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o
— Abstract

Radial Basis Functions Neural Networks (RBFNNSs) are todtkely used in regression problems. One of their principahdracks

is that the formulation corresponding to the training with supervision of both the centers and the weights is a higityconvex

optimization problem, which leads to some fundamentalfiyailties for traditional optimization theory and method#isTpaper

presents a generalized canonical duality theory for sglttiis challenging problem. We demonstrate that by seqalesghonical
LL dual transformations, the nonconvex optimization probdéthe RBFNN can be reformulated as a canonical dual probléathgut
00 duality gap). Both global optimal solution and local exteeoan be classified. Several applications to one of the mestRadial
< Basis Functions, the Gaussian function, are illustratad. r@sults show that even for one-dimensional case, theagiomimizer

of the nonconvex problem may not be the best solution to theNR¥Bs, and the canonical dual theory is a promising tool fériag
'LITgeneraI neural networks training problems.

Z

(/5 1. Introduction whereg,, is the regularization parameter for the weights.
The second strategy is to consider both weighteand the
centersc of the radial basis functions as variables. This strat-

introduced in the field of function interpolationl [1] and the egy can be performed by solving the following unconstrained
were adapted to the problem of regression [2]. During thie 'asoptimization problem:

two decades RBFNN were applied in several fields. The prob-

&) _ . .
— Radial Basis Function Neural Networks(RBFNN) are a tool

>

<t lem of regression consists in trying to approximate a fuorcti 18N
— f 1 R" - R by means of an approximation functigt) that Ew.0) = 3 Z Z(Wi¢(0i) -yP)? +
<t uses a set of samples defined as: p=1i=1
= N n
g T ={,y),x"eR"yeR,p=1,..P), @) %ﬁwllwllz + %,BZ Z c. 4)
) where &P,yP) are respectively arguments and values of the =

< given functionf (x). In general the approximating functigt)  This problem is non-convex, but from empirical experiments

>' obtained by the RBFNNs with radial basis functigf) has the  [4] it emerged that it generally yields neural networks vath
.= following form: higher precision than the ones trained with stratégy (3 @n
>5 N the most used strategies to solve this optimization prolem
o] _ ‘ . 2 apply decomposition algorithms [5]. However, due to the-non
9) ; wig(Ix - Gil). 2) convexity of the probleni{4), there are some fundamenfat di

culties to find the global minimum of the problem and to char-

whereN is the number of units used to approximate the func-acterize local minima. Indeed, the probldm (4) is considéne
tion, or neurons of the networky is the vector with compo- be NP-hard even if the radial basis functigt) is a quadratic
nentsw; fori =1,..., N that is the vector of the weights asso- function andn = 1 [6,/7]. Another issue that characterizes this
ciated with the connections between the uritsdc; € R" for pr0b|em is the choice of the regu|arization paramg&,rand
i =1,...,Nare the centers of the RBFNNs. B. In general a cross-validation strategy is applied in otder

Generally speaking, there are two main optimization stratefind these regularization parameters. Cross-validatiosists
gies to train a RBFNN. The first consists in the optimizationin trying different values of the parameters in order to find the
of only the weights of the neural network. In this case the cengne that yields the neural network with the best predictism-
ters are generally chosen by using clustering stratedjeS8 il now it was not possible to find a closed form for the optimal
problemis a convex problem in the varialbl@nd has the form:  values of these parameters in the general case. If it islgessi

P to find at least an upper bound for these parameters, the time

2

1 . .
(Wib(Gi) — yp)2 " EﬂW”WHZ’ 3) needed to perform a cross validation would greatly decrease
p=1i

N
E(w) =
=1

NI =

Canonical duality theory developed from nonconvex analysi
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and global optimization [8, 9] is a potentially powerful het- By the definition introduced in the canonical duality thef8}
ology, which has been used successfully for solving a larg® : & — R is said to be canonical function @y if for any
class of challenging problems in biology, engineeringgisces  given¢ € &,, the duality relation

