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Two Algorithms for Orthogonal Nonnegative Matrix Factorization

with Application to Clustering

Filippo Pompili∗ Nicolas Gillis† P.-A. Absil‡ François Glineur‡§

Abstract

Approximate matrix factorization techniques with both nonnegativity and orthogonality constraints,
referred to as orthogonal nonnegative matrix factorization (ONMF), have been recently introduced and shown
to work remarkably well for clustering tasks such as document classification. In this paper, we introduce two
new methods to solve ONMF. First, we show mathematical equivalence between ONMF and a weighted variant
of spherical k-means, from which we derive our first method, a simple EM-like algorithm. This also allows
us to determine when ONMF should be preferred to k-means and spherical k-means. Our second method is
based on an augmented Lagrangian approach. Standard ONMF algorithms typically enforce nonnegativity
for their iterates while trying to achieve orthogonality at the limit (e.g., using a proper penalization term or
a suitably chosen search direction). Our method works the opposite way: orthogonality is strictly imposed at
each step while nonnegativity is asymptotically obtained, using a quadratic penalty. Finally, we show that the
two proposed approaches compare favorably with standard ONMF algorithms on synthetic, text and image
data sets.

Keywords. nonnegative matrix factorization, orthogonality, clustering, document classification, hyperspec-
tral images.

1 Introduction

We consider the orthogonal nonnegative matrix factorization (ONMF) problem, which can be formulated as
follows. Given an m-by-n nonnegative matrix M and a factorization rank k (with k < n), solve

min
U∈Rm×k,V ∈Rk×n

||M − UV ||2F(1.1a)

subject to U ≥ 0, V ≥ 0,(1.1b)

V V T = Ik,(1.1c)

where ‖ · ‖F denotes the Frobenius norm, (1.1b) means that the entries of matrices U and V are nonnegative, and
Ik stands for the k × k identity matrix.

The ONMF problem (1.1) can be viewed as the well-known nonnegative matrix factorization (NMF)
problem, (1.1a)-(1.1b), with an additional orthogonality constraint, (1.1c), that considerably modifies the nature
of the problem. In particular, it is readily seen that constraints (1.1b) and (1.1c) imply that V has at most one
nonzero entry in each column; we let ij denote the index of the nonzero entry (if any) in column j of V . Therefore,
any solution (U∗, V ∗) of (1.1) has the following property: for j = 1, . . . , n, index ij is such that column ij of U∗

achieves the smallest angle with column j of data matrix M , while V ∗(ij , j) scales column ij of U∗ to make it
as close as possible to column j of M (in the sense of the Euclidean norm). Hence it is clear that the ONMF
problem relates to data clustering and, indeed, empirical evidence suggests that the additional orthogonality
constraint (1.1c) can improve clustering performance compared to standard NMF or k-means [7, 20].

Current approaches to ONMF problems are based on suitable modifications of the algorithms developed
for the original NMF problem. They enforce nonnegativity of the iterates at each step, and strive to attain
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orthogonality at the limit (but never attain exactly orthogonal solutions). This can be done using a proper
penalization term [10], a projection matrix formulation [20] or by choosing a suitable search direction [7]. Note
that, for a given data matrix M , different methods may converge to different pairs (U, V ), where the objective
function (1.1a) may take different values. Furthermore, under random initialization, which is used by most NMF
algorithms [5], two runs of the same method may yield different results. This situation is due to the multimodal
nature of the ONMF problem (1.1)—it may have multiple local minima—along with the inability of practical
methods to guarantee more than convergence to local, possibly nonglobal, minimizers. Hence, ONMF methods
not only differ in their computational cost, but also in the quality of the clustering encoded in the returned pair
(U, V ) for a given problem.

In this paper, we first show the equivalence of ONMF with a weighted variant of spherical k-means, which
leads us to design an EM-like algorithm for ONMF. We also explain in which situations ONMF should be preferred
to k-means and spherical k-means. Then, we propose a new ONMF method, dubbed ONP-MF, that relies on a
strategy reversal: instead of enforcing nonnegativity of the iterates at each step and striving to attain orthogonality
at the limit, ONP-MF enforces orthogonality of its iterates while obtaining nonnegativity at the limit. A resulting
advantage of ONP-MF is that rows of factor V can be initialized directly with the right singular vectors of M
(which is the optimal solution of the problem without the nonnegativity constraints), whereas the other methods
require a prior alteration of the singular vectors to make them nonnegative [5]. We show that, on some clustering
problems, the new algorithm outperforms other clustering methods, including ONMF-based methods, in terms of
clustering quality.

The paper is organized as follows. In Section 2, we analyze the relationship between ONMF and clustering
problems and show that it is closely related to spherical k-means. Based on this analysis, we develop an EM-like
algorithm which features a rank-one NMF problem at its core. This also allows us to shed some light on the
differences between k-means, spherical k-means and ONMF, which we illustrate on synthetic data sets. Section 3
introduces another algorithm to perform ONMF using an augmented Lagrangian and a projected gradient
scheme, which enforce orthogonality at each step while obtaining nonnegativity at the limit. Finally, in Section 4,
we experimentally show that our two new approaches perform competitively with standard ONMF algorithms
on text data sets and on different image decomposition problems.

This paper is an extended version of the proceedings paper [18].

