. Individual Neural Networks
Firstly, the performance of individual NN models is in-

vestigated by altering the number of neurons in the hidden
layer. The experiment was done by setting the weight initial-
ization approach and activation function according to popular-
ity, where Nguyen-Widrow was selected as weight initialization
technique, and fast hyperbolic tangent and linear as activation
functions for the hidden layer and output layer, respectively.

Early stopping criteria is applied as a strategy to control over-
fitting [51]. Early stopping has been recognized as a good strat-
egy for avoiding overfitting and optimizing the generalization
performance of NN models in practice [52]. The main idea is to
inspect the test error of a NN model on a independent set using
a validation data set, so that when the validation data set error
starts to increase the NN training is stopped to avoid overfitting.
In this paper, early stopping is employed by the following pro-
cedures: set the maximum number of epochs as 500; train each

Table 1: Results of MSEtest using EBP. All the MSE values have been multi-
plied by 103 in the table.

Data Set Combination Type

mean tr. mean median wt. mean

Friedman 2.100 2.100 2.100 2.100
Boston Housing 4.500 4.400 4.400 4.500

NN calculating the validation data set error every 50 epochs
and keep the NN weights at this current point; if the validation
data set error has decreased in comparison to the last point, con-
tinue the NN training and assign the current weights as final NN
weights; if the validation data set error at the current point has
risen in comparison to the last point, terminate the NN training
and assign the NN weights at the last point as final NN weights.

Figure 4 shows the performance of the individual NN mod-
els, where MSE is obtained by 10-fold cross-validation. The
experiment reveals that NN models with lower number of neu-
rons in the hidden layer are less prone to overfitting and conse-
quently these NN models have better generalization capability.
For this reason, in this paper, the maximum number of neurons
in the hidden layer is limited to 10.

Moreover, Figure 4a and Figure 4b illustrate the minimum
MSE value achieved for a NN in the testing data set over all NN
models. For Friedman data set, the minimum value is 7.0x10−3

and the NN has 5 neurons in the hidden layer; and, for Boston
Housing data set, the minimum value is 8.8x10−3 and the NN
has 4 neurons in the hidden layer. In the next experiments, a
reduction of the minimum value is observed.

5.3. Generation of the Candidate Neural Networks

This Sub-section details the characteristics of the set of can-
didate Neural Networks to be used in the next experiments. A
set of 20 candidate models was generated according to Sub-
section 3.2 by 10-fold cross-validation. The set is used by GA-
NNE and SA-NNE approaches. Before doing the experiments
with GA-NNE and SA-NNE, all the 20 candidate NN models
were aggregated to constitute an ensemble. Therefore, no op-
timization techniques were employed to select the best subset
of models. We use the term Ensemble Before Pruning (EBP) to
refer to this ensemble.

EBP was implemented using mean, trimmed mean, median,
and weighted mean as combination types. Table 1 shows the
results of EBP based on the MSE in the testing data set. For
Friedman data set, the combination types have the same value
of MSEtest. On the other hand, median and trimmed median
outperforms mean and weighted mean for Boston Housing data
set. From the results, it is possible to notice that EBP has good
generalization ability when compared to the individual models
generated in Sub-section 5.2.

For the Friedman and Boston Housing data set, an artificial
data set from 10-fold cross-validation was randomly chosen to
show the characteristics of the candidate Neural Networks. Fig-
ure 5 shows the NN’s properties, such as the number of neurons

7



5 10 15 20 25 30
number of neurons in the hidden layer

0

2

4

6

8

10

12

14

16

M
ea

n 
Sq

ua
re

d 
Er

ro
r (

M
SE

)

1e−3

minimum value in
the testing data set

7.0e-3

training data set
validation data set
testing data set

(a) Friedman data set.

5 10 15 20 25 30
number of neurons in the hidden layer

0

5

10

15

20

25

30

35

40

45

M
ea

n 
Sq

ua
re

d 
Er

ro
r (

M
SE

)

1e−3

minimum value in
the testing data set

8.8e-3

training data set
validation data set
testing data set

(b) Boston Housing data set.

Figure 4: Performance of the individual NN models.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
id. of the Neural Network

0
2
4
6
8

10
12

no
. o

f n
eu

ro
ns

HH HH HH
HH

HH HH HH HH HH
HH HH HH

HH

HH HH HH
HH HH

HH HH
interval of [-1/ni,1/ni]
Nguyen-Widrow
interval of [-0.5,0.5]

(a) Friedman data set.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
id. of the Neural Network

0
2
4
6
8

10
12

no
. o

f n
eu

ro
ns HL

HH

HH HH
HH

HL
HH

HH
HH

HL

HL HL HL HL HL HH HL

HL

HH

HL

interval of [-1/ni,1/ni]
Nguyen-Widrow
interval of [-0.5,0.5]

(b) Boston Housing data set.

Figure 5: Neural Network’s properties of a subset from 10-fold cross-validation. See Table 2 for identifying the activation functions in the layers.

Table 2: Abbreviations for the activation functions in the layers.