[10,[14/15], and recently in network communicatians [11, 13

In this paper we study the canonical duality theory for suvi oc=V'()={-y}:8a—> Sa (10)
the general Radial Basis Neural Networks optimization [arobis invertible, whereS, is the range of the duality mapping

I(_em @) and_ mamly_angl_yze one-dimensional case in _or_der 9 - oV (¢), which depends on the choice of the Radial Basis
find properties and intuitions that can be useful for the idialt

. . ) Functiong(-). The couple{, o) forms a canonical duality pair
mensional cases. The rest of this paper is arranged as ®llow 90) pleg, o) yp

In Section 2, we first demonstrate how to rewrite the noncmnveonsa X Sawith the Legendre conjugaie () defined by
primal problem as a dual problem by using sequential caabnic . , 1,

dual transformation developed In [8,12]. In Section 3 wevpro Vi(0) = (o = V(§)lo = V'(§)} = (5” + y”)' 1)
the complementarity-dual principle showing that the aiedi

formulation is canonically dual to the original problem et By considering thatV(c) = A(c)o - V*(0), the primal function
sense that there is no duality gap. In Section 4, we analyze thHP(C) can be reformulated as the so-caltethl complementarity
problem with the Gaussian function as radial basis in the nedfunctiondefined by

rons and show some examples. The last section presents some i} 1,
conclusions. E(c,o) = AW, o -V(o)+ Eﬂc - fc

. . . wep(|1x — cl?)or - (102 + o-y)
2. Primal problem for general Radial Basis Func- 2

tions(RBF) #5508~ fc (12)

The general one dimensional non-convex function to be ad']'he functiong(:) can be a non convex function just li(c)
dressed in this paper can be proposed in the following form . . .
pap prop 9 For this reason we have to perform a sequential canonicl dua

transformation for the nonlinear operatydfc). To this aim we

1
P(c) = W(c) + E:BCZ - fc, choose a second nonlinear operator:

where B is the regularization cdicient andf is a positive € = As(C) = [Ix = cJ]? (13)
scalar close to zero. The terafc is not comprised in the orig-
inal Radial Basis Neural Networks formulation but we coesid which is a map fronR to &, = {e € Rle > 0}. In terms ofe, the
it for the general mathematical case. The non-convex fancti first level operato€ = A(c) can be written as
W(c) depends on the choice of the radial basis funcgi@y

&=U(e) = wg(e). (14)

2
W(c) = % (we(llx - cl?) - y)". (6)  We assume that () is a convex function o, such that the
second-level duality relation
wherex, y andw belong toR. In applications the parameter
w is also a variable, but the original problefd (4) is convex in 7= U'(e) = We'(e) (15)
w while non-convex in respect to the center of the radial basis

functionc. Therefore, the one-dimensional non-convex primalIS invertible, i.e.,

-1
problem can be formulated as €= (¢’ (vlv)) , (16)
. 2 _
@) : min{P@©) = & (wa(ix-cl?) -y) where the tern{e’ (%)) ' is the inverse of the function’(e).
+%ﬂ02 _fc |Vce R}. 7 E)’Sus, the Legendre conjugate df can be obtained uniquely
In order to apply the canonical duality theory to solve this U*(d) = T(¢/ (1))_1 —wg ((¢/ (1))_1)‘ (17)
problem, we need to choose the following geometrically non- w w
linear operator: We notice that = we(e). By substituting the value af given
-~ by (18) we find a relation that connects the first level primal
£=A0Q) =wp(Ix—cl): R — & (8)  variable# with the second level dual variabte
Clearly, this is a nonlinear map frof to a subspacé&, € LT\ L
R, which depends on the choice of the Radial Basis Function §=wp (¢ (_)) ' (18)

¢(-). The canonical functiorassociated with this geometrical
operator is By plugging this in[[ID) we obtain

VIE() = S(E) -y = WIA). ©) o =wo((o' () ) -v (19)