2 Equivalence of ONMF with a Weighted Variant of Spherical k-means

In this section, we briefly recall how NMF with an additional constraint is equivalent to a fundamental clustering
technique (see Equation (c1) below): Euclidean k-means [8, 9]. We then observe that relaxing this constraint
leads to (1.1c)–(1.1b), that is, ONMF, which is therefore not exactly equivalent to k-means but rather to another
problem closely related to spherical k-means [2]. More precisely, ONMF is equivalent to weighted spherical k-
means in a particular metric, see Theorem 2.1. Based on this analysis, we propose a new EM-like algorithm to
solve ONMF problems, highlight the differences between k-means, spherical k-means and ONMF, and illustrate
these results on synthetic data sets.

2.1 Equivalence with Euclidean k-means Let M = (m1, . . . ,mn) ∈ R
m×n
+ be a nonnegative data matrix

whose columns represent a set of n points {mj}nj=1 ∈ R
m
+ . Solving the clustering problem means finding a set

{πi}ki=1 of k disjoint clusters:

πi ⊆ {1, 2, . . . , n} ∀i, ∪1≤i≤kπi = {1, 2, . . . , n},
and πi ∩ πj = ∅ ∀i 6= j,

such that each cluster πi contains objects as similar as possible to each other according to some quantitative
criterion. When choosing the Euclidean distance, we obtain the k-means problem, which can be formulated as
follows [8]:

min
{πi}k

i=1

k
∑

i=1

∑

j∈πi

‖mj − ci‖2,

where ci =

∑

j∈πi
mj

|πi|
are the cluster centroids.



Equivalently, we can define a binary cluster indicator matrix B ∈ {0, 1}k×n as follows:

B = {bij}k×n where bij = 1 ⇐⇒ j ∈ πi.

Disjointness of clusters πi means that rows of B are orthogonal, i.e., BBT is diagonal. Therefore we can normalize
them to obtain an orthogonal matrix V = {vij}k×n = (BBT )−

1
2B (a weighted cluster indicator matrix) which

satisfies the following condition:

There exists a set of clusters {πi}ki=1 such that

vij =

{

1√
|πi|

, if j ∈ πi,
0, otherwise.

(c1)

It has been shown in [9] that the NMF problem with matrix V satisfying condition (c1):

(2.2) min
U≥0,V ≥0

‖M − UV ‖2F s.t. V satisfies (c1) ,

is equivalent to k-means. In fact, since V in problem (2.2) is a normalized indicator matrix which satisfies

vij = |πi|−
1
2 ⇐⇒ j ∈ πi, we have

‖M − UV ‖2F =

n
∑

j=1

||mj −
k
∑

i=1

uivij ||2

=

k
∑

i=1

∑

j∈πi

‖mj − uivij‖2

=

k
∑

i=1

∑

j∈πi

‖mj − ui
1

√

|πi|
‖2,

which implies that, at optimality, each column ui of U must correspond (up to a multiplicative factor) to a cluster

centroid with ui =
√

|πi| ci =
∑

j∈πi
mj√

|πi|
∀i = 1, . . . , k.

2.2 ONMF and a Weighted Variant of Spherical k-means Let us now define a condition weaker than
(c1):

(c2) V V T = Ik and V ≥ 0.

It can be easily checked that (c1) ⇒ (c2) while (c2) ; (c1). The difference between conditions (c1) and (c2)
is that condition (c2) does not require the rows of V to have their nonzero entries equal to each other. Now,
if we only impose the weaker condition (c2) on NMF, we obtain a relaxed version of (2.2) which, by definition,
corresponds to orthogonal NMF:

(2.3) min
U≥0,V ≥0

‖M − UV ‖2F such that V V T = Ik.

In the following, we show the equivalence of problem (2.3) with a particular weighted variant of the spherical
k-means problem:

Theorem 2.1. For a nonnegative data matrix M ∈ R
m×n
+ , the ONMF problem (2.3) is equivalent to the following

weighted variant of spherical k-means

(2.4) max
{πi,ui∈R

m
+
,||ui||2=1}k

i=1

k
∑

i=1

∑

j∈πi

‖mj‖2
(

mT
j

‖mj‖
ui

)2

,

where {πi}ki=1 is a set of disjoint clusters.



Proof. The claim is that (2.3) and (2.4) are equivalent, i.e., a solution of (2.3) is obtained from a solution of (2.4)
by means of elementary arithmetic operations, and vice-versa.

First, without loss of generality, we assume that k is sufficiently small so that the solutions U of (2.3) do not
have vanishing columns. We then redefine “U ≥ 0” (resp. “V ≥ 0”) to mean that U (resp. V ) is nonnegative
without vanishing columns (resp. rows). This redefinition does not alter the the solutions of (2.3).

Observe that (2.3) is equivalent to the following problem obtained by imposing the unit-norm constraint on
the columns {ui}ki=1 of U instead of the rows of V :

min
U≥0,V ≥0

‖M − UV ‖2F s.t. (V V T )ij = 0 ∀i 6= j and ‖ui‖ = 1 ∀i.(2.5)

Indeed, since the function ψ : (U, V ) 7→ (UD−1, DV ) with D = diag(‖u1‖, . . . , ‖uk‖) is a homeomorphism from
the feasible set of (2.3) onto the feasible of (2.5) that does not modify the objective value, it is readily seen
that if (U, V ) is a solution of (2.3), then ψ(U, V ) is a solution of (2.5); proving the reverse direction is equally
straightforward.