Abbreviation Hidden layer Output layer

HH fast hyperbolic tangent fast hyperbolic tangent
LL linear linear
HL fast hyperbolic tangent linear
LH linear fast hyperbolic tangent

in the hidden layer, the weight initialization type and the activa-
tion function types for the hidden layer and output layer. For the
activation functions in the layers the abbreviations displayed in
Table 2 are used. It is observed that the models from Friedman
data set have a higher number of neurons in the hidden layer
when compared to the models from Boston Housing data set.
Moreover, for the Friedman data set all the NN models have
the fast hyperbolic tangent as activation function for both the
hidden layer and the output layer.

5.4. Genetic Algorithm for Designing Neural Network Ensem-
bles (GA-NNE)

After generating the 20 candidate models, Algorithm 1 pro-
ceeds with Step 2. Several experiments were performed by
varying the GA-NNE’s inputs in the following values:

• Mutation probability: p%
m ∈ {5%, 10%, 15%};

• Selection probability: p%
s ∈ {60%, 100%};

• Population size: m ∈ {20, 40}.

The crossover probability is set to 1, the number of mutated bits
for the mutation operations is set to 2, the maximum number of
generations is set to 500 (maxgenerations), and 1 individual is
selected by elitism for the next generation (e).

Table 3 and Table 4 show the mean, standard deviation
(S.D.), minimum, and maximum of the MSE obtained with GA-
NNE on 12 experiments, with 20 runs on each experiment, us-
ing the Friedman and Boston Housing data sets, where 10-fold
cross-validation is performed for each run.

8



Table 3: Experimental results: mean, standard deviation (S.D.), minimum, and maximum of the MSE obtained with GA-NNE using the
Friedman data set on 12 experiments.

No. of the experiment 1 2 3 4 5 6 7 8 9 10 11 12
p%

m 5% 5% 5% 5% 10% 10% 10% 10% 15% 15% 15% 15%
p%

s 60% 100% 60% 100% 60% 100% 60% 100% 60% 100% 60% 100%
m 20 40 20 40 20 40 20 40 20 40 20 40

Mean 1.794 1.789 1.794 1.787 1.791 1.788 1.788 1.787 1.793 1.787 1.789 1.786
S.D. 0.005 0.002 0.005 0.002 0.003 0.003 0.002 0.001 0.003 0.001 0.003 0.001
Min 1.787 1.785 1.785 1.785 1.786 1.785 1.785 1.785 1.787 1.785 1.785 1.785
Max 1.808 1.795 1.803 1.795 1.799 1.797 1.794 1.790 1.798 1.791 1.797 1.788

Each experiment is composed of 20 runs, and each run consists of a 10-fold cross-validation. All the MSE values have been multiplied by
103 in the table.

Table 4: Experimental results: mean, standard deviation (S.D.), minimum, and maximum of the MSE obtained with GA-NNE using the
Boston Housing data set on 12 experiments.

No. of the experiment 1 2 3 4 5 6 7 8 9 10 11 12
p%

m 5% 5% 5% 5% 10% 10% 10% 10% 15% 15% 15% 15%
p%

s 60% 100% 60% 100% 60% 100% 60% 100% 60% 100% 60% 100%
m 20 40 20 40 20 40 20 40 20 40 20 40

Mean 2.454 2.445 2.458 2.449 2.447 2.445 2.445 2.445 2.447 2.443 2.445 2.441
S.D. 0.008 0.004 0.010 0.008 0.007 0.003 0.004 0.003 0.007 0.003 0.004 0.002
Min 2.442 2.439 2.441 2.440 2.439 2.440 2.438 2.439 2.439 2.439 2.439 2.438
Max 2.472 2.453 2.478 2.471 2.471 2.452 2.457 2.452 2.461 2.449 2.457 2.450

Each experiment is composed of 20 runs, and each run consists of a 10-fold cross-validation. All the MSE values have been multiplied by
103 in the table.

Considering mean as the metric to evaluate the performance
in the experiments, some characteristics are noticed for both
data sets. For example, in most experiments, GA-NNE’s results
improve when the mutation probability (p%

m ) increases. More-
over, selection probability p%

s = 100% has better performance
when compared to p%

s = 60%. The experiments indicate that
improvements are obtained when the population size is m = 40.

The experiments with best performance in Table 3 and Table
4 are shown in bold. Considering the best individuals at the end
of the 20 runs of experiment 12, the percentage of selection of
each combination type are shown in Table 5. For both data sets
median is the most frequently selected strategy.

Considering again experiment 12, the runs with best MSE
performance (i.e., min value) are 1.785x10−3 and 2.438x10−3

for Friedman and Boston Housing data sets, respectively. Fig-
ure 6 shows the properties of these best runs according to the
average of the 10 test subsets of the 10-fold cross-validation.
Mean is the average of the MSE (i.e., 1/fitness) of all the indi-
viduals in the population in a generation, and Best is the best
value of MSE for all individuals of the population in a gener-
ation. As can be seen, no important improvements are shown
after 300 generations for Friedman data set and 100 generations
for Boston Housing data set.

5.5. Simulated Annealing for Designing Neural Network En-
sembles (SA-NNE)

Using the 20 candidate models, several experiments were
carried out by varying the SA-NNE’s parameters as follows:

• Cooling factor α ∈ {0.85, 0.90, 0.95};

• Hamming distance h ∈ {1, 2};

• Number of tries tr ∈ {1, 2}.

The initial temperature Ti is set to 1000 and the algorithm stops
when the final temperature T f is 10−20 or less.