Generally speaking, it is possible, for certain functignt use
the canonical dual transformation to find the relation betwe
the first level dual variable and the second level dual variable
7 by means of the derivatives ¢{-) and the first primal variable
&. In general this relation is:

e (5)

= (20)

Therefore, replacing) (¢) = A(c) by its Legendre conjugate
U*, the total complementarity function becomes

E(c,o,1) = (||Xp—Ci||27'—U*(T))0'

~V*(0) + %ﬂcz - fc. (21)
It is also possible to rewrite the total complementary fiorct
(21) in the following form:

1
=Z(c,o,1) = > 2(2t0 + B) — c(2rox + 1)

~U*(1)o - V(o) + X210 (22)

By the criticality conditiom=(c, o, 7)/dc = 0 we obtain

2txo + f
c(r,o0) = 200 15 (23)
Clearly, if 2ro + B # 0, the general solution df (23) is
= ZTL” Y(o,1) € Sa= {0, 7| 2t + B+ 0} (24)
2t +

and the canonical dual function Bfc) can be presented as

120 + f)?

d _
Plo7) = 2 2to+p

—U*(t)o - V*(0) + X210 (25)

By considering dual relation given i (20), and by setting

(o) = "T” , We can write the total complementarity function
in terms of onlyc ando

E(c.o) = 3c%G(0) - cF(0) - U*(0)o -
V() + xPwg’ (¢~ (S(0)) o, (26)
where
G(o) = 2w (¢ (o)) +p,
Flo) = 2wy (¢ (S(0)) %o + f,
U(e) = wg' (67 (o)™ (S(0) - (o +Y)

Therefore, in terms of- only, the canonical dual function can
be written as

1F(0)?
2 G(0)
g’ (67 (s(0))) o

Pd(c) — U)o + V(o) -

(27)

3. Complementary-Dual Principle

Theorem 3.1. If & is a critical point of () and the term:

G@) = o¢" (67N (67 (L) +
wg' (671 (())) # 0, (28)
then the point
C= % (29)

is a critical point of Rc) and Rc) = P4(0)
Proof 3.1. Suppose that is a critical point ofP then we have
Py = [@-2€+x -7 (0)]G'(@) -
o [¢ (67 () (¢ (@) - 1] = 0.(30)
Notice that
! 1

1 _
(47 6) = 575 = v moy

The third term in[(3D) is zero. The ter® (o) is not zero from
the hypothesis, so we obtain

(x-9)?-¢71(s(0) = 0.

(31)

(32)
that is

= we (Ix—Cl?) - . (33)
The critical point condition for the primal probleRi(c) = 0 is

—2w(x — ©)¢’(IIx — cliP) (W (lIx — cll®) —=y) + Bc - f = 0. (34)

By considering that'(Ix - cli?) = ¢ (¢7*(())) and &
We ((x - c)2) — y we obtain

2W(x - )¢’ (¢ (o)) o+ e~ =0, (35)

that is
L (67 (S(o)) o + f
2¢" (¢ (Slo)) o+
By settingo = o in (38) we obtain[[24) proving that is a
critical point of P(c).
For the correspondence of the function values we start frem t
dual function

PI()

(36)

1FYo)
2G(0)

xewg’ (671 () &

add and subtract the ter: (;(g) and substitute the value of —

- U)o - V(o) +

(37)

3T°G(0) - TF (@) ~ U ()7 - V*(@)+

Rwg’ (97 (s)) & (38)
by reordering the terms we obtain
= (Ix=clPwe’ (¢ () - U*(@)) &
V@) + S - I (39)



Considering the[{10), setting='|)x - &> and¢’ (¢~ (3(¢))) =  So the Legendre conjugat : S; — Ris
¢’ (€) we obtain:

. _ (T L EVEAY
(W' (e ~ W' (2) € + wo(@)] [wis(@) — y] - U@ = oo () -wele ()
1 1 _ —2a?
200 )7 + yYwo(@ ) + 268~ 1 = N (ln( 2 ) - 1). (48)
1
W2h(€)? — ywip(e) — > (W (e) - y)? The derivative of the exponential function is the exporenti
1 function itself. This simplifies the relatiof (IL8) betwegand
—YWo(€) + Y2 + EBEZ - fc (40)  rmakingitlinear, thatig = —57;. The relation betweetr and
Tis:
by collecting the terms we obtain: o (o-2+2y) (49)
(07