It remains to show equivalence between (2.5) and (2.4). We say that a partition π = {πi}ki=1 and a matrix
V (with k rows) are compatible, which we write V ∼ π, if the inclusion j ∈ πi holds whenever Vij 6= 0. Using
this notion, we first notice the crucial fact that V ∼ π for some π if and only if each column of V has at most
one nonzero element (at position (i, j) where i is determined by πi ∋ j). Defining V to be the feasible set for V
in (2.5), it is now clear that V ∼ π and V ≥ 0 imply that V ∈ V and that, in the reverse direction, one can easily
check that V ∈ V implies the existence of a partition π such that V ∼ π.

We can now show that the following four propositions are equivalent, from which the main claim follows.

1. U and V minimize ‖M − UV ‖2F subject to U ≥ 0, ‖ui‖ = 1 ∀i, V ≥ 0, (V V T )ij = 0 ∀i 6= j,
and π is obtained by elementary operations to satisfy V ∼ π.

2. U , V , and π minimize ‖M − UV ‖2F subject to U ≥ 0, ‖ui‖ = 1 ∀i, V ≥ 0, V ∼ π.

3. U , V , and π minimize
∑k

i=1

∑

j∈πi
‖mj − uivij‖2 subject to U ≥ 0, ‖ui‖ = 1 ∀i, V ≥ 0, V ∼ π.

4. U and π maximize
∑k

i=1

∑

j∈πi

(

mT
j ui
)2

subject to U ≥ 0, ‖ui‖ = 1 ∀i,
and V is obtained by the elementary operations

{

vij = 0 if j /∈ πi
vij = mT

j ui if j ∈ πi.

The equivalence between 1 and 2 follows from the discussion in the previous paragraph. The equivalence between 2
and 3 follows from a rewriting of the objective function made possible by the constraints.

Finally, the equivalence between 3 and 4 is established as follows. Referring to 3, given a feasible U and π,
we have for each term ‖mj − uivij‖2 that the optimal v∗ij is given by:

v∗ij = argmin
x≥0

‖mj − uix‖2(2.6)

= argmin
x≥0

(

mT
j mj − 2xmT

j ui + x2
)

= mT
j ui, 1 ≤ i ≤ k, j ∈ πi.

(Observe that mT
j ui ≥ 0 in view of the nonnegativity ofM and U .) Backsubstituting the optimal coefficients (2.6)



in 3, we have that U and π of 3 minimize the function

k
∑

i=1

∑

j∈πi

‖mj −
(

mT
j ui
)

ui‖2

=

k
∑

i=1

∑

j∈πi

(

mT
j mj − 2

(

mT
j ui
)2

+
(

mT
j ui
)2
)

=

k
∑

i=1

∑

j∈πi

−
(

mT
j ui
)2

+ cst.

Hence they maximize the function

(2.7)

k
∑

i=1

∑

j∈πi

(

mT
j ui
)2
.

This shows that 3 implies 4, and the converse is readily established by contradiction.

It is insightful to compare formulation (2.4) of ONMF with the spherical k-means problem [2], which is a
variant of k-means where both data points and centroids are constrained to have unit norm:

min
{πi,ui}k

i=1

k
∑

i=1

∑

j∈πi

∥

∥

∥

∥

mj

||mj ||
− ui

∥

∥

∥

∥

2

s.t. ||ui|| = 1,

≡ max
{πi,ui}k

i=1

k
∑

i=1

∑

j∈πi

mT
j

||mj ||
ui s.t. ||ui|| = 1.(2.8)

Note that both problems (2.4) and (2.8) relate to maximizing the cosines of the angles between ui and the data
points from the corresponding cluster. However, we observe that:

• Because of coefficients ||mi||2, problem (2.4) is sensitive to the norm of the data points, as opposed to
spherical k-means (2.8) which only depends on their direction;

• Even for normalized data points (i.e., ||mi|| = 1 ∀i), problem (2.4) is similar but not equivalent to spherical
k-means (2.8) because it tries to maximize the sum of squares of the cosines (instead of their sum).

• Contrarily to problem (2.4), spherical k-means (2.8) does not require nonnegativity of ui’s, although it will
clearly hold at optimality when data points mj are nonnegative.

2.3 Which Model Should Be Used: k-means, spherical k-means or ONMF? Based on the analysis
of ONMF from Section 2 (in particular, Theorem 2.1), we explain in this section in which situations ONMF
should be preferred to k-means and spherical k-means. This issue can be settled by addressing the following two
questions:

1. Should scaling of the data points influence the cluster assignment?

Given the cluster centroids, spherical k-means and ONMF are invariant to scaling in the sense that, for any
α > 0, a data point x and its scaling αx will be assigned to the same cluster (the one minimizing the angle
between x and the cluster centroid; see Section 2.4). On the contrary, k-means is very sensitive to scaling as
it assigns data points to clusters based on distances; see Figure 1 for an illustration. In practice, there are
many situations where cluster assignment should be independent of scaling so that spherical k-means and
ONMF should be preferred to k-means. For example, in document classification, two documents discussing
the same topic will roughly be multiple of one another (scaling depending then on the relative lengths of
the documents), and, in hyperspectral imaging, pixels containing the same material will have their spectral
signatures multiple of one another (scaling depending on the relative illumination conditions; see Section 4
for numerical experiments).