Table 6 and Table 7 show the mean, standard deviation
(S.D.), minimum, and maximum of the MSE obtained with the
SA-NNE on 12 experiments, with 20 runs on each experiment,
using the Friedman and Boston Housing data sets. Consider-
ing the mean to evaluate the performance of all experiments,
some patterns are observed. For example, in general experi-
ments with a high cooling factor (α) have best results. In gen-
eral, a Hamming distance h = 2 outperforms h = 1 and the
number of tries tr = 2 has the best performance.

The experiment with best performance in Table 6 and Table 7
are shown in bold. In this case, the best experiment for both the
Friedman data set and Boston Housing data set is experiment
12. Considering the best individuals after 20 runs of these best
experiments, the percentage of selection of each combination
type are shown in Table 8. Again, median is the most frequently
selected combination strategy.

For experiment 12, the run with best MSE performance has a
MSE value of 1.785x10−3 for Friedman data set and 2.441x10−3

for Boston Housing data set. The behavior of these runs are
shown in Figure 7. As can be seen, improvements of the MSE
follow the decaying of temperature. In the initial tries, it is
observed that MSE increases its value. This happens because

9



Table 5: GA-NNE - Percentage of combination type selection on the 20 runs of the best experiment.

Data set Combination type

mean tr. mean median wt. mean

Friedman 0% 0% 90% 10%
Boston Housing 0% 0% 90% 10%

0 100 200 300 400 500
number of generations

1.75

1.80

1.85

1.90

1.95

2.00

2.05

2.10

M
ea

n 
Sq

ua
re

d 
Er

ro
r (

M
SE

)

1e−3
mean
best

(a) Friedman data set.

0 100 200 300 400 500
number of generations

2.5

3.0

3.5

4.0

M
ea

n 
Sq

ua
re

d 
Er

ro
r (

M
SE

)

1e−3
mean
best

(b) Boston Housing data set.

Figure 6: GA-NNE - mean of the fitness of the individuals in the population and fitness of the best individual in the population versus the number of generations of
the best run of the best experiments of Table 3 and Table 4. The average of the 10 test subsets of the 10-fold cross-validation is presented.

Table 6: Experimental results: mean, standard deviation (S.D.), minimum, and maximum of the MSE obtained with SA-NNE using the
Friedman data set on 12 experiments.

No. of the experiment 1 2 3 4 5 6 7 8 9 10 11 12
Cooling factor (α) 0.85 0.85 0.85 0.85 0.90 0.90 0.90 0.90 0.95 0.95 0.95 0.95

Hamming distance (h) 1 1 2 2 1 1 2 2 1 1 2 2
Number of tries (tr) 1 2 1 2 1 2 1 2 1 2 1 2

Mean 1.835 1.838 1.811 1.800 1.836 1.836 1.797 1.791 1.839 1.832 1.796 1.790
S.D. 0.010 0.016 0.006 0.007 0.013 0.011 0.006 0.003 0.012 0.009 0.006 0.003
Min 1.820 1.818 1.797 1.788 1.811 1.809 1.788 1.785 1.808 1.814 1.785 1.785
Max 1.857 1.879 1.822 1.814 1.859 1.864 1.813 1.798 1.855 1.847 1.815 1.798

Each experiment is composed of 20 runs, and each run consists of a 10-fold cross-validation. All the MSE values have been multiplied
by 103 in the table.

Table 7: Experimental results: mean, standard deviation (S.D.), minimum, and maximum of the MSE obtained with SA-NNE using the
Boston Housing data set on 12 experiments.

No. of the experiment 1 2 3 4 5 6 7 8 9 10 11 12
Cooling factor (α) 0.85 0.85 0.85 0.85 0.90 0.90 0.90 0.90 0.95 0.95 0.95 0.95

Hamming distance (h) 1 1 2 2 1 1 2 2 1 1 2 2
Number of tries (tr) 1 2 1 2 1 2 1 2 1 2 1 2

Mean 2.656 2.633 2.507 2.480 2.649 2.639 2.484 2.464 2.612 2.602 2.466 2.454
S.D. 0.053 0.055 0.024 0.023 0.059 0.075 0.024 0.013 0.048 0.051 0.019 0.011
Min 2.558 2.551 2.463 2.448 2.545 2.533 2.456 2.438 2.535 2.534 2.440 2.441
Max 2.792 2.743 2.547 2.529 2.746 2.805 2.542 2.487 2.712 2.743 2.509 2.484

Each experiment is composed of 20 runs, and each run consists of a 10-fold cross-validation. All the MSE values have been multiplied
by 103 in the table.

10



Table 8: SA-NNE - Percentage of combination type selection on the 20 runs of the best experiment.

Data set Combination type

mean tr. mean median wt. mean

Friedman 0% 0% 90% 10%
Boston Housing 0% 0% 90% 10%

500 1000 1500 2000
number of tries

0

200

400

600

800

1000

te
m

pe
ra

tu
re

 (T
)

1.75

1.80

1.85

1.90

1.95

2.00

2.05

2.10

2.15

M
ea

n 
Sq

ua
re

d 
Er

ro
r (

M
SE

)

1e−3
temperature (T)
Mean Squared Error (MSE)

(a) Friedman data set.