1 1 _
(wWo(e) - y)* - > (W (€) - y)? + éﬂEz - fc, (41)  thatis also linear. The total complementarity functiondraes:

; 1
that is Z(c,o) = 5czc;(a) — cF(0) = U*(o)o - V¥ (o) —
! (wotlix - dR) - y)’ + L _te=pE. (42 X*(o? + yo) 50
2 2 202 (50)
that proves the theorem. O \where:
Theoreni 311 shows that the probleRf is canonically dual G B o+ yo
to the primal @) in the sense that the duality gap is zero. (@) = B~ 2
2
_ _ F(o) = _w
4. Gaussian function @
_ , _ U'(e) = (c+y)(n(s(o)) - 1)
One of the most used RBF is the Gaussian function. In T+Yy
this section we will analyze the problem with{||x — c||?) = o) = W

202

exp[g—w}, wherec is a parameter that represents the stan-ry . qual problem is

dard deviation of the Gaussian function. In the RBFNN for-
mulation normally there is no the linear terfe. The primal d _ 1F(0)? 2 1,
problem is: P o) = 260 In (s(c)) (‘T +yo-) +t50
2( 2
1 e 2 _X(o“ +yo)
minP(c) = = (wexp _Ix=dlty y| +=8c? (43) 202 (1)
2 202 2

The domains of the variables in the primal and dual problems
If we define the quantitg(c) = ”ijfz”z, the nonlinear operator are:
&R — &, from (8) becomes e & = (ccRle>0)

¢ = wexp{-d(Q)}. (44) e Sy=freR-w<7<0}if W>0,8 = fr e Rl - <
The expressions that defie V andV* are the same as the T<0pif w<0
general problem that is: o Ea= 6RO E< W)
_ e )2
e V(£(Q) = 3 -y)% e Sa={ceR-y<o<w-ylifw>08={c e
co=¢-y; Rw-y<o<-ylifw<O
o V¥(o) = (%0-2 + yo-). Remark 1. Parameterss, X, y, and w play important roles

in solving the non-convex problem (P). In the original prob-

The second order operatag(c) : R — & is lem [2) one searches for the value of c that brings the

€= AxQ) = |Ix—Cl? = e (45) term wexp{-d(c)} as closer as possible to y, that is =
wexp{-d(c)} -y =0.

The second level canonical function becomes Ify <Oandw> Qory > 0andw < 0 we will have that
E lo| > 0. This means that in the case of the exponential function,
U(e) = wexp{—@}. (46) it would be better to choose c as bigger as possible in order to
make the exponential go to zero, but the result would never be

And the second order duality mappings satisfactory as the error committed by the approximationleto

W € go close to-y as ¢ goes to infinity. The value is not a good

T=W(e) = -5 exp{—ﬁ}. (47)  value for the error as it is far from zero. On the other hand if y



and w have the same sign ajyt> |w| the value of c will be x in pd(sy = 1 F(o) 2 1 (20 +y)?
order to have the exponential equalt@nd to have the lowest (@) = —2\XT + a?G(c)
value foro- = wexp{-d(c)} - y. 20 +y
In order to have a realistic problem, we will consider the eas R y - 2In(s(0)). (56)
with y and w with the same sign, and wjth < [w|. The cases
with y,w > 0 and y,w < 0 are equivalent, so we will suppose Sincec is a critical point of the dual, we have thf(c)’ = 0.
that both y and w are positive without losing generality. Therefore whemr # —%:
Theorem 4.1. Suppose thalr € S, is a critical point of the F(o)\ 5
dual problem[(5lL) with the correspondimg= g%) € R and (X_ G(a) = ~2"In (o) (57)
thato # 3. Thenc is a critical point of the primal problem
and: By using condition[(57) in[(36) we obtain:
dr—y _
P%(0) = P(C). (52) pd(_)” 25+ )(2 In(s(@)) (25 +Y) 1 ) (58)
g = g e .