2. Does the noise added to each data point depend on its norm?

Spherical k-means is invariant under normalization of the data points (see Equation (2.8)) while ONMF
gives more importance to data points with larger norm. For example, if the noise added to each data
point is independent of its norm, ONMF should be preferred. In fact, in that situation, data points with
larger norm are relatively contaminated with less noise hence should be given more importance. Another
example is when data points with larger norm are statistically more significant. This is usually the case
for example in document classification: assuming that each document discusses only one topic and that
each topic is a distribution over the words, longer documents represent a larger sample of the corresponding
topic distribution and should be given more importance. (In fact, most document classification software
typically discards very short documents: ONMF implicitly takes care of this issue by giving less importance
to shorter documents.) In hyperspectral imaging, background pixels contain mostly noise and should not
be given too much importance; hence ONMF should also be preferred in this situation.

Figure 1 displays a comparison between k-means, spherical k-means and ONMF on two simple examples.
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Figure 1: Comparison of k-means, standard spherical k-means and ONMF. Diamonds are cluster centroids found
by k-means, continuous lines are spherical k-means centroid directions while dashed lines are ONMF centroid
directions. Circles and squares are data points as clustered by ONMF. As expected, k-means is not sensitive to
the alignment of the clusters as opposed to spherical k-means and ONMF. On the left figure (a), the clusters
are well separated and the three techniques perform similarly. On the right figure (b), the directional effect is
clearly visible for both ONMF and spherical k-means. However, there is an important difference between the two:
ONMF is more sensitive to the data points with larger norm, while spherical k-means treats all the points the
same way (including the ones from the lower left cluster with smaller norm but wider angular distribution) and
its centroids are therefore further apart from each other.

To conclude, ONMF should be preferred to both k-means and spherical k-means when

(1) Scaling should not affect cluster assignment, and

(2) Data points with larger norm are more reliable and should be given more importance.

To illustrate this, we generate several synthetic data sets as follows. Each data sets has six clusters {πi}6i=1, each
containing 100 − (i − 1)10 data points for a total of 450 data points. Each cluster centroid ui ∈ R

10 1 ≤ i ≤ 6
is generated uniformly at random in the unit cube [0, 1]6. Each data point mj 1 ≤ j ≤ 450 is a multiple of its
corresponding cluster centroid: mj = αuk where α > 0 is picked uniformly at random in the interval [0.1, 1].



Hence, because of this scaling, k-means is not appropriate and will perform poorly. Each data point is then
perturbed by some additive noise with fixed magnitude (i.e. independent of the norm of the data point, which
should lead to ONMF performing better than spherical k-means). Concretely, each noise entry is drawn from
a normal distribution with zero mean and fixed standard deviation ǫ. Finally, the negative entries of each data
point are set to zero to obtain a nonnegative input matrix (note that this can only reduce the noise). Letting
{π′

i}6i=1 be the clusters extracted by an algorithm and {πi}6i=1 be the true clusters, the accuracy is defined as

(2.9) Accuracy = max
P∈[1,2,...,k]

1

450

(

6
∑

i=1

|πi ∩ π′
P (i)|

)

∈ [0, 1],

where [1, 2, . . . , k] is the set of permutations of {1, 2, . . . , k}. For each noise level ǫ ∈ [0, 1], we generate ten synthetic
data sets as described above, and Figure 2 reports the average accuracy of each algorithm using ten random
initializations (except for ONMF which was solved using ONP-MF, which does not use random initialization, see
Section 3). As expected, we observe that ONMF outperforms k-means and spherical k-means. We will use the
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Figure 2: Comparison of k-means, standard spherical k-means and ONMF on synthetic data sets.

same synthetic data sets to compare the different ONMF algorithms in Section 4.

2.4 EM-like Algorithm for ONMF We present here a simple EM-like alternating algorithm designed to
tackle the ONMF problem (2.3) based on its equivalence with the weighted variant of spherical k-means (2.4). It
is very similar to the standard spherical k-means algorithm [2], except for the computation of cluster centroids.
Specifically, it starts with an initial set of centroids, either randomly chosen or supplied as initial values. It then
alternates between two steps:

1. Given cluster centroids {ui}ki=1, choose {πi}ki=1 assigning each point to its closest cluster:

j ∈ πi ⇒ i ∈ argmax
1≤ℓ≤k

(

mT
j uℓ

)2

= argmax
1≤ℓ≤k

(

mT
j uℓ

)

.

Notice that this step is exactly equivalent to the one of standard spherical k-means [2].

2. Given the clustering {πi}ki=1, compute the new optimal cluster centroids {ui}ki=1 as follows. Define matrix
Mi ∈ R

m×|πi| as the submatrix of M containing the columns belonging to cluster πi. We have to solve
problem (2.7) with respect to the ui’s:

max
{ui≥0,||ui||=1}k

i=1

k
∑

i=1

∑

j∈πi

(

mT
j ui
)2

=

k
∑

i=1

||MT
i ui||22.



There are k independent problems: each ui must maximize the term ||MT
i ui||22. The optimal solution u∗i is

given by the dominant left singular vector of Mi associated with σ1(Mi), the largest singular value of Mi:

u∗i = argmax
||u||2=1

||MT
i u||22 = argmax

||u||2=1

uTMiM
T
i u,

for which we have ||MT
i u

∗
i ||2 = σ1(Mi) = ||Mi||2. Moreover, since Mi ≥ 0, the Perron-Frobenius theorem

guarantees that u∗i can always be chosen to be nonnegative.