200 400 600 800 1000
number of tries

0

200

400

600

800

1000

te
m

pe
ra

tu
re

 (T
)

2.0

2.5

3.0

3.5

4.0

4.5

5.0

M
ea

n 
Sq

ua
re

d 
Er

ro
r (

M
SE

)

1e−3
temperature (T)
Mean Squared Error (MSE)

(b) Boston Housing data set.

Figure 7: SA-NNE - Decay of temperature and MSE versus number of tries. The average of the 10 test subsets of the 10-fold cross-validation is presented.

SA-NNE can more easily accept worse solutions when the tem-
perature is high.

5.6. The Selected Models by GA-NNE and SA-NNE

In this Subsection, characteristics of the selected models by
GA-NNE and SA-NNE are detailed. The same artificial data
set from 10-fold cross-validation of Sub-section 5.3 is consid-
ered. Here, the results discussed are based on the best experi-
ments from Sub-section 5.4 and Sub-section 5.5.

Figures 8a, 9a, 10a and 11a show the statistics of the NN
models that participate in the ensembles on the 20 runs, consid-
ering the presence of a NN in the final solution of each run. Fig-
ures 8b, 9b, 10b and 11b display the accuracy of each NN based
on the training, validation and testing data sets. The dashed line
represents the MSEtest value of the ensemble on the run with
minimum MSE value. The underlined NN numbers represent
the NN models selected for designing the ensemble of this run.
As can be seen, all the cases design ensembles with MSEtest

values lower than the NN with the lowest MSEtest value. This
proves that the ensemble is more accurate than any single model
in the ensemble.

In Figures 8, 9, 10 and 11, it is observed that the most com-
mon models selected by all runs are also selected by the best
run, i.e., the one with the minimum MSE value. Common
characteristics are noticed for the GA-NNE and SA-NNE ap-
proaches. Specifically, GA-NNE and SA-NNE select the same
models for designing the ensemble and the same combination

type. For the Friedman data set, as depicted in Figures 8b (GA-
NNE) and 10b (SA-NNE), the selected NN models for design-
ing the ensemble are {2, 13, 14, 18, 20}, MSEtest = 1.481x10−3

and median is the combination type. For the Boston Housing
data set, as displayed in Figures 9b (GA-NNE) and 11b (SA-
NNE), the selected NN models for aggregating the ensemble
are {3, 4, 13, 17, 19}, MSEtest = 1.231x10−3 and median is the
combination type.

5.7. Comparisons of the Ensemble Systems

In this Sub-section, the proposed GA-NNE and SA-NNE
methodologies are compared to other ensemble systems. The
ensemble systems include Simple Bagging, GASEN, NCL and
AdaBoost.

As mentioned before, Bagging creates an ensemble where
each model is trained by a different training data set using
bootstrap resampling. Bagging is a common technique ap-
plied to GASEN, GA-NNE and SA-NNE. However, as these
approaches employ pruning techniques for selecting the best
subset of models, in this paper the Bagging strategy is applied
for designing an ensemble without pruning technique, i.e. all
the candidate NN models are aggregated. Additionally, the NN
models have fixed architecture and parameters since most Bag-
ging applications apply this strategy. To distinguish from other
approaches (GASEN, GA-NNE and SA-NNE), this ensemble
of NN models is called “Simple Bagging”. In our experiment,
Simple Bagging is composed by 20 NN models using mean

11



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
id. of the Neural Network

0

5

10

15

20

no
. o

f s
el

ec
tio

ns
 

 o
n 

20
 ru

ns

(a) Statistics of NN models that participate in the ensembles using GA-NNE on 20 runs.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
id. of the Neural Network

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
SE

1e−3

_ __ __ __ __

training data set
validation data set
testing data set

(b) Accuracy of each NN in the data set.

Figure 8: Results of the GA-NNE on the best experiment on the Friedman data set. The dashed line represents the MSEtest of the ensemble of best run; underlined
numbers represent the selected NN models to design such ensemble.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
id. of the Neural Network

0

5

10

15

20

no
. o

f s
el

ec
tio

ns
 

 o
n 

20
 ru

ns

(a) Statistics of NN models that participate in the ensembles using GA-NNE on 20 runs.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
id. of the Neural Network

0

1

2

3

4

5

M
SE

1e−2

_ _ __ __ __

training data set
validation data set
testing data set

(b) Accuracy of each NN in the data set.

Figure 9: Results of the GA-NNE on the best experiment on the Boston Housing data set. The dashed line represents the MSEtest of the ensemble of best run;
underlined numbers represent the selected NN models to design such ensemble.

as combination strategy. The Nguyen-Widrow method is em-
ployed for weight initialization. Fast hyperbolic tangent and
linear activation functions are used for the hidden layer and out-
put layer, respectively.

The number of neurons in the hidden layer was chosen using
the experiment in Subsection 5.2. Specifically, this number was
selected according to the performance in the validation data set
(see Figure 4). Early stopping (as detailed in the Subsection
5.2) was chosen for controlling overfitting.

GASEN employs a GA to select the appropriate subset of
NN models to constitute the ensemble [21]. GASEN assigns a
weight to each model and then models with weights higher than
a specified threshold λGAS EN are selected to compose the en-
semble. In the GASEN procedure, weights evolve using a GA
and the fitness function is characterized by the generalization
error of the ensemble. Experiments were done using the code
available at the website http://lamda.nju.edu.cn/files/

Gasen.zip.