moreover, there are the following relations between theoai y a?G(0) o+y

points of the primal problem and the dual problem:

Noticing o = wexp{-d(c)} — v, it is possible to rewritd>(c)”’

1. If(20+y) >0and Go) = 0or (20+y) < 0and Go) <0
then ifo is a local minimum of the dual problem, the corre-
spondingc is a local maximum of the primal problemgif
is a local maximum of the dual problem the corresponding
c is a local minimum of the primal problem;

in terms ofc, i. e.:

G@) + 5@ + (27 +Y) (x— %

P(c(0))”

)2. (59)

by using again condition (57) we obtain:

. If(2o+y)>0and Qo) <0or (20+y) < 0and Qo) > 0
then ifo is a local minimum of the dual problem the corre-
spondingc is a local minimum of the primal problem;df

P(c(0))”

= [#?6@) - 267 + (@27 + ) (5)] (60

is a local maximum of the dual problem the correspondinggg it is possible to rewrite equatidn{58) in the followingrfo

c is a local maximum of the primal problem.

Let % = 1/—2cy2In(2iN). If & = -4, then there is a corre-

20 +y

Ay —
PO = seEy

P(c(0))". (61)

sponding critical point tar in the primal problem if and only 54 to find the relations reported in Table 1. From these rela-
if the parameters x, y3 and w satisfy one of the two following tjons we obtain:

conditions:
BX+ (ﬂ + %) X =0

¥ (53)
px-(B+ L) =0

and the corresponding critical poirtin the primal problem is
always a local minimum. If neither of conditiois53) is sati
fied,o = —% is always a critical point of the dual problem, but
it does not have any corresponding critical point in the p@im
problem.

Proof 4.1. The first order derivative for the dual problemis:

Flo)

d 2 1
Pé(oc) = - {(X— G(O')) 202 +1In (S(O’))} [20+y] (54)

so the term[(28) is equal tw2+y. If & # -, the critical point
equivalency and condition (52) are consequences of Theorem
B.1.

To prove statements$)(and i) we use the second order deriva-
tives of the problem®(c) andPY(c)

(x=0)?

- exp{-d(c)} (2wexp{-d(c)} - y)
+8 — Zwexp{-d(c)} (wexp{-d(c)} - y)

P(c)” =
(55)

The pointe
second part of thé_(54). The pointorresponding tor = —3

o If (20+y) > 0andG(c) > 0or (2r+y) < 0andG(c) <0
then the second order derivate of the primal problem and
the second order derivate of the dual problem have oppo-
site sign at their critical points;

o If (20+y) > 0andG(o) <0or (25+y) < 0andG(o) = 0
then the second order derivate of the primal problem and
the second order derivate of the dual problem have the
same sign at their critical points.

This proves statements 1 and 2.

(20 +y) G(o) P(c(0)) PYo)
>0 >0 + F
>0 <0 + +
<0 <0 + F
<0 >0 + +

Table 1: Relations between the second order derivativeisegbtimal problem
and dual problem

y

is a critical point ofPY according to the



is a critical point of the primal problem if and onlyF (c) = 0.
We can use thé (10) to find the relation betweeandc that is:

F=é-y— o =wexp-d@©)} - (62)
C=X= V=222 (In(5(0))). (63)

Foro = -2 $ we obtain:
C=X= X. (64)

Substituting these values in the first order derivative efh-
mal problem:

P/(©) = S(@wexp-d(@) (wexp~d(d) —y) +4C  (65)
and considering that/vexp {(-d@©)} = ¢+y = % and
wexp{-d@©)} -y=0 = -2 $ we obtain that the primal problem
has a critical point at correspondlng to the criticat = -2 |f
and only if:

y2
,BXi(ﬂ'l‘ E)XO:O (66)

This happens only for a particular configuration of the param
etersw, B, x andy that makes one of the roots the first term of

the derivative[(54):
Fo))* 1 _

- [(x— o) gz (s(a»] —0 ()
beino = -3.
To prove that at- = -2 the critical point of the dual problem
correspondsto a mlnlmum point of the primal problem we plug
the value ofr = -2 3 in the [59) and obtain

2
P'(@) =B+ 530 (68)

which is always a positive value. O

Remark 2. From now on we will refer to the critical point
of =

critical point for the primal problem.