Algorithm 1, referred to as EM-ONMF, implements this procedure. We will see in the last section that, despite
its simplicity, it works well for text clustering tasks. Note that Algorithm 1 does not explicitly provide a solution

Algorithm 1: EM-like Algorithm for ONMF (EM-ONMF)

input : Nonnegative data matrix M , and initial centroids {ui}ki=1.
output: Clustering of the points {πi}ki=1, with the corresponding centroid directions {ui}ki=1.

while not converged do

{πi}ki=1 ← ∅;
for j ← 1 to n do

find i ∈ argmax1≤ℓ≤k

(

mT
j uℓ
)

and update cluster πi = πi ∪ {j}. ;
end

if πi = ∅ for some i then randomly transfer a point to cluster πi end ;
for i← 1 to k do

ui ← (any) nonnegative dominant singular vector of the data submatrix Mi =M(:, πi). ;
end

end

to ONMF. However, a candidate solution of (2.5) can be obtained by taking U =
[

u1 . . . uk
]

and selecting
V according to (2.6), from which a candidate solution of ONMF (2.3) is readily obtained as (UD,D−1V ) where
D = diag(‖V (1, :)‖2, . . . , ‖V (k, :)‖2).

It is interesting to relate this with the original ONMF problem (2.5): given a partitioning {πi}ki=1, let us
denote wi = (vij)j∈πi

the subvector containing only the positive entries of the ith row of V . Then,

‖M − UV ‖2F =

k
∑

i=1

∑

j∈πi

‖mj − uivij‖2

=

k
∑

i=1

||Mi − uiwT
i ||2F ,

so that the optimal (ui,wi) must be an optimal solution of

(2.10) min
||ui||=1,ui≥0,wi≥0

||Mi − uiwT
i ||2F .

Each of these problems looks for the best nonnegative rank-one approximation of a nonnegative matrix (i.e.,
a rank-one NMF problem). This in turn can be solved by combining the Eckart-Young and Perron-Frobenius
theorems: taking the first rank-one factor generated by the singular value decomposition (SVD) (making sure it is
nonnegative in case of non-uniqueness) leads to a minimum value for (2.10) equal to ||Mi||2F −σ2

1(Mi). Therefore,
solving ONMF amounts to finding a partitioning {πi}ki=1 such that the sum of squares of the first singular values

of submatrices Mi’s is maximized, that is, ONMF problem (2.3) is equivalent to max{πi}k
i=1

∑k

i=1 σ
2
1(Mi).

3 Augmented Lagrangian Method for ONMF

In this section, we present an alternative approach to solve ONMF problems1. Typically, ONMF algorithms
strictly enforce nonnegativity for each iterate while trying to achieve orthogonality at the limit. This can be

1Our code for the proposed algorithm is available at https://bitbucket.org/filp/onmf/src.

https://bitbucket.org/filp/onmf/src


done using a proper penalization term [10], a projection matrix formulation [20] or by choosing a suitable search
direction [7]. We propose here a method working the opposite way: at each iteration, a (continuous) projected
gradient scheme is used to ensure that the V iterates are orthogonal (but not necessarily nonnegative).

Nonnegativity constraints in the ONMF formulation (2.3) will be handled using the following augmented
Lagrangian, defined for a matrix of Lagrange multipliers Λ ∈ R

k×n
+ associated to the nonnegativity constraints:

(3.11) Lρ(U, V,Λ) =
1

2
||M − UV ||2F + 〈Λ,−V 〉+ ρ

2
||min(V, 0)||2F ,

where ρ is the quadratic penalty parameter. Ideally, we would like to solve the Lagrangian dual

max
Λ≥0

f(Λ) where f(Λ) = min
U≥0,V V T=Ik

Lρ(U, V,Λ).

Observe that, regardless of the value of ρ, the solutions (U, V ) of the ONMF problem (1.1) are the solutions of

min
U≥0,V V T=Ik

max
Λ≥0

Lρ(U, V,Λ).

We propose here a simple alternating scheme to update variables U , V , Λ while, as announced, explicitly enforcing
U ≥ 0 and V V T = Ik:

1. For V and Λ fixed, the optimal U can be computed by solving a nonnegative least squares problem
U ← argmin

X∈R
m×k
+

‖M −XV ‖2F . We use the efficient active-set method proposed in2 [14].

2. For U and Λ fixed, we update matrix V by means of a projected gradient scheme. Computing the projection
of a matrix V̂ onto the feasible set of orthogonal matrices, known as the Stiefel manifold3, amounts to solving
the following problem:

ProjSt(V̂ ) = argmin
X

||V̂ −X ||2F such that XXT = Ik,

whose optimal solution X∗ can be computed in closed form from the unitary factor of a polar decomposition
of V̂ , see, e.g., [13, 1]. Our projected gradient scheme then reads:

V ← ProjSt

(

V − β∇V Lρ(U, V,Λ)
)

,

where the step length β is chosen with a backtracking line search similar to that in [15] (step length is
increased as long as there is a decrease in the objective function, and decreased otherwise).