The experiment and parameter setting were performed ac-
cording to [21], where the genetic operators are set to the de-
fault values of GAOT toolbox [53]. The pre-defined threshold
λGAS EN is set to 0.05. The initial set of candidate models is
composed by 20 NN models. Each NN has just one hidden
layer with five hidden neurons, where the NN is trained using
back-propagation algorithm. Other NN’s parameters are set to
the default values, such as hyperbolic tangent sigmoid as activa-
tion function for the hidden layer, linear activation function for
the output layer, and the training stops when the number of iter-
ations reaches 100. GASEN uses simple average for combining
the models’ outputs.

NCL produces an ensemble of NN models using negative
correlation [54]. The aim is to train the NN models in par-
allel and use a correlation penalty term λNCL in their func-
tion for assuring specialization and cooperation among the

12



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
id. of the Neural Network

0

5

10

15

20

no
. o

f s
el

ec
tio

ns
 

 o
n 

20
 ru

ns

(a) Statistics of NN models that participate in the ensembles using SA-NNE on 20 runs.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
id. of the Neural Network

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
SE

1e−3

_ __ __ __ __

training data set
validation data set
testing data set

(b) Accuracy of each NN in the data set.

Figure 10: Results of the SA-NNE on the best experiment on the Friedman data set. The dashed line represents the MSEtest of the ensemble of best run; underlined
numbers represent the selected NN models to design such ensemble.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
id. of the Neural Network

0

5

10

15

20

no
. o

f s
el

ec
tio

ns
 

 o
n 

20
 ru

ns

(a) Statistics of NN models that participate in the ensembles using SA-NNE on 20 runs.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
id. of the Neural Network

0

1

2

3

4

5

M
SE

1e−2

_ _ __ __ __

training data set
validation data set
testing data set

(b) Accuracy of each NN in the data set.

Figure 11: Results of the SA-NNE on the best experiment on the Boston Housing data set. The dashed line represents the MSEtest of the ensemble of best run;
underlined numbers represent the selected NN models to design such ensemble

Table 9: Comparison of ensemble systems: experimental MSEtest results using the Friedman data set.

AdaBoost Simple NCL EBP Pruned Bagging

Bagging mean tr. mean median wt. mean GASEN SA-NNE GA-NNE

Mean 24.465 7.081 2.438 2.100 2.100 2.100 2.100 1.914 1.790 1.786
S.D. 0.000 0.027 0.029 - - - - 0.034 0.003 0.001
Min 25.465 7.036 2.396 - - - - 1.862 1.785 1.785
Max 25.465 7.138 2.510 - - - - 1.964 1.798 1.788

The results are for 20 runs, except for EBP (one run). All the MSE values have been multiplied by 103 in the table.

individual NN models. The term λNCL should assume val-
ues in the interval [0, 1]. In this paper, the value of λNCL

is determined using λNCL =
M

M−1 , where M is the number
of NN models [55]. NCL is tested using the code avail-
able at Gavin Brown’s website http://www.cs.man.ac.uk/

~gbrown/projects/nc/NCL.zip. A set of 20 NN models is
produced by back-propagation algorithm. The models’ archi-

tecture and parameters are the same of GASEN. NCL also uses
simple average for combining the models’ outputs.

In this paper, the AdaBoost algorithm uses the GentleBoost
logistic regression method as detailed in [25]. A weak learner is
selected at each round and the residual displacements from the
real output and predicted output are adjusted. In this model, the
training samples have equal weight. After R rounds a strong re-

13



Table 10: Comparison of ensemble systems: experimental MSEtest results using the Boston Housing data set.

AdaBoost Simple NCL EBP Pruned Bagging

Bagging mean tr. mean median wt. mean GASEN SA-NNE GA-NNE

Mean 19.162 9.129 7.817 4.500 4.400 4.400 4.500 6.254 2.454 2.441
S.D. 0.000 0.509 0.092 - - - - 0.564 0.011 0.002
Min 19.162 8.104 7.629 - - - - 5.457 2.441 2.438
Max 19.162 10.176 8.016 - - - - 7.440 2.484 2.450

The results are for 20 runs, except for EBP (one run). All the MSE values have been multiplied by 103 in the table.

gressor function F(x) is the final output, where the weak learn-
ers have the same weights. GentleBoost is implemented using
the AdaBoost Toolbox [56], where the weak learners have the
same weights. The best performance of the boosting ensemble
was achieved in 50 rounds.

Table 9 and Table 10 show the experimental results of
MSEtest using different ensemble systems on 20 runs, except
for EBP where the results are for one run. As pointed out in
Sub-section 5.3, EBP is an ensemble with all the candidate NN
models used by GA-NNE and SA-NNE. Therefore, EBP is an
intermediate ensemble obtained before performing these prun-
ing techniques. For GA-NNE and SA-NNE, the presented ex-
perimental results were taken from the best experiments of Sub-
section 5.4 and Sub-section 5.5, respectively.