4.1. Choice of the critical point

In order to find the best solution among the critical points o

problem [438) we introduce the following feasible spaces:

St = {0 € SJG(0) > 0} (69)

S; = {0 € S4lG(o) < 0} (70)

The following theorem explains the relations between tfite cr
cal points:

—‘—2’ as pseudo dual critical point as it is a critical point of
the dual problem that generally does not have a correspandin

Theorem 4.2. Suppose that the point; € Sf ando, € S;
are critical points of the dual problem, that; # —‘—2’ fori =
1,2 and thatc; andc; are the corresponding critical points of
the primal problem. Then if botl; and c; are local minima
or local maxima of the primal problem, the following relatio
always holds:

P(c1) = PY(0r1) < P(E2) = PU(02) (71)
Proof 4.2. This theorem is a consequence of the first theorem
in triality theory [8]. O
Remark 3. The pseudo critical points = —% isalwaysin §.
From the results in Theorem 4.2 it is always better to search
for the dual critical point inS7 that corresponds to a minimum
in the primal problem. In order to characterize the soludion
St and the domains in which search for the best solution, two
theorems are proposed in the following:

Theorem 4.3. Leto; = —% be the pseudo critical point of the

dual problem, ¥ = /—2a? In(z\iN), x positive. Then:

e if x € (0, Xo) theno s is always a local minimum of%o);

e if X > X, then:

1. ifg>0andg <
the dual problem

2. ifg>0andg > 4(2()( )
the dual problem

3.if>0p8-= m, o+ is an inflection point in
which the first order derivative is zero and that cor-
responds to a a local minimum of the primal problem.

2o O is a local minimum for

ot is a local maximum for

Proof 4.3. In order to understand that; = —% is @ minimum

or a maximum for the dual we have to plug its value in the sec-
ond order derivative oPY(c) that is equatiori{36) and analyze
its sign. After the substitution we obtain

2
2|n( 2‘\’N)+a—12{ﬂ ’%”. (72)

The first order derivate i of (Z2) is —

PYof) = -

2‘8:2 >, that is the
<r2(ﬁ+m)

function is monotonic decreasing fh The value of [ZR) in
=0is—In (—%) that is positive. If we makg go to+co we
obtain:

2

2
2m(30) |- 2nl-20
(73)

that is the second order derivativeRf(c-) in o+ is non negative
for any value of3 > 0O if

lim -

P—+00

X € [~Xo, Xo] (74)



If x does not satisfy this condition, from tHe172) we have that e if o is a local maximum then;

the second order derivative of the dual problem is positivei
if B satisfies:

-¥*Xo ¥*Xo
B> 202 (e ) (Xt %) andg < 202 (=) = %) (75)
On the other hand if:
-¥*Xo yY2Xo
P< 20 (X + Xo) P> 202 (X = Xo) (76)

there will be a local maximum ie-¢. As x is considered pos-
itive, the term% is always negative, s6 will always be
greater than it.

If the conditionB = 402( is satisfied, the critical point; is
an inflection point that also satisfies the first order conditind

1. there are no critical points i} ;
2. there is at least one critical point {5

Proof 4.4. Inthe dual problem there must be a singularity point
in G(o) = 0 that goes te-0, so ifo¢ is a local minimum, there
must be a local maximum iﬁ;.