3. Finally, Lagrange multipliers are updated in order to penalize the negative values of V :

Λ← max (0,Λ− αV ) .

where α is the step length. As −V is the gradient of function Λ 7→ Lρ(U, V,Λ), this update is a (projected)
gradient step with step length α. We choose a predefined step length sequence α = α0/t, where t is the
iteration counter and α0 > 0 is a constant parameter, that satisfies the usual “square summable but not
summable” condition of online gradient methods [4, (5.1)].

To initialize the algorithm, we set Λ to zero and choose for the columns of V the first k right singular vectors
of the data matrix M (which can be obtained with SVD)4. Quadratic penalty parameter ρ is initially fixed to
a small value ρ0 and then increased geometrically after each iteration. Alg. 2 implements this procedure, which
we refer to as Orthogonal Nonnegatively Penalized Matrix Factorization (ONP-MF). We observed that the term
||min(V, 0)||F decreases linearly to zero (as augmented Lagrangian methods are expected to, see [16, Th. 17.2])
while ||M−UV ||F converges to a fixed value, see Figure 3 for an example on the Hubble data set (cf. Section 4.3).
A rigorous convergence proof is a topic for further research. In fact, it is difficult to analyze an augmented
Lagrangian approach when the subproblems are not solved exactly (in our case, using a single loop of a block
coordinate descent method) and, as far as we know, such a proof does not exist in the literature (see, e.g., [16])
although it is a very popular method.

2Available at http://www.cc.gatech.edu/~hpark/.
3The Stiefel manifold is the set of all n× k orthogonal matrices, i.e., St(k,n) = {X ∈ Rn×k : XTX = Ik}.
4To overcome the sign ambiguity of each row of V (0), we flip its sign if the ℓ2-norm of its negative entries is larger than the ℓ2-norm

of its positive entries.

http://www.cc.gatech.edu/~hpark/


Algorithm 2: Orthogonal nonnegatively penalized matrix factorization (ONP-MF)

input : A nonnegative data matrix M , the number of clusters k, α0 > 0, ρ0 > 0 and C > 1.
output: The centroid matrix U , and the cluster assignment matrix V .

Initialize Λ(0) = 0, the rows of V (0) with the first k right singular vectors of M , and ρ = ρ0. ;
for t = 1, 2, . . . do

Update U (t) with the optimal solution U∗ = argminU≥0 ||M − UV (t−1)||2F .;
Update V (t) with projected gradient and a line search for step β(t):

V (t) ← ProjSt

[

V (t−1) − β(t)∇V Lρ

(

U (t), V (t−1),Λ(t−1)
)

]

.

Update Lagrange multipliers (using an approximate subgradient):

Λ(t) ← max
(

0,Λ(t−1) − α0

t
V (t)

)

.

Update ρ← Cρ.
end

Figure 3: Convergence of Alg. 2 for the Hubble data set (left: constraint residual, right: approximation error).

4 Numerical Experiments

In this section, we report some preliminary numerical experiments showing that ONP-MF (Alg. 2) and EM-
ONMF (Alg. 1) perform competitively with two recently proposed methods for ONMF: CHNMF from Choi [7]
and O-PNMF from Yang and Oja [20] (Euclidean variant). It should be noted that because ONP-MF is initialized
with SVD, its results are deterministic and obtained with just one execution of the algorithm. However, it could
be argued that the comparison with the other algorithms is not completely fair as CHNMF and O-PNMF are
initialized with randomly generated factors. In order to perform a fairer comparison, we also initialize CHNMF
and O-PNMF with an SVD-based initialization [5] (SVD cannot be used directly because its factors are not
necessarily nonnegative), which will be denoted CH(SVD) and O-P(SVD) respectively. Finally, we also report
results from two standard EM clustering algorithms, namely k-means and spherical k-means (SKM) (see, e.g.,
[2]). We will see that EM-ONMF is quite efficient for text clustering tasks (see Section 4.2) while ONP-MF gives
very good results for unsupervised image classification tasks (see Sections 4.3 and 4.4).

Parameters for ONP-MF are chosen as follows: α0 = 100, ρ0 = 0.01 and C = 1.01 for all data sets. ONMF
algorithms are run until a stopping condition is met (see below), or a maximum of 5000 iterations in case of
random initializations (for CHNMF and O-PNMF) and 20000 iterations for the SVD-based initialization (as done



in [5]) was reached. The following stopping condition for CHNMF seems to work well in practice5:

| ||M − U (t+1)V (t+1)||F − ||M − U (t)V (t)||F |
||M ||F

< 10−7,

where t is the iteration counter. For O-PNMF, we use the stopping criterion suggested by its authors6:

||V (t−1) − V (t)||F
||V (t−1)||F

< 10−5.

For ONP-MF, we check whether the current iterate is ‘sufficiently’ nonnegative, using

||min (V, 0) ||F
||V ||F

< 10−3.

All EM-like algorithms, EM-ONMF included, were run until cluster assignment did not change for two consecutive
iterations. The initial centroids were randomly selected among the data points. For each experiment, a number
of 30 repetitions was executed in random conditions both for ONMF and EM-like algorithms (except for the
synthetic data sets where we only performed 10 as in Section 2.3). In the image experiments, we will display
the best solution obtained, i.e, with the lowest error. All experiments were run on an Intel R© CoreTM i7-2630QM
quad core CPU @2.00GHz with 8GB of RAM.