It can be seen that ensembles of NN models (e.g. NCL, Sim-
ple Bagging, EBP, GASEN, SA-NNE, and GA-NNE) outper-
form AdaBoost in the Friedman data set and Boston Housing
data set. NCL also obtains more accurate predictions than Sim-
ple Bagging and AdaBoost. Negative correlation can produce
NN ensembles with good generalization ability (compared to
Simple Bagging). However, NCL ensembles have predefined
models’ architectures making the ensemble with low degree of
diversity.

Simple Bagging presents the worst generalization ability
when compared to the other ensembles of NN models. The
main issue is that Simple Bagging achieves diversity just by
manipulating the training data set while the models have the
same architecture and parameters. Moreover, Simple Bagging
does not employ any strategy for selecting the best subset of
models and combination type.

On the other hand, EBP considerably outperforms Simple
Bagging in terms of generalization ability. The success is at-
tributed to the several diversity levels employed by EBP, for
example, using a different weight initialization and a different
architecture for each model in the ensemble.

It is observed that pruned Bagging systems (e.g., GASEN,
SA-NNE, and GA-NNE) have better results when compared to
ensembling all techniques (e.g., EBP and Simple Bagging), ex-
cept the lower performance obtained by GASEN for the Boston
Housing data set.

As pointed out before, here EBP aggregates all the candi-
date models used by GA-NNE and SA-NNE. Therefore, it is
noticed that the proposed GA-NNE and SA-NNE approaches
achieve good results when compared to EBP. The results prove
the efficiency of subset selection of models and combination

Table 11: Average number of the selected NN models using different ensemble
systems.

Data Set GASEN SA-NNE GA-NNE

Friedman 4.17 5.31 5.10
Boston Housing 4.87 5.69 5.81

type selection during the ensemble development to obtain good
generalization ability.

Table 11 shows the average number of selected models by
GASEN, GA-NNE and SA-NNE. The results were obtained by
averaging the number of selected models of the best individuals
after the 20 runs on experiments described in the Table 9 and
Table 10. Table 11 shows that SA-NNE and GA-NNE select a
higher number of models when compared to GASEN.

6. Conclusions

NNE has established itself as a valuable tool for computa-
tional intelligence modeling. The main motivation is that the
generalization ability of the system can be significantly im-
proved. Most studies consider key factors during the ensem-
ble development: diversity among the models, training a set
of candidate models, subset selection of models and optimal
combination strategy. Since there is no automatic procedure to
implement these steps, this work proposes and compares two
approaches for automatic development of NNE: GA-NNE and
SA-NNE.

The main contributions of the proposed methodologies are
the selection of the subset of models and combination type pro-
viding a high degree of diversity among the models. Firstly,
models are generated by starting the learning with different con-
ditions (weight initialization methods), using different training
data sets (applying bootstrap), and using models with different
learning parameters and architectures. Secondly, two optimiza-
tion techniques, GA and SA, are used to select the best subset
of models and the optimal combination strategy.

GA-NNE and SA-NNE obtained a superior performance
when compared to well-known ensemble systems, including
Simple Bagging, NCL and AdaBoost and GASEN. This suc-
cess results from the diversity among the NN models, and the
optimal selection of the subset of models and combination type.
These are crucial to ensure the ensemble robustness in terms

14



of generalization ability. Moreover, experiments have shown
that GA-NNE and SA-NNE have good performance when com-
pared to a single model and the aggregation of all candidate
models (EBP). The results also revealed that GA-NNE and SA-
NNE obtained a similar performance. However, SA-NNE se-
lects a slightly larger number of models to compose the ensem-
ble when compared to GA-NNE.

Acknowledgments

Symone Soares is supported by the Fundação para a Ciência
a Tecnologia (FCT) under the grant SFRH/BD/68515/2010.

Carlos Henggeler Antunes acknowledges the support of FCT
project PEst-C/EEI/UI0308/2011 and QREN Mais Centro Pro-
gram iCIS project (CENTRO-07-ST24-FEDER-002003).

This work was supported by Project SCIAD/2011/21531 co-
financed by QREN, in the framework of the “Mais Centro -
Regional Operational Program of the Centro”, and by the Euro-
pean Union through the European Regional Development Fund
(ERDF).

[1] H. Wang, T. M. Khoshgoftaar, A. Napolitano, Software measurement
data reduction using ensemble techniques, Neurocomputing 92 (0) (2012)
124–132.

[2] S. Soares, R. Araújo, P. Sousa, F. Souza, Design and application of soft
sensor using ensemble methods, in: Proc. 2011 IEEE 16th Conference
on Emerging Technologies Factory Automation (ETFA 2011), 2011, pp.
1–8.

[3] P. Kadlec, B. Gabrys, Local learning-based adaptive soft sensor for cata-
lyst activation prediction, AIChE Journal 57 (5) (2011) 1288–1301.

[4] J. Z. Kolter, M. A. Maloof, Dynamic weighted majority: A new ensem-
ble method for tracking concept drift, in: Proc. Third IEEE International
Conference on Data Mining (ICDM 2003), 2003, pp. 123–130.

[5] T. G. Dietterich, Ensemble methods in machine learning, in: J. Kittler,
F. Roli (Eds.), Proceedings of the First International Workshop on (MCS
2000) Multiple Classifier Systems, Vol. 1857 of Lecture Notes in Com-
puter Science, Springer-Verlag, Berlin/Heidelberg, 2000, pp. 1–15.