If ot is a local maximum, we prove conditiof) py negating

the thesis and suppose that there is a least one criticat poin
in S;. As PY(c) goes to— if G(o) — 0, there will be no
one, but two critical points it$8;, a local minimumo; and a

local maximumo, with the relationP%(c1) < PYo). For
Theorems 4]1 and 4.2;; corresponds to the second highest
local maximum of the primal functiony, ando-, corresponds
to the lowest or second lowest local minimum of the primal

it has a corresponding minimum pointin the primal problem fo functioncz, that is the relatiorP(c;) < P(c,) is satisfied. By

Theoreni 411. O

Remark 4. In the case of x negative, the conditions are

changed in the following way:
e if X € (—Xo, 0) theno is always a local minimum of o)
e if X < =X, then:

1. ifg>0andg < 4(2()(%), ot is a local minimum for

the dual problem;

. ifg>0andg > 4(2()(%),
the dual problem

Lifg>0,8= m, o is an inflection point in
which the first order derivative is zero and that cor-

o¢ is a local maximum for

responds to a a local minimum of the primal problem.

The proof of these statement is similar to that of Thedrem 4.

and can be omitted.

Remark 5. Theoreni_ 43 shows the¢fects of the parameted
on the pseudo critical pointr¢. Similar gfects can also be
obtained in respect to y, x;, and w. The reason we chogse

is because it is an hyper-parameter that can be chosen by the

practitioner before performing the optimization.

Theoreni 311 we have:

PUo1) < PUo2) = P(c2) < P(cy) = PY(o1)  (79)

that is a contradiction.

To prove conditioni{), it is suficient to notice that if there are
no critical points inS;f, for the triality theory there must be at
least one critical point corresponding to the global minimin
S; and this point will be inSy . O
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Figure 1: Dual algebraic curves with= 1, w = 2, ¢ = ‘/7—2 andg = 0.1in

For the next theorem, we introduce the two following subsetgespect to the internal input

of St:
+ + y
S, ={0’€Sa|0'> —E} (77)
. + y
S —{O'GSa|0'< —5} (78)

Theorem 4.4. Leto

—4 be the pseudo critical point in the

dual problem and let the primal problem have a maximum of

five critical points. Then

e if o¢ is a local minimum for the dual function, there will
be a local maximum i} that corresponds to a minimum

#
of the primal problem.

Depending on the parameters, the primal problem (43) can
have at most five critical points. There are several cases:

Case 1: Three critical points foP(c) and four critical points
for P4(o), two critical point inS% and two critical points in
S;, with ot as local minimum. The values of the parameters
arey = 1, x=1,w= 2« 2ﬂ_Ol(seeFigurEIZ)
This case can be easily solved with the general canonical du-
ality framework[8], as the local maximum i§; corresponds
to the global minimum of the problem, and the local minimum
and maximum irS; correspond to the local minimum and max-
imum in the primal problem.
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Figure 2: Primal(in blue) and dual(in red) functions for €4swith three criti- Figure 4: Critical point on the boundary of the dual functieasible set for
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Figure 5:S; of the dual problem in the case gf= 0.12. The minimum near

Figure 3: Primal(in blue) and dual(in red) functions for E2swith five critical
the boundaryr; is a global minimum.

points in the primal and six critical points in the dual.

Case 2; Five critical points forP(c), six critical points for ~ gets close to zerar = wexp{-d(c)} -y gets close to-y. We
also consider that = wexp{-d(c)} — y is the error that origi-