4.1 Synthetic Data Sets In this section, we perform experiments on synthetic data sets as in Section 2.3 in
order to compare the different ONMF algorithms. Figure 4 reports the average accuracy of each algorithm. We

Figure 4: Comparison of the different ONMF algorithms on synthetic data sets.

observe that

5It seems that 10−7 is a good trade-off: for example, using 10−8 instead leads to much larger computational times without
significant improvements in clustering accuracy.

6Code available at http://users.ics.tkk.fi/rozyang/pnmf/index.html.

http://users.ics.tkk.fi/rozyang/pnmf/index.html


• ONP-MF or O-P(SVD) perform the best among all ONMF algorithms. In particular, they are the only
algorithms able to perfectly identify all clusters for small noise levels (ǫ = 0.01).

• CHNMF, O-PNMF and CH(SVD) perform similarly, their accuracies being in most cases lower than those
of ONP-MF and O-P(SVD).

• EM-ONMF performs rather poorly and is in general not able to perform a good clustering (although it is
much faster than the other algorithms, see Table 1).

Table 1 gives for each algorithm the average computational time for one execution on a synthetic data set.
ONP-MF is slightly slower but typically obtains one of the best factorizations using only a single deterministic

Table 1: Average computational time in seconds for the synthetic data sets.
CHNMF CH(SVD) O-PNMF O-P(SVD) EM-ONMF ONP-MF

2.19 3.25 2.38 2.73 0.41 3.80

initialization.

4.2 Text Clustering We selected twelve well-known preprocessed document databases described in [21]. Each
data set is represented by a term-by-document matrix of varying characteristics, see Table 2. As a performance

Table 2: Text mining data sets [21].
Data m n r #nonzero

classic 7094 41681 4 223839
ohscal 11162 11465 10 674365
hitech 2301 10080 6 331373
reviews 4069 18483 5 758635
sports 8580 14870 7 1091723
la1 3204 31472 6 484024
la2 3075 31472 6 455383
k1b 2340 21839 6 302992
tr11 414 6429 9 116613
tr23 204 5832 6 78609
tr41 878 7454 10 171509
tr45 690 8261 10 193605

indicator, we use the accuracy; see Equation (2.9). We report the average value of the obtained accuracy along
with the standard deviations in Table 3. For more than half of the data sets, the average best result was achieved
by our algorithms, either EM-ONMF or ONP-MF. Moreover, our algorithms obtain the best performance among
ONMF algorithms in ten out of the twelve data sets (being close for the two remaining data sets). While EM-
ONMF is very fast with a low number of iterations (as the other EM-like algorithms), ONP-MF is in general
slower than the other ONMF algorithms (especially CHNMF), and typically requires a larger number of iterations
to converge.

Note that, in this paper, our focus is on the comparison of ONMF algorithms based on the Frobenius
norm. Comparison with ONMF algorithms using other measures, such as the Kullback-Leibler divergence, and
comparison with other topic models (such as LDA [3]) is a topic for further research.

4.3 Hyperspectral Unmixing A hyperspectral image is a set of images of the same object or scene taken
at different wavelengths. Each image is acquired by measuring the reflectance (i.e., the fraction of incident
electromagnetic power reflected) of each individual pixel at a given wavelength. The aim is to classify the pixels
in different clusters, each representing a different material. We want to cluster the columns of a wavelength-by-
pixel reflectance matrix so that each cluster (a set of pixels) corresponds to a particular type of material.



Table 3: Average accuracy and standard deviation (if applicable) in percent obtained by the different algorithms
(in bold, best average performance; underlined, second best).

data set k-means SKM CHNMF CH(SVD) O-PNMF O-P(SVD) EM-ONMF ONP-MF
classic 58.9 ±6.8 56.8 ±4.7 55.0 ±1.8 55.9 50.8 ±1.9 53.9 58.8 ±6.9 53.8
ohscal 28.8 ±3.2 42.8 ±2.9 33.7 ±2.6 34.0 35.0 ±1.1 33.8 39.2 ±3.3 34.0
hitech 32.2 ±1.6 48.7 ±3.6 42.0 ±4.2 41.5 47.0 ±1.0 47.7 48.7 ±5.6 47.0
reviews 43.6 ±5.5 68.7 ±6.5 52.6 ±9.1 49.3 55.6 ±6.4 52.8 63.7 ±10.3 51.0
sports 38.8 ±2.4 45.1 ±4.1 42.3 ±2.9 49.5 44.3 ±3.8 49.0 50.0 ±6.6 50.0

la1 35.0 ±1.9 48.0 ±4.7 53.0 ±5.4 44.3 55.4 ±5.8 60.9 50.2 ±7.3 65.8

la2 33.8 ±1.7 46.6 ±4.5 41.0 ±2.7 42.1 48.0 ±4.6 52.7 47.1 ±6.1 52.8

k1b 66.8 ±10.1 64.9 ±8.2 74.9 ±2.9 76.7 72.7 ±5.7 76.4 75.3 ±6.9 79.0

tr11 31.6 ±1.7 53.0 ±5.2 47.1 ±3.3 50.2 31.5 ±8.5 33.8 42.4 ±6.3 46.1
tr23 40.8 ±2.5 42.5 ±5.2 37.0 ±3.6 32.8 39.2 ±2.0 41.2 40.7 ±4.4 40.7
tr41 41.8 ±6.6 53.2 ±5.8 46.5 ±5.5 42.6 35.5 ±7.8 43.1 53.2 ±7.4 43.1
tr45 27.9 ±4.2 54.2 ±6.2 39.2 ±1.7 39.3 35.7 ±4.7 35.1 41.4 ±6.6 35.9

4.3.1 Hubble Telescope We first use a synthetic data set from [17], see Figure 5 (top row), in clean conditions
(i.e., without noise or blur). It represents the Hubble telescope and is made up of 8 different materials, each having
a specific spectral signature. Figure 5 displays the clustering obtained by the different algorithms7 and we observe
that only ONP-MF is able to successfully recover all eight materials without any mixing. Even with the SVD-
based initialization, CHNMF and 0-PNMF (i.e., CH(SVD) and O-P(SVD)) are not able to separate all materials
properly; ONP-MF is the only algorithm able to perform this task almost perfectly.