[6] G. Brown, J. Wyatt, R. Harris, X. Yao, Diversity creation methods: A
survey and categorisation, Information Fusion 6 (1) (2005) 5–20.

[7] Y. Liu, X. Yao, T. Higuchi, Evolutionary ensembles with negative cor-
relation learning, IEEE Transactions on Evolutionary Computation 4 (4)
(2000) 380–387.

[8] A. L. V. Coelho, D. S. C. Nascimento, On the evolutionary design of het-
erogeneous bagging models, Neurocomputing 73 (16-18) (2010) 3319–
3322.

[9] Z. Xie, Y. Xu, Q. Hu, P. Zhu, Margin distribution based bagging pruning,
Neurocomputing 85 (15 May) (2012) 11–19.

[10] H. Lee, S. Hong, E. Kim, Neural network ensemble with probabilistic
fusion and its application to gait recognition, Neurocomputing 72 (7-9)
(2009) 1557–1564.

[11] R. Polikar, Ensemble learning, in: C. Zhang, Y. Ma (Eds.), Ensemble
Machine Learning, Springer, 2012, pp. 1–34.

[12] M. D. Redel-Macías, F. Fernández-Navarro, P. A. Gutiérrez, A. J. Cubero-
Atienza, C. Hervás-Martínez, Ensembles of evolutionary product unit or
rbf neural networks for the identification of sound for pass-by noise test
in vehicles, Neurocomputing 0 (0), in press.

[13] L. Breiman, Bagging predictors, Machine Learning 24 (2) (1996) 123–
140.

[14] Y. Freund, R. Schapire, A short introduction to boosting, Japanese Society
for Artificial Intelligence 14 (5) (1999) 771–780.

[15] D. Wang, M. Alhamdoosh, Evolutionary extreme learning machine en-
sembles with size control, Neurocomputing 102 (0) (2013) 98–110.

[16] R. Caruana, A. Niculescu-Mizil, G. Crew, A. Ksikes, Ensemble selection
from libraries of models, in: Proc. Twenty-First International Conference
on Machine Learning (ICML 2004), ACM, Banff, Alberta, Canada, 2004,
pp. 18–.

[17] G. Martínez-Muñoz, D. Hernández-Lobato, A. Suárez, An analysis of
ensemble pruning techniques based on ordered aggregation, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 31 (2) (2009) 245–
259.

[18] G. Martínez-Muñoz, A. Suárez, Pruning in ordered bagging ensembles,
in: Proc. 23rd international Conference on Machine Learning (ICML
2006), ACM, Pittsburgh, Pennsylvania, 2006, pp. 609–616.

[19] P. A. D. Castro, F. J. V. Zuben, Learning ensembles of neural networks
by means of a bayesian artificial immune system, IEEE Transactions on
Neural Networks 22 (2) (2011) 304–316.

[20] Y.-W. Kim, I.-S. Oh, Classifier ensemble selection using hybrid genetic
algorithms, Pattern Recognition Letters 29 (6) (2008) 796–802.

[21] Z.-H. Zhou, J. Wu, W. Tang, Ensembling neural networks: Many could
be better than all, Artificial Intelligence 137 (1-2) (2002) 239–263, code
available at http://lamda.nju.edu.cn/files/Gasen.zip.

[22] S. Dondeti, K. Kannan, R. Manavalan, Genetic algorithm optimized neu-
ral networks ensemble for estimation of mefenamic acid and paracetamol
in tablets, Acta Chimica Slovenica 52 (4) (2005) 440–449.

[23] A. Chandra, H. Chen, X. Yao, Trade-off between diversity and accuracy
in ensemble generation, in: Y. Jin (Ed.), Multi-Objective Machine Learn-
ing, Vol. 16 of Studies in Computational Intelligence, Springer Berlin /
Heidelberg, 2006, pp. 429–464.

[24] Y. Jia, T. B. Culver, Bootstrapped artificial neural networks for synthetic
flow generation with a small data sample, Journal of Hydrology 331 (3-4)
(2006) 580–590.

[25] D. Cristinacce, T. F. Cootes, Boosted regression active shape models, in:
Proc. British Machine Vision Conference, BMVA Press, 2007, pp. 79.1–
79.10.

[26] M. Ries, O. Nemethova, M. Rupp, Performance evaluation of mobile
video quality estimators, in: Proc. 15th European Signal Processing Con-
ference, Poznan, Poland, 2007, pp. 159–163.

[27] L. Fortuna, S. Graziani, M. G. Xibilia, Comparison of soft-sensor design
methods for industrial plants using small data sets, IEEE Transactions on
Instrumentation and Measurement 58 (8) (2009) 2444–2451.

[28] T. Yu-Bo, X. Zhi-Bin, Particle-swarm-optimization-based selective neu-
ral network ensemble and its application to modeling resonant frequency
of microstrip antenna, in: N. Nasimuddin (Ed.), Microstrip Antennas, In-
Tech, 2011, pp. 69–82.

[29] M. Re, G. Valentini, Ensemble Methods: A Review, Chapman &
Hall/CRC Data Mining and Knowledge Discovery Series, CRC press,
Boca Raton, 2012, Ch. 26, pp. 563–582.