PY(c). The values of the parameters gre 1, x = 4, w = 2, - TEAR =
o= 2 andg = 0.1 (see Figur&l3). Notice that the only pa- na!ly we want to minimize in probleni}(6) aqd that the critical
rametfar that changed in respect to Case A i8Vith these pa- point on the boundary wil ava@_ys ha\{ean|th an absolute
rameters the problem becomes multi-welled. The two ctiticaValue bigger than the o_th_er critical point closercto= 0. Ir_1
points with the lowest value of the objective function bejon otherwords the_ local minimum on the_ boundary has nothing to
to the same double well and their corresponding criticah{soi do with the original problem, has an high value of the erraf an
are inS:. The critical pointo = —0.999999 ofPd(c) is cor- should not be considered as a good solution. In order to find
responé‘i.ng to the second best miﬁiminet 0.00002 of the the optimal sqlution for the original prqblem, the qual tiniq
primal problem and thig" is situated near the boundary 8f mum in the prl_mal _problem correspondlng to the critical poin
which is visible in Figuré}4. It is also possible, for certaﬂd- Closer t_o Zero irs, is preferable. By_reduqng the valu_e,@ft
ues of the parameters, that the local minimum on the boundaljz p(753|_bl_e not Ok;“)t/ t(l) m?ke the C“:;:;:I _pomlt nelat O _|nto a
of S, corresponds to the global minimum of the problem (se i Ct?] m|n|th;]m u asot 0 iissurte& f |sdz:hocda mwmtf:m
Figure[®). In this case the choice of the value doshould be n this way there s a critical point | g and ihe domain ot the
the critical point near the boundary. This critical pointres solution is well defined. Basically if the critical point nethe
. S X

sponds to a critical point in the primal with the valuecafiear ~ Poundary ofS; is the global minimum, a very big value gf

has been chosen.

zero. This critical point is generated by the tefc? that is N _ N _
the regularization term used to make the objective funatimn Case 3: Three critical points foP(c) and four critical points
ercive and more regular. On the other hand, this term doesnfer P%(c), all belonging t03+ The values of the parameters

have anything to do with the original aim of the problem. Thisarey = 1,x = 4,w=2,a = and[;’ 0.22 (see FigurEl6).
point near zero in the primal function will always have the-co This case is similar to the prewous one, and the solutiohef t
responding dual critical point near the boundary, becasse a dual problem should be the critical point that correspoonds t
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Figure 6: Primal(in blue) and dual(in red) functions for thase 3 with three
critical points in the primal and four critical points 8.

minimum in the primal problem with the value of closer to
zero.

Figure 7: Primal(in blue) and dual(in red) functions for thase 4 with three
critical points in the primal and two critical points 8% and two critical points
in S; ando+ as a local maximum.

Case 4: Three critical points in the primal and four critical
points in the dual, but with two critical points i, two criti-
cal points inS; ando s as local maximum. The values of the
parametersarg=1,x=8,w=2,a = % andg = 0.25 (see
Figure[T). If the value of the hyper paramegds reduced it is
possible to make ¢ into a local minimum and return in one of
the previous cases.

Case 5. One critical point in the primal problem and two

critical points in the dual problem. This case occurs when th

quadratic term with beta dominates the error funciiéfx). If
this case occurs, it means that the valug ¢f too big and the
problem is not related with the original anymore, so one &hou
choose a smaller value gfto have a problem related to the
original.

Based on the study of these cases, we can obtain the gener&fl]

idea to find the best solution, i. e. the hyper paramgtdrould

domainsg.

5. Conclusions

In this paper we have presented an application of the canoni-
cal duality theory to function approximation using Radiakis
Functions. By using the sequential dual canonical transder
tion, the non convex problem with a general RBF functig+)
is reformulated in a canonical dual form. An associatedngtro
duality theorem is also proposed.

Applications to one of the most used RBF, the exponentialfun
tion, are illustrated. Due to the particular propertiedhefexpo-
nential function, we are able to find a linear relation bete
dual variables, which leads to an explicit form of the carahi
dual problem. We also found conditions on the hyper parame-
terg in order to obtain a reliable domain where to search for the
best solution. This research reveals an important phenomen
in complex systems, i.e. the global optimal solution maytreot
the best solution to the problem considered.

There are still several open topics on the application of the
canonical duality theory to Radial Basis Error functionsr F
example there are other kinds of RBF that can be analyzed, lik
the multi quadratic and the multi quadratic inverse funtsio

a further development for future research is to expand tlee on
dimensional case to the multidimensional case with alse con
sideringw as a variable and not as a parameter. When this case
is analyzed, we will be able to realize RBF neural networks
based on canonical duality theory.
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