4.3.2 Urban Data Set The Urban hyperspectral image is taken from HYper-spectral Digital Imagery
Collection Experiment (HYDICE) air-borne sensors. It contains 162 clean bands, and 307 × 307 pixels for
each spectral image; it is mainly composed of 6 types of materials: road, dirt, trees, roofs, grass and metal
(mostly metallic rooftops) as reported in [12, 11]. The first row of Figure 6 displays a very good clustering
obtained using N-FINDR5 [19] plus manual adjustment from [12], along with the clusterings obtained with the
different algorithms. The road and dirt are difficult to extract because their spectral signatures are similar (up
to a multiplicative factor), and none of the algorithms is able to separate them perfectly. ONP-MF successfully
extracts the grass, trees, and roofs and is the only algorithm able to extract the metal (second basis element),
while only mixing the road and dirt together. Spherical k-means, CHNMF, O-P(SVD) (Figure 7) and EM-ONMF
also perform relatively well, being able to extract the road (mixed with dirt or metal), trees, grass (as two separate
basis elements) and roofs. CH(SVD) and k-means perform relatively poorly: they are not able to separate as
many materials properly.

4.4 Image Segmentation: Swimmer Data Set The swimmer image data set consists of 256 binary images
of a body with four limbs which can be positioned in four different ways each. The goal is to find a part-based
decomposition of these images, i.e., isolate the different constitutive parts of the images (the body and the limbs,
17 in total). Moreover, these parts are not overlapping, and therefore no rows of V can share nonzero entries
in the same column, and ONMF is an appropriate model. Figure 8 displays the basis elements obtained with
the different ONMF algorithms. It can be observed that, in this case, the SVD-based initialization is of no
benefit, neither for CHNMF nor for O-PNMF. All algorithms are able to successfully find the correct parts except
O-PNMF and O-P(SVD).

7For EM-ONMF, k-means and SKM we preprocess the data by discarding pixels from the background (i.e., all columns of the
input matrix with zero ℓ2-norm). Recall that, for each algorithm, we keep the best solution (w.r.t. the error) among the 30 randomly
generated initial matrices.



Figure 5: Hubble data set decomposition. From top to bottom: sample images at different wavelengths along
with the true constituent materials, k-means, spherical k-means, CHNMF, CH(SVD), O-PNMF, O-P(SVD),
EM-ONMF and ONP-MF.

5 Conclusion

In this paper, we have studied the ONMF problem and showed its equivalence with a weighted variant of spherical
k-means (Theorem 2.1). This led us to design a new EM-like algorithm for solving ONMF problems (Alg. 1, EM-
ONMF). We have also proposed an alternative approach based on an augmented Lagrangian method imposing
orthogonality at each step while relaxing the nonnegativity constraint (Alg. 2, ONP-MF).

We then performed numerical experiments on some synthetic, text and image data sets. Note that Euclidean-
based metric ONMF (2.3) is not particularly suited for document classification: First, the use of the Frobenius
norm makes the implicit assumption that the noise is Gaussian, which is unrealistic for sparse data sets such
as document data sets; see, e.g., the discussion in [6]. Second, ONMF assumes that each document is on a
single topic, which is in general not true (there exist more general generative models such as LDA assuming that
documents are mixtures of several topics). Text data sets are nevertheless a worthy benchmark on which to
compare the effectiveness of various Euclidean-metric ONMF algorithms.

The experiments indicate that our ONP-MF algorithm is by far the most robust among existing algorithms
for solving the Euclidean ONMF problem (1.1): it always gave very good results, the best in many cases, using



Figure 6: Urban data set decomposition. From top to bottom: ‘true’ materials, k-means, spherical k-means,
CHNMF, O-PNMF, EM-ONMF and ONP-MF.

only one initialization. In particular, we observed for all image experiments that a single (deterministic) run of
ONP-MF worked better than all the other tested algorithms, despite the fact that those were allowed to keep the
best solution obtained from 30 different (random) initializations. Since initialization is known to be an important
component in the design of successful NMF methods [5], we believe that initializing the V factor with the unaltered
right singular vectors of the data matrix, which is allowed by the workings of ONP-MF but impossible with other
ONMF methods, plays an instrumental role in the clustering performance of ONP-MF observed in numerical
experiments.
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Figure 7: Urban data set decomposition. From top to bottom: CH(SVD) and O-P(SVD).

Figure 8: Swimmer data set decomposition. From top to bottom: k-means, spherical k-means, CHNMF,
CH(SVD), O-PNMF, O-P(SVD), EM-ONMF and ONP-MF.
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