[30] J. Torres-Sospedra, M. Fernández-Redondo, C. Hernández-Espinosa, A
research on combination methods for ensembles of multilayer feedfor-
ward, in: Proc. IEEE International Joint Conference on Neural Networks
(IJCNN 2005), Vol. 2, 2005, pp. 1125–1130.

[31] N. K. Kasabov, Foundations of Neural Networks, Fuzzy Systems, and
Knowledge Engineering, 1st Edition, MIT Press, Cambridge, MA, USA,
1996.

[32] C. H. Aladag, A new architecture selection method based on tabu search
for artificial neural networks, Expert Systems with Applications 38 (4)
(2011) 3287–3293.

[33] I. Gómez, L. Franco, J. M. Jerez, Neural network architecture selection:
Can function complexity help?, Neural Processing Letters 30 (2) (2009)
71–87.

[34] P. L. Rosin, F. Fierens, Improving neural network generalisation, in: Proc.
International Geoscience and Remote Sensing Symposium (IGARSS
’95), Vol. 2, Firenze, Italy, 1995, pp. 1255–1257.

[35] L. K. Hansen, P. Salamon, Neural network ensembles, IEEE Transactions
on Pattern Analysis and Machine Intelligence 12 (10) (1990) 993 –1001.

[36] S. Hashem, Optimal linear combinations of neural networks, Neural Net-
works 10 (4) (1994) 599–614.

[37] B. Efron, R. J. Tibshirani, An Introduction to the Bootstrap, Chapman &
Hall, New York, 1993.

[38] M. T. Hagan, H. B. Demuth, M. Beale, Neural Network Design, PWS
Publishing, Boston, MA, USA, 1996.

[39] D. Nguyen, B. Widrow, Improving the learning speed of 2-layer neural
networks by choosing initial values of the adaptive weights, in: Proc.

15



International Joint Conference on Neural Networks (IJCNN 1990), Vol. 3,
1990, pp. 21–26.

[40] J. Škutová, Weights initialization methods for mlp neural networks,
Transactions of the VŠB - Technical University of Ostrova, Mechanical
Series LIV (2) (2008) 147–152.

[41] R. Polikar, Ensemble based systems in decision making, IEEE Circuits
and Systems Magazine 6 (3) (2006) 21–45.

[42] J. H. Holland, Adaptation in Natural and Artificial Systems, MIT Press,
Cambridge, MA, USA, 1992.

[43] S. N. Sivanandam, S. N. Deepa, Introduction to Genetic Algorithms,
Springer, 2007.

[44] S. Soares, C. Antunes, R. Araújo, A genetic algorithm for designing neu-
ral network ensembles, in: Proc. Fourteenth International Conference
on Genetic and Evolutionary Computation Conference (GECCO 2012),
ACM, Philadelphia, Pennsylvania, USA, 2012, pp. 681–688.

[45] R. L. H. S. E. Haupt, Practical Genetic Algorithms, 2nd Edition, Wiley-
Interscience, 2004.

[46] R. Chibante (Ed.), Simulated Annealing, Theory with Applications,
Global Optimization, Sciyo, 2010.

[47] Z. Michalewicz, D. B. Fogel, How to Solve it: Modern Heuristics,
Springer-Verlag, Berlin, Germany, 2000.

[48] L. Torgo, Regression Datasets, Laboratory of Artificial Intelligence and
Decision Support (LIAAD), University of Porto, http://www.liaad.
up.pt/~ltorgo/Regression/DataSets.html (2011).

[49] J. H. Friedman, Multivariate adaptive regression splines, The Annals of
Statistics 19 (1) (1991) 1–67.

[50] D. A. Belsley, E. Kuh, R. E. Welsch, Regression Diagnostics: Identifying
Influential Data and Sources of Collinearity, Wiley, 1980.

[51] R. Caruana, S. Lawrence, L. Giles, Overfitting in neural nets: Backpropa-
gation, conjugate gradient, and early stopping, in: Proc. Neural Informa-
tion Processing Systems Conference (NIPS 2000), 2000, pp. 402–408.

[52] D.-I. Jeong, Y.-O. Kim, Rainfall-runoff models using artificial neural
networks for ensemble streamflow prediction, Hydrological Processes
19 (19) (2005) 3819–3835.

[53] C. R. Houck, J. A. Joines, M. G. Kay, A genetic algorithm for func-
tion optimization: A matlab implementation, Tech. rep., North Car-
olina State University, Raleigh, NC, USA, http://read.pudn.com/
downloads152/ebook/662702/GAOTV5.PDF, http://www.daimi.

au.dk/~pmn/Matlab/dochome/toolbox/GAOT/ (1996).
[54] Y. Liu, X. Yao, Ensemble learning via negative correlation, Neural Net-

works 12 (10) (1999) 1399–1404.
[55] G. Brown, J. L. Wyatt, P. Tiňo, Managing diversity in regression ensem-

bles, Journal of Machine Learning Research 6 (2005) 1621–1650.
[56] A. Cordiner, Adaboost toolbox - a matlab toolbox for adaptive boosting,

Tech. rep., School of Computer Science and Software Engineering, Uni-
versity of Wollongong, Wollongong, Australia, http://thedeadbeef.
files.wordpress.com/2010/07/techreport_boosting.pdf,
http://dl.dropbox.com/u/6830023/blog/adaboost_toolbox/

AdaBoost.zip (2009).

